Data Integration using the **NASA Air Traffic Management Ontology**

Rich Keller*

Shubha Ranjan**

Mei Wei*

Michelle Eshow**

*Intelligent Systems Division / **Aviation Systems Division

NASA Ames Research Center

Background: NASA's ATM Data Warehouse

- NASA researchers require historical ATM data
 - NASA Ames conducts research on future ATM concepts
 - Researchers require data for analysis and concept validation
- NASA Ames' ATM Data Warehouse archives data collected from FAA, NASA, NOAA, DOT, industry
 - Warehouse captures:
 - live streamed data
 - published periodic data
 - Data holdings available back to 2009

A Sampling of Archived ATM Data Warehouse Holdings

- Flight plans & tracks
 - Airline Situation Display to Industry (ASDI)*
 - Air Route Traffic Control
 Center tracks
 - TRACON tracks
 - Center-TRACON Automation System (CTAS)
 - Exelis tracks

*SWIM conversion underway for available sources

- Weather
 - METAR, TAF
 - Corridor Integrated Weather Service (CIWS)
 - AIREP, PIREP
 - Rapid Refresh (RR) Weather
 Forecast
- Traffic Management
 - Advisories & TMIs
 - Time-based FlowManagement (TBFM)

ATM Data Warehouse: A microcosm of the NAS data environment

Problem: Non-integrated Data

- ATM Warehouse data is replicated & archived in its
 - original format
- Data sets lack standardization
 - data formats
 - nomenclature
 - conceptual structure

- Possible cross-dataset mismatches:
 - terminology
 - scientific units
 - temporal alignment
 - spatial alignment
 - conceptualization organization
- To analyze and mine data, researchers must write special-purpose code to integrate data for each new task
 - → <u>Huge time sink!</u>

Proposed Solution

Relieve users of responsibility for integration!

Integrate Warehouse data sources on the server side using **Semantic Integration**

Semantic Integration Approach:

Prototype System Diagram

What is modeled in the NASA ATM Ontology?

- ❖ 150+ object types: •Flights •Aircraft and manufacturers •Airlines
 - •Airports and physical infrastructure •NAS facilities •Air traffic management initiatives •Surface weather conditions and forecasts
 - Airspace sectors, fixes, routes, airways
 Flight plans and paths
- **❖ 150+ object properties:** •actualDepartureTime •actualArrivalTime
 - •airportArrivalRate •cloudType •dewpoint •EDCTarrivalHold
 - equipmentCodegroundSpeedheadinghourlyPrecipitation
 - •IATAcarrierCode •issuedTime •manufactureYear •maxVisibility
- 100+ relationship types: •hasRampTower •hasRunway •operatedBy locatedInSector •manufacturedBy •hasSurfaceWindCondition
 - •hasLOAwith •exemptedAFP •departureScope •ADLday •adjacentSector
 - •aircraftFix •aircraftFlown •arrivalRunway •reRouteConstraint
- **2M+ triples in prototype** (one day of ops at one major airport)

Ontology Subsets

NAS Infrastructure

NASinfrastructureElement

TRACON

hasGeometry

Flight & Navigation

Spatial Representation

PolygonalVolume
ATCT
Runway
Terminal
Taxiway

Concept Hierarchy/Taxonomy
isA
superclass
superconcept
superset

RampTowe

Meteorology

Traffic Management Initiatives (TMIs)

Aircraft AircraftSubsystem is A BallBearing

AirportSpec

hasComponent EngineeredSystem UnitAssembly NavigationAid hasModel ElectricalPowerSystem VORDME VOR AircraftModel AircraftManufactur AirBusAircraftMc PropJet **BombadierAircraftModel** BoeingAircraftModel AirCarrier TurbineEngineAircraft PistonEngineAircraft B737-800 B777-200ER TimeInterval

Aviation Equipment

Flight/Airport Constraints

AirspaceFlowProgramTMI

NavigationFix

NavigationPath

constraint

Ontology Representation of a Flight

arrival departure Flight DAL1512 airport • actual arrival: 2012-09-08T20:35 airport **KATL Airport** actual depart: 2012-09-08T19:03 • call sign: DAL1512 • airport name: Hartsfield-Jack... • user category: commercial • FAA airport code: ATL carrier • flight route string: KATL.CADIT6... ICAO airport code: KATL · located in state: GA aircraft **Delta Air Lines** offset from UTC: -5 has flown name: Delta Air Lines flight Path • callsign: DELTA runwal • ICAO carrier code: DAL METAR IATA carrier code: DL report Rway 09R/27L **Flight Track for DAL1512** • runway ID = 09R/27L has fix A319-111 **KATL METAR @18:52** next • AC type designator: A319 Aircraft Fix #1 • model ID: A391-111 • report time: 2012-09-08T18:52 fix • reporting time: 2012-09-08T19:03:00 • number engines: 2 • report string: KATL 301852Z 11004KT... sequence number: 1

KORD Airport

• airport name: O'Hare Intnl.

• FAA airport code: ORD

• ICAO airport code: KORD

located in state: IL

• offset from UTC: -6

Aircraft N342NB

• registrant: Delta Air Lines, Inc.

• serial number: 1746

• certificate issue: 2009-12-31

manufacture year: 2002

• mode S code: 50742752

• registration number: N342NB

model

• dewpoint: 19

• surface pressure: 1010.1 • surface temperature: 22

• ground speed: 461

• altitude: 3700.0 • latitude: 33.6597

• longitude: -84.495555

Aircraft Fix #2

porting time: 2012-09-08T19:03:32

quence number: 2

ground speed: 184 • altitude: 3600.0 • latitude: 33.65

• longitude: -84.48333

manufacturer

Airbus

Flight Weather **Equipment** Industry Aeronautical **KEY**

Example: Mapping an ASDI Departure Message onto Ontology

Message-Time-UTC	AC-ID	Departure-Time-UTC	Departure-Named-Fix	Arrival-Named-Fix	AC-Type
2012-09-08 19:02:35	DAL1512	2012-09-08 19:03:00	KATL	KORD	A319

Original Source Format

ASDI Departure Record Mapping

Representative SPARQL Queries

from benchmark set of 17 queries for evaluating performance on scale-up

Flight Demographics:

- F1: Find Delta flights using A319s departing ZTL airports
- F3: Find flights with rainy departures from ATL

Sector Capacity:

- S4: Find which sector controlled the most flights during a given hour
- S6: Find the busiest sectors in the NAS on a given day, aggregating hourly

FAA Advisories / TMIs

T1: Find flights that were subject to GDP Advisories

Weather-Impacted Traffic Index (WITI)

W1: Calculate hourly (High Wind, Low Ceiling, Low Visibility) WITI values

Flight Delay Data

A3: Compare hourly Airport Acceptance rate with Arrival Demand at an airport

Status

- Right now, ATM Ontology is just a prototype
 - Ontology contains integrated data corresponding to a single day of NAS operations at a major airport (9/8/12 @ ATL) using a subset of ATM sources
- Two commercial triple stores test-deployed on local server:
 - AllegroGraph (from Franz)
 - GraphDB (from OntoText)
- Within NASA Ames, triple stores can be queried via HTTP as a SPARQL endpoint

Future Plans

- Increase scale (a key challenge!)
 - 2.4M triples for one day; 36M for 30 days
 - only flights arriving/departing one airport
- Increase scope: additional data sources
- Build tools and services on top of triple store:
 - data browser
 - data query interface
 - data download service

Long Term Goal

To build the world's largest repository of Linked Open Data describing the Global Airspace System

A queryable resource for aviation applications,
 research, analysis, and public policy decision-making

Featuring interconnected data about...

- Flights
- Airports
- Airlines
- Runways/taxiways
- Terminals/Gates
- Airspace control facilities (ARTCCs, TRACONs, towers)
- Air traffic management initiatives

- Weather
- Aircraft
- Aircraft mechanical systems
- Aviation safety data
- Aircraft manufacturers
- Airspace topology (sectors, fixes, routes)
- Departure/Arrival routes