SWIM-005
December, 2015
Version 1.0.0

SOFTWARE SPECIFICATION
Artifacts Versioning for SWIM-enabled

Services

Comments, suggestions, or questions on this document should be addressed to:
Federal Aviation Administration
SWIM Program Office, AJIM-316
800 Independence Avenue, SW.
Washington, DC 20591
mark.kaplun@faa.gov

SWIM-005
December, 2015
Version 1.0.0

APPROVAL/SIGNATURE PAGE

2

NS 0
Jeri Groce
SWIM Program Manager

~

§ //' ' T/ () & j’l//_”/. / /] / 2 4 /)2 /-ﬁ"~'
/ /’i/ // ;% { /’\/// % / (Ne—— / (:/ ' / /’/ / //(/ < { //)
Mark Kaplun / / .

SWIM Governance Lead Date

SWIM-005
December, 2015
Version 1.0.0

TABLE OF CONTENTS

SCOPEccuiteerereeirerenererenttaetasseessnssesersssessesssnssssssassessssssassssssassssssssenssssssassssssnsessesassassasssassassesssnsssnssnssnnsens 1
O Y ol I 3PS 1
1.2 BACKGROUNDceevvvvvuuueeeeererersnsiaeeeesssessssnnaaesessssssssnnseeesssssssssnnsesesssssssssnneseessssssssnnseseesssssssnnsessesssssessessssnnnneeessrees 1
1.3 ENTITY TYPE DESCRIPTION ..eetettuuueeseeereeusuueaeeeesesesssunesesessssssssnaseesessssssssnsesessssssssnnsesssssssssssnsesessssssssnnsesseesssssserees 1
L1.4 PROCESS OVERVIEW ..vvuuueieiiieeetutiieseeeeeeesssniaesesesssssssinseeessssssssansesessssssssnnsesessssssssnneesesssssssssnmtesesssssssssnnssseeeessesees 3
1.5 INTENDED AUDIENCE t1tuuuueeeeerrruruneiaseeessssssnnnaseesessssssnsnseseessssssssnssesessssssssnnsesesssssssssnsassessssssssnssessesssssssnnneessnseseesssees 4
1.6 TYPOGRAPHICAL CONVENTIONS vvuuuueieeeieettutiieeeeereressusiaeeeeessesssssnasesesssssssssneesessssssssnaesessssssssnnseeessssssssnieseessesssssnnns 4

APPLICABLE DOCUIMENTSccutieiteieenerenrenseecransescsessescssssassesssassessssssassssssassasssassssesssssssssssassssssnssssssassassenssas 5
2.1 GOVERNMENT DOCUMENTS .eettitttiiiieieteeeteeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeteeeeeeeeesesesesesasesesasasasasasssasasssasassnssssssssssnnsssnnsnnnnsens 5

2.1.1 Specifications, Standards, ANd HANADOOKScoccueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et e eesteeeesaeaeasaeaenn 5
2.2 NON-GOVERNMENT PUBLICATIONS 1vvtuuueeeeeetersuuuaaseeersssssnnaeseeessssssnnasesessssssssnassesessssssssnasesssssssssssesessssssssnnneesessssses 5
2.3 ORDER OF PRECEDENCE ..vtuuuuueeeeeettrstuueeeeesrerssssnaeeesssssssssesesssesssssnaesesssssssssnmesesssesssssnnaesessssssssnnmesessssssssnnnsssseseens 6

REQUIREIMENTS ...cuiciiieiieieeereirenctneranteesrassescrassessessrassasssnssasessssessssssassasssnssasessssassssssassnsssnssnsessssasssnssnssassnnns 6

3.1 Key WORDS

3.2 GENERAL REQUIREMENTSeettttteteeeuutttteeeeeaauueteeeeeesaauuntteeeesaaaasaseteeeeesaabeeeeeeeee s annbeeeeeeesanssneeaeeaesannbaneeeesesans 2eennan 6
3.3 DETAILED REQUIREMENTS ...eteeurtreraurreessureeesaseeesauseeessureresansseessunseesssseesasnseessanesessnsseesssnsesesasseesesssesessseeesanneeseeesan 7
3.3.1 XML Schema Versioning REQUITEIMENTScocueereeenieeiie et ettt st ste st sae et eseeeaeaeaeeenee s 7
3.3.1.1 IMJOT CRANEES ..ot et e e e et e e e be e e e tae e e e abeeesaateeeasbaee e sbeeeeataaeesseeeeaseeesnss sanbeeeannaeas 7
3.3.1.2 1Y g el o T V= Y-SR PSRN 8
33.13 Patches
3.3.2 WSDL Versioning REQUITEMENTS.ueeieeeeeeiiieieeeeeeciteeeeeesssattaeaesesesssttaesssesssasstesasssssestensasssensssees 8
3.3.21 MI@JOT CNANEES ...t uveeeeeeieeetee ettt e et et e st te e et e s ateeteesseeeaseesseeente e seeanseeseessseenseessaeenseeanseenseessseenseen senseennsnanen 8
3.3.2.2 IVHINOE CRANEES ...ttt ettt ettt ettt s et sat e s bt e bt e sab e e bt e s ab e et e e sabe e bt e sabeeabeesaseenbeesanesaneen senbeenanennne 9
3.3.23 PATCNES. .ttt ettt et s h e st sa et et e e sh b e et e e s b e e sa b e e bt e eat shbesabeenbaesateenaeenaee 9

3.3.3 JMS Message Header Versioning Requirements

3.3.4 Service Versioning Requirements

3.34.1 M) OT CNANEES ..ttt ettt e e e ettt e e et e e e bt e e e e te e e e tbeeeeabaeeaasaeeesbeeeeabaeesnseaeeasseeesasaeesastne sreaennseeas
3.3.4.2 Y T @ o T o = YR 11
3.3.4.3 [| (ol LTSRS 11
QUALITY ASSURANCE PROVISIONSccciuiieiieiiniieireiiniiensiosiosssstasssssssssessssssassssssnssssssssssssssssassasssnssssssnssanss 12
PREPARATION FOR DELIVERY ...cuceuttueieiteirerencrestessessransescsassesessssassesssnssssessssessssssassssssnssassssssassasssassanssnssnns 13
INOTES ... ciiiiiieiiiiieiieeiteitectestestesstastassssssassesstassassssssassssssassassssssassssssnssssssssssssssssassssssnssssssssssssasssnssassanssnns 13
(200 R B T N T] RPN 13
(SI 2 ol 10] N Y O ORPPOPPPPPPPIRY 14

SWIM-005
December, 2015
Version 1.0.0

TABLE OF FIGURES

FIGURE 1 VERSIONS CHANGES SCENARIO .vvvuuuueeeeerrrtsuuneeeeeeeressssnnaesessssssssnnsesesessssssnnnseseesssssssnnasesesssssssnnnesesessssssnnsesesessssssnnnns 3
FIGURE 2 EXAMPLE OF VERSION IDENTIFIER INTHE NSRR 2.0 e i iiiiieieeeeeeee et 10

TABLE OF TABLES

TABLE | REQUIREMENTS VERIFICATION IMIATRIX .. ceeteuuetereteeeeeinnreeteeeseesreeereessessnreneeessesmnnenesese s mnnneneeeesannnnneeeesesannnnneeeeesanen 12

SWIM-005
December, 2015
Version 1.0.0

1 SCOPE

1.1 Scope

This specification provides requirements and guidelines for versioning in the context of FAA’s System
Wide Information Management (SWIM) services. The rules defined in this specification are based on
(but not limited to) non-proprietary industry-wide common practices and recommended guidelines.

This specification has been prepared in accordance with FAA-STD-067 [STD-067].

1.2 Background

The inherently agile nature of SWIM as a multi-organizational service-oriented technological framework
emphasizes the need for managing changes to SWIM-enabled service components. These changes
usually originate from new business requirements, constantly evolving technological solutions, or
modifications or upgrades to a common infrastructure. To maintain interoperability among
independently developed components, software developers and governance bodies must be cognizant
of a) whether the changes will negatively impact existing (and potentially future) service consumers and

b) how changes that will and will not impact consumers should be implemented and communicated
[Earl-2008].

Addressing these questions results in the need for versioning. Versioning supports the simultaneous
existence of multiple (different) implementations of the same thing (artifact), with every
implementation distinguishable and individually addressable [Lubinsky-2007]. In a service-oriented

architecture (SOA), software versioning supports the creation and management of multiple releases of a

service and provides a way to communicate changes to a service consumer agent. The versioning

process is essential for reducing the impact of change on service consumers, reducing maintenance
costs, and improving the overall manageability of services [Lubinsky-2007].

The goal of this document is to specify a process for assigning version identifiers to software artifacts for

the purpose of managing their evolution.

1.3 Entity Type Description

This specification defines a data object called version identifier as a unique identifier that specifies a
unique state of software artifact, and describes how the identifier is created and applied in the context
of a SWIM-enabled service.

The first step toward establishing an effective versioning mechanism is to decide on a common way by
which versions are identified. There are multiple schemes in industry for defining version identification
patterns; this specification uses an approach in which the version identifier is constructed as a sequence
of non-negative integers, each of which represents the measure or significance of the changes made.
[SemVer2.0.0]

SWIM-005
December, 2015
Version 1.0.0

This specification classifies all changes that can be made into three categories: major, minor and patch.

1. The term major is reserved for changes or updates that are not backward-compatible; that is,
they force a consumer agent to change in order to use the new version of the service. It says
that these changes "break" a consumer agent.

2. The term minor is reserved for changes that allow a consumer agent to continue to use the
existing version of the service (they do not "break" the consumer agent), although the consumer
agent is unable to use or is unaware of the new features. These changes are considered
backward-compatible (e.g., a new capability, new optional request parameters).

3. The term patch is reserved for backward-compatible bug fixes that do not affect in any way
interaction between service and consumer agent (e.g., fixing a bug in software, correcting a
typographical error in an XML schema document).

To illustrate these concepts, figure 1 presents a scenario wherein a service consumer agent was
designed to use a version 1.0.0 of some artifact (e.g., an XML schema). After minor changes, which were
communicated through the incremented second and third digits in the version identifier (1.1.0 and 1.2.1
respectively), the consumer agent could continue to use each subsequent version of this artifact.
However, after major changes were made (and communicated via the incremented first digit), the
consumer agent required modification in order to use version 2.0.0 of the artifact.

SWIM-005
December, 2015
Version 1.0.0

2.0.0 B
<
. requires changes to consumer agent to continue interaction
major changes
1.2 B{ Consumer
. continues to use agent
minor changes v. 1.0.0
and a patch
1.1.0 5
Pl
=
. continues to use
minor changes
1.0.0 k
=
B
- . uses
original version

FIGURE 1 Version usage scenario

Detailed requirements for creating a version identifier are presented in section 3.2 of this specification.

1.4 Process Overview

According to the SWIM Governance Policies [SWIM GP], the service provider is responsible for

developing and maintaining services and their artifacts, deciding when a new version of a service or
artifact is warranted, maintaining version control, and assigning version identifiers. The provider is also
responsible for uploading required service artifacts to the NAS Service Registry/Repository (NSRR),

which maintains service descriptions and artifacts throughout the service’s lifecycle. The NSRR processes
the artifacts in accordance with the NSRR functionality and processing logic, and then it makes those
artifacts, including WSDL documents and XML schemas, available to NAS/SWIM stakeholders for future
use. When the service is ready to be deployed or tested, copies of appropriate artifacts are uploaded to
the NAS Enterprise Messaging Service (NEMS) to support data exchange.

A versioning process with respect to service development must answer the following questions:

SWIM-005
December, 2015
Version 1.0.0

= What artifacts should be versioned?
= How should these artifacts be versioned?

Changes made to a SOA service are declared and effectuated through the artifacts that express service
functionalities or characteristics. There are a variety of such artifacts in industry and FAA, but this
specification focuses only on the following as the most germane to the SWIM’s change management

processes. These artifacts are:

1. XML schema: an XML document that defines structure and constraints for the types of data to
be transmitted by service components. [SWIM XML-DOC]

2. WSDL document: a formal description of types, messages, interfaces and their concrete
protocols and data format bindings, and the network access points associated with Web services
[SWIM XML-DOC].

3. JMS Message header: the part of a JMS message that allows the message producer, service

broker (NEMS) and message recipient to identify or route the message. It is important to note
that this specification does not suggest that the message header itself is being versioned, but
that the message header includes versioning information relevant to the content of the
message.

4. NSRR meta-card: a set of metadata attributes and artifacts associated with a single service in
the NSRR. Every service meta-card in the NSRR includes a required “Service Version” attribute

that indicates the current version of the service.

The requirements describing how each of these artifacts should be versioned are presented in
sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4 respectively.

1.5 Intended Audience

This specification is intended for use by application architects and software developers. While the
document contains some explanatory material, it assumes the user has a basic familiarity with XML

schemas, WSDL specifications, and implementation of JMS in the context of NEMS.

1.6 Typographical Conventions
Page headers, page numbers, figure and table captions, and other formatting are in accordance with
FAA-STD-067 [STD-067].

Examples of code used in this document are presented in constant width font.

SWIM-005
December, 2015
Version 1.0.0

2 APPLICABLE DOCUMENTS

2.1 Government Documents

2.1.1 Specifications, Standards, and Handbooks

The following specifications, standards, and handbooks form a part of this document to the extent

specified herein. Unless otherwise specified, the issues of these documents are those cited in the

solicitation or contract.

[STD-067]

[SWIM GP]

[SWIM XML-
DOC]

[SWIM CV]

FAA Standard Practice, Preparation of Specifications, FAA-STD-067, December 4,
2009, https://sowgen.faa.gov/docs/FAA-STD-067.pdf

System-Wide Information Management (SWIM) Governance Policies, Version 2.0,
March 2014,

http://www.faa.gov/nextgen/programs/swim/governance/standards/media/Governa

nce-Policies-v20.html

Syntax and Processing of XML-Based Documents in the Context of SWIM-Enabled
Services; Software Specification; Version 1.0; June 16, 2015
http://www.faa.gov/nextgen/programs/swim/governance/standards/media/Syntax%
20and%20Processing%200f%20XML-Based%20Documents%2006162015.pdf

SWIM Controlled Vocabulary (CV),

http://www.faa.gov/nextgen/programs/swim/vocabulary/

2.2 Non-Government Publications

[SEI-2012]

[Lubinsky-
2007]

[SemVer2.0.0]

Best Practices for Artifact Versioning in Service-Oriented Systems; TECHNICAL NOTE;
Software Engineering Institute Marc Novakouski, Grace Lewis, William Anderson, Jeff
Davenport; January 2012;

http://www.sei.cmu.edu

Lublinsky, B. “Versioning in SOA.” Microsoft Architecture Journal 11 (April 2007).
http://msdn.microsoft.com/en-us/library/bb491124.aspx

Semantic Versioning 2.0.0; Tom Preston-Werner; Creative Commons; 2013;

http://semver.org/spec/v2.0.0.html

SWIM-005
December, 2015
Version 1.0.0

[Earl-2008] Web Service Contract Design and Versioning for SOA; Thomas Erl et al;Prentice Hall;
2008

[XML-NS-1.0] Namespaces in XML 1.0 (Third Edition),W3C Recommendation 8 December 2009
http://www.w3.org/TR/REC-xml-names/

[RFC-2119] RFC 2119, Key words for Use in RFCs to Indicate Requirement Levels, Network Working
Group, March 1997. http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC-3936] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, Network Working Group,
January 2005 http://www.rfc-editor.org/rfc/rfc3986.txt

2.3 Order of Precedence
In the event of a conflict between the text of this document and the references cited herein, the text of
this document takes precedence. Nothing in this document, however, supersedes applicable laws and

regulations unless a specific exemption has been obtained.

3 REQUIREMENTS

3.1 Key Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", “MAY", and "OPTIONAL" in this specification are to be interpreted as described in
RFC 2119 [RFC-2119]. These key words are capitalized when used to unambiguously specify

requirements. When these words are not capitalized, they are meant in their natural-language sense.

3.2 General Requirements

This section specifies requirements that are common to all types of service artifacts described in this
specification, as well as to the service itself. This specification follows the approach described in
Semantic Versioning 2.0.0 [SemVer2.0.0].

a. Every version of a service or service artifact SHALL have a version identifier formatted as three
dot-separated positive integers without leading zeroes, e.g., “1.2.3".

1. The first digit SHALL represent major changes to the service or service artifact.
2. The second digit SHALL represent minor changes to the service or service artifact.
3. The third digit MAY represent a patch to the service or service artifact.

b. The default value for every version identifier SHALL be 1.0.0.

SWIM-005
December, 2015
Version 1.0.0

Explanation: When a service or service artifact is provided to SWIM Governance without a version
identifier, it will be assumed that the current version of the service or artifact is 1.0.0, and that
future versions will be identified as described above.

c. Aversion identifier SHALL be presented as a part of the versioned artifact without reliance on
any additional tooling.

Explanation: Versioning data associated with an artifact should be autonomous; that is, it should
not rely on a tool or repository that may store or manage the artifact (e.g., NSRR) and should
provide consistent versioning identification even when used outside of this tool.

3.3 Detailed Requirements

3.3.1 XML Schema Versioning Requirements

This section specifies the changes to an XML schema document that require changes to the schema’s
version identifier and how the version identifier should be presented in the context of the document.
Since an XML schema in the SWIM environment is always uploaded to or referenced by the NSRR, the
requirements specified in this section are aligned with the requirements defined in the specification
SWIM-002 “Syntax and Processing of XML-Based Documents in the Context of SWIM-Enabled Services”
[SWIM XML-DOC].

a. When major changes to an XML schema document are made (see section 3.3.1.1), the schema

SHALL be published in a new namespace.

Explanation: Because the namespace for an XML schema document is presented as a value of the
attribute targetNamespace in the XML schema root element, the new value for this attribute
should be defined.

b. An XML schema’s namespace SHALL conform to the structure and constraints specified in the
“Syntax and Processing of XML-Based Documents in the Context of SWIM-Enabled Services”
specification [SWIM XML-DOC].

c. The version identifier SHALL be embedded in the XML schema namespace URI (e.g.,
http://www.aixm.aero/schema/5.1 or http://www.opengis.net/gml/3.2).

d. To support backward compatibility with current versioning and version identifier engineering

practices, for the first schema version (1.0.0) the versioning part MAY be omitted from the

namespace URI.

3.3.1.1 Major changes

a. The following modifications to an XML schema SHALL be considered major:

1. Renaming or removing a global type or element.

7

SWIM-005
December, 2015
Version 1.0.0

Changing the type of a global element.
Changing the type of a local element.
Changing the definition from optional to required, for both global and local elements.

Adding or removing an enumeration value.

o vk wnN

Changing the value of an elementFormDefault attribute.

3.3.1.2 Minor changes

a. The following modifications to an XML schema SHALL be considered minor:
1. Adding a global element or a type.

2. Changing the definition of a local element from required to optional.

3.3.1.3 Patches

a. The following modifications to an XML schema MAY be considered a patch:

1. Adding or changing descriptions or annotations.

3.3.2 WSDL Versioning Requirements

This section specifies the changes to a WSDL document that require changes to the WSDL’s version
identifier and how the version identifier should be presented in the context of the document. Since a
WSDL document in the SWIM environment is always uploaded to the NSRR, the requirements specified
in this section are aligned with the requirements defined in the specification SWIM-002 “Syntax and
Processing of XML-Based Documents in the Context of SWIM-Enabled Services” [SWIM XML-DOC].

a. When major changes to a WSDL document are made (see section 3.3.2.1), the document SHALL

be published in a new namespace.

Explanation: Because the namespace for the WSDL document is presented as a value of the
attribute targetNamespace in a <wsdl :definition> element, the new value for this
attribute should be defined.

b. The version identifier SHALL be embedded in the WSDL document targetNamespace URI
(e.g., http://Ffaa.gov/fps/2.1.0).

c. To support backward compatibility with current versioning and version identifier engineering
practices, for the first schema version (1.0.0) the versioning part MAY be omitted from the

namespace URI.

3.3.2.1 Major Changes

a. The following modifications to a WSDL document SHALL be considered major:

SWIM-005
December, 2015
Version 1.0.0

1. Removing any element declared in the WSDL (nessage, message part,
portType, bindingorservice).

2. Renaming any element declared in the WSDL (message, message part,
portType, binding or service).

3. Changing operation or message signature.

4. Changing the message exchange pattern (MEP) of any existing operation definition.

3.3.2.2 Minor Changes

a. The following modifications to a WSDL document SHALL be considered minor:
1. Adding a new operation.
2. Adding a new portType, bindingoraservice.
3. Updating a message element with a reference to a schema type that is derived as an
extension of the original.

4. A new, optional, behavior is added without changing the message signatures or types.

3.3.2.3 Patches

a. The following modifications to a WSDL document MAY be considered a patch:

1. Adding or changing descriptions or annotations.

3.3.3 JMS Message Header Versioning Requirements

A JMS message header is constructed as a set of header fields, which are name-value pairs that are used
by message producers, brokers and recipients to identify and route messages. This section specifies

how pertinent versioning information should be presented in the context of a JMS message header.

a. AllJMS headers SHALL include the service version information formatted as follows:

[service name]:version = [service version identifier];for example
fps:version="2.3.0".

b. When a JMS message contains XML-based content, the JMS header SHALL contain the target
namespace for the schema that defines the message’s content formatted as follows:
[service name]:content:namespace = [xml content target
namespaces]; for example
fps:content:namespace="http://faa.gov/fps/1.2.3".

Explanation: When multiple versions of a service run concurrently on the NEMS, a service producer
should communicate to the NEMS which version of the service has produced the message. Subsequently
this information is passed to a consumer agent to assure that the message is interpreted (parsed)

appropriately.

SWIM-005
December, 2015
Version 1.0.0

3.3.4 Service Versioning Requirements

The main goal of the NSRR is to provide insight into all known SWIM-enabled services, both currently
available and under development. It does this by maintaining a set of metadata attributes, called a
meta-card, that describes a particular registered service. The NSRR meta-card allows entry of the version
identifier of a service as well as version identifiers for all documents associated with the service (e.g.,
XML schema, WSDL document, etc.). Defining what constitutes a new version of the service requires
analyzing the possible changes, their potential impact on the consumer agent's execution, and

identifying the ones that will "break" it [Lubinsky-2007].

This section specifies the changes to a service’s meta-card that require incrementing the service’s
version identifier. Note: an exhaustive list of changes to an NSRR service meta-card that may result in
changes to the service version identifier is not presented in this specification; the service provider is
expected to work with SWIM Governance and SWIM Engineering personnel to analyze the possibility of

changes to the service version identifier.

a. All NSRR meta-cards SHALL include the service version identifier formatted as prescribed in

section 3.2 of this document.

The following is an example of a version identifier entry in the NSRR.

Service Name: Flight Plan Service (FPS)
Service Description:

A service

Service ID: hitp//nsrr.faa goviservices/ps

[Service Version: 100]

ATM Service Category: Flight Planning

SWIM Service Product Category: Flight
amvic olementation Service Interface Type: Method-Oriented
End Brinte Service Criticality Level: Essential

FIGURE 2 Example of version identifier in the NSRR 2.0

3.3.4.1 Major Changes
a. The following modifications to a service’s meta-card SHOULD be considered major:
1. Changes to the XML schema or schemas that are identified as major in section 3.3.1.1 of
this specification.

2. Changes to the WSDL document that are described as major changes in section 3.3.2.1

of this specification.

10

SWIM-005
December, 2015
Version 1.0.0

3. Changes or additions to qualities of service (QoS) that will negatively impact existing

service consumers or consumer agents.

Explanation: Changes to a service’s implementation — even if its interface remains intact —
may result, for example, in changes to the service response time (a QoS). If a service
consumer is invoking this service synchronously, an increase in service response time can
negatively impact service consumer execution. Such changes in the service meta-card

should be considered as major changes that require a new service version.

4. Changes or additions to security mechanisms that may prevent existing consumers from

using the service.

Explanation: Adding a new security mechanism, such as message encryption, may result in

rendering an existing consumer agent unusable.

3.3.4.2 Minor Changes

a. The following modifications to a service’s meta-card SHALL be considered minor:
1. Changes to the XML schema or schemas that are identified as minor in section 3.3.1.2 of
this specification.
2. Changes to the WSDL document that are identified as minor in section 3.3.2.2 of this
specification.
3. Changes or additions to QoS that may improve service performance and will not

negatively impact existing service consumers or consumer agents.

Explanation: Decrease in a message’s latency, for instance, will not require changes to an
existing consumer agent, although it may improve the agent’s performance. This kind of
change reflected in the service meta-card should be communicated to consumers by

incrementing the service version identifier.

4. Changes or additions to security mechanism(s) that will not negatively impact existing

service consumers.

Explanation: Adding integrity measures to service security will not require a consumer to
make changes to an existing agent, but the change should be communicated to consumers

by incrementing the service version identifier.

3.3.4.3 Patches

a. The following modifications to a service’s meta-card MAY be considered a patch:
1. Changes or additions to descriptions of a service attribute in the context of the service

meta-card.

11

SWIM-005
December, 2015
Version 1.0.0

4 QUALITY ASSURANCE PROVISIONS

All service artifacts presented for uploading to the NSRR will be subject to verification that they conform

to the requirements prescribed by this specification.

Verification will be performed by inspection and test according to the following table.

TABLE | Requirements Verification Matrix

Requirement Verification Method
3.2.a.1 Inspection
3.2.a.2 Inspection
3.2.a.3 Inspection

3.2.b Validation by the NSRR

3.2.c Validation by the NSRR
33.1.a Inspection
3.3.1b Inspection
3.3.1.c Inspection
3.3.1d Inspection
3.3.1.1a Inspection
3.3.1.2.a Inspection
3.3.13.a Inspection
3.3.2.a Inspection
3.3.2b Inspection

12

SWIM-005
December, 2015
Version 1.0.0

Requirement Verification Method
3.3.2.c Inspection
3.3.2.1.a Inspection
3.3.2.2.a Inspection
3.3.2.3.a Inspection
3.3.3.a Inspection
3.33.b Inspection
3.3.4.a Validation by the NSRR
3.34.1.a Inspection
3.3.4.2.a Inspection
3.3.4.3.a Inspection

5 PREPARATION FOR DELIVERY

Not applicable.

6 NOTES

6.1 Definitions

Note: this section contains only the terms that are not included in the SWIM Controlled Vocabulary

[SWIM CV].

Service Meta-card A set of metadata attributes associated with a single service registered
in the NSRR.

13

SWIM-005
December, 2015
Version 1.0.0

Uniform Resource
Identifier (URI)

A compact string of characters for identifying an abstract or physical
resource. [RFC-3936]

Version Identifier

A unique name or number that denotes a particular version of a service
or service-related artifact.

Versioning

The process of managing multiple releases of a service or its artifacts

for the purpose of managing the service’s evolution.

6.2 Acronyms

AIXM Aeronautical Information Exchange Model
HTTP Hypertext Transfer Protocol

NAS National Airspace System

NEMS NAS Enterprise Messaging Service

NSRR NAS Service Registry/Repository

QoS Quality(ies) of Service

SOA Service-Oriented Architecture

SWIM System Wide Information Management
URI Uniform Resource Identifier

UTF-8 Universal Character Set Transformation Format - 8-bit
WSDL Web Service Description Language

W3cC World Wide Web Consortium

XML Extensible Markup Language

14

	Title Page
	Signature Page
	Table of Contents
	1. Scope
	2. Applicable Documents
	3. Requirements
	4. Quality Assurance Provisions
	5. Preparation for Delivery
	6. Notes

