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EXECUTIVE SUMMARY 

Object-oriented technology (OOT) has been used extensively throughout the non-safety-critical 
software and computer-based systems industry.  OOT has also been used in safety-critical 
medical and automotive systems and has been introduced in the commercial airborne software 
and systems domain.  However, as with any new technology, there are concerns and issues 
relating to its adoption within safety-critical systems.  Previous Federal Aviation Administration 
(FAA) research and two Object-Oriented Technology in Aviation (OOTiA) workshops with 
industry indicate that there are some areas of OOT verification that are still concerns in safety-
critical systems. 
 
The FAA is sponsoring this 3-year, three-phase research to provide information for developing 
FAA policy and guidance for the use of OOTiA systems and to support harmonization with 
international certification authorities on the use and verification of OOTiA.  Phase 1 gathered 
information on the current state of the industry with respect to the use and verification of OOTiA 
through an industry survey.  Phase 2 (this Report) addresses the verification of data coupling and 
control coupling (DCCC) (satisfaction of Objective 8 of RTCA DO-178B/EUROCAE ED-12B 
Table A-7) in OOT software.  Phase 3 will address structural coverage at the object-code level 
(satisfaction of Objectives 5-7 of DO-178B/ED-12B Table A-7) for OOT software. 
 
This Report documents the results of an investigation into issues and acceptance criteria for the 
verification (i.e., confirmation in DO-178B) of DCCC within OOT in commercial aviation.  
Review of a number of publications allows one to conclude that the intent of the structural 
coverage analyses (confirmation) of DCCC is to provide an objective assessment (measurement) 
of the completeness of the requirements-based tests of the integrated components.  A review of 
the published literature concerning integration verification found that coverage of 
intercomponent dependencies as an acceptable adequacy criterion of integration testing in both 
non-OOT and OOT software was well-motivated.  This approach is known as coupling-based 
integration testing.  This report, therefore, recommends the coverage of intercomponent 
dependencies as a measurable adequacy criterion to satisfy Objective 8 of DO-178B/ED-12B 
Table A-7. 
 
A previous study identified a number of DCCC issues with certain OOT features.  This project 
uncovered some additional issues related to OOT integration testing.  This Report provides 
analyses of how the coverage of intercomponent dependencies addresses the DCCC aspects of 
these issues.  Three issues requiring additional work are identified.  These issues are concerned 
with whether different levels of coverage for different software levels should be allowed for 
verification of DCCC. 
 
One major issue requiring further work concerns the level of coverage required for the adequate 
testing of polymorphism with dynamic binding and dispatch.  Defining adequate testing for this 
OOT feature is an active research area with no definitive answer yet.  Accordingly, the 
recommendation in this Report may only be considered an interim solution where polymorphism 
with dynamic binding and dispatch are concerned. 

ix/x 



 

1.  INTRODUCTION. 

1.1  PURPOSE. 

This Report documents the results of an investigation into issues and acceptance criteria for the 
verification (confirmation) of data coupling and control coupling (DCCC) within object-oriented 
technology (OOT) in commercial aviation.  This investigation is the second of a three-phase 
research project undertaken by The Boeing Company on behalf of the Federal Aviation 
Administration (FAA).  The results of the investigation provide information to the FAA to 
develop policy and guidance for the use of Object-Oriented Technology in Aviation (OOTiA) 
systems and to support harmonization with international certification authorities on the use and 
verification of OOTiA.  The results also provide guidance for future research projects. 
 
This investigation was guided, in part, by the results from an industry survey conducted during 
the first phase of this project [1].  Those results provided current and proposed interpretations 
and practices for the confirmation of software DCCC to satisfy the objectives of RTCA DO-
178B/EUROCAE ED-12B (DO-178B hereinafter) [2], with the clarifications given in RTCA 
DO-248B [3], and how those interpretations and practices relate to OOT. 
 
1.2  BACKGROUND. 

OOT has been used extensively throughout the non-safety-critical software and computer-based 
systems industry.  OOT has also been used in safety-critical medical and automotive systems and 
has been introduced in the commercial airborne software and systems domain [1 and 4].  
However, as with any new technology, there are concerns and issues relating to its adoption 
within safety-critical systems.  Previous FAA research [1, 4, and 5] and two OOTiA workshops 
with industry (see http://shemesh.larc.nasa.gov/foot/ for more information) indicate that there are 
some areas of OOT verification that are still concerns in safety-critical systems [6]. 
 
The FAA requested a 3-year, three-phase research program to investigate OOTiA verification.  
Phase 1 gathered information on the current state of the industry with respect to the use of 
OOTiA and the current and proposed verification practices for the resulting OOT software [1].  
The Phase 1 results provided input to the Phase 2 work on the confirmation of DCCC 
(satisfaction of Objective 8 of DO-178B Table A-7 [2]) in OOT software reported herein. 
 
1.3  DOCUMENT OVERVIEW. 

Section 1 provides the purpose, background, and general overview of this Report. 
 
Section 2 discusses the intent behind DCCC confirmation, establishes dependency relations as an 
appropriate identifier of coupling, and establishes verification/coverage of dependencies as an 
appropriate confirmation measure. 
 
Section 3 contains the specific OOT features investigated, solutions identified, and issues raised 
during the course of this study. 
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Section 4 summarizes the results of the study and identifies issues for further study. 
 
Section 5 provides a list of references used in this Report. 
 
Section 6 identifies activities and documents related to the work reported herein. 
 
Appendix A provides a brief overview of the Unified Modeling Language (UML) 2.0 [7] 
conventions used in this Report. 
 
2.  COUPLING = DEPENDENCY. 

This section discusses the intent behind DCCC confirmation, establishes dependency relations as 
an appropriate identifier of coupling, and establishes verification/coverage of dependency 
relations as an appropriate confirmation measure. 
 
2.1  INTENT OF COUPLING CONFIRMATION. 

All processes need an exit criterion assessing the adequacy and completeness of the work 
performed by that process.  Within DO-178B, requirements-based and structural coverage 
analyses are used to ensure that the requirements-based testing process adequately exercises a 
program’s functions and structure [2].  Typically, structural coverage criteria are divided into 
two types:  control flow and data flow. 
 
Control flow criteria measure the flow of control between statements and sequences of 
statements in terms of statement invocations, Boolean expressions evaluated, and control 
constructs exercised (branches taken).  Within DO-178B [2], three control flow criteria are used. 
 
• Statement coverage for software Levels A through C 
• Decision coverage (DC) for software Levels A and B 
• Modified condition decision coverage (MCDC) for software Level A 
 
These measures are traditionally applied intraprocedurally to individual statements within a 
single component.  In OOT terminology, the control flow criteria are applied within the methods 
of a class. 
 
Data flow criteria measure the flow of data along subpaths (sequences of statements and control 
constructs) between assignments of values to objects (generally variables) and references to the 
values of those objects in subsequent uses.  Data flow criteria are further subdivided into 
intraprocedural measures for internal coupling (dependencies) and interprocedural measures for 
external (i.e., integration) coupling (dependencies).  In OOT terminology, the intraprocedural 
measures are applied within the methods of a class and the interprocedural measures are applied 
between, or across, the methods of classes (i.e., between multiple methods within the same class, 
and between multiple methods of different classes).  Within DO-178B, no data flow criteria are 
used, but confirmation of DCCC structural coverage is used for software Levels A through C, as 
called out in Objective 8 of Table A-7 [2].  This objective references Section 6.4.4.2, Structural 
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Coverage Analysis, subsection c.  Note that, just as with control flow criteria, there are multiple 
data flow criteria providing varying levels of thoroughness [8].  Some of these criteria do not 
guarantee statement coverage, while others will guarantee both statement and decision 
coverage [8]. 
 
Note that DCCC can exist in forms that the standard structural coverage criteria may not catch, 
as shown in figure 1.  For example, business rules contained within the data access layer are not 
monitored by standard structural coverage criteria.  Business rules can combine Structured 
Query Language (SQL) statements, as well as basic conditional statements, that return data that 
adheres to these rules.  How these rules are interpreted will be monitored by standard structural 
coverage criteria, but at a level below the rules themselves. 
 

Client Database

1 : Request Data()

1.1 : Data Value Object()

Close Connection

 

Figure 1.  Data and Control Flow in a Client-Database Interaction 

Figure 1 shows the control and data flow for a client-database interaction (e.g., between a flight 
management system and a navigation database) using the UML [7].  The business rules 
contained in the Request Data method are the control statements that determine what information 
is returned from the Database to the Client.  Control flow criteria would be applied within this 
method, measuring how the method responds to the business rules that are run against the 
Database.  The data flow is the movement of information from the Database to the Client.  Data 
flow criteria would be applied to the methods that marshal the information from the Database to 
the Client.  The exit criterion is when the database connection is closed by the client after the 
information has been successfully received.  Within standard OOT practice, design patterns that 
encapsulate the data within objects are used to reduce the chance of external dependencies (e.g., 
Data Value Object, transfer object) [9]. 
 
Given collectively, one can conclude from the following that the intent of the structural coverage 
analyses (confirmation) of DCCC is to provide an objective assessment (measure) of the 
completeness of the requirements-based tests of the integrated components. 
 
• Dependencies between software components are mentioned in the definitions for DCCC 

in DO-178B [2], the material provided in DO-248B [3] FAQ#67, Certification 
Authorities Software Team (CAST)-19 [10], and Struck [11]. 
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• Interfaces between components are mentioned in DO-248B [3] FAQ#67, CAST-19 [10] 
and Struck [11]. 

• Interactions between components are mentioned in CAST-19 [10]. 

• DO-248B [3] FAQ#67 mentions reviews, analyses, and requirements-based testing 
against the software architecture being involved in DCCC verification. 

• CAST-19 [10] suggests that DCCC measurement should be conducted against the 
requirements-based testing of integrated components. 

• The placement of the confirmation of DCCC objective and its reference in DO-178B [2] 
is within the section on structural coverage analysis. 

• CAST-19 [10] states “the intent of the structural coverage analyses of data coupling and 
control coupling is to provide a measurement and assurance of the correctness of these 
modules/components’ interactions and dependencies.” 

• CAST-19 [10] states “the purpose of the structural coverage of the data coupling and 
control coupling is to evaluate the adequacy of the integrated testing and provides an 
analysis of the integration activities.” 

• CAST-19 [10] and Struck [11] propose that the purpose of DCCC verification is to be a 
completion check of the integration testing effort. 

This means that DCCC verification helps to ensure the demonstration of the presence of intended 
interactions (function) between components and supports the demonstration of the absence of 
unintended interactions (function) between components.  This indicates that the confirmation of 
DCCC is specifically targeted at the integration process and its tests. 
 
2.2  INTENT OF INTEGRATION. 

Integration is the process of combining and verifying multiple components together.  The 
purpose of integration is to ensure that a collection of components operate with each other 
correctly so that the collection provides required functionality, performance, and reliability.  This 
requires the verification of the interfaces (data) and relations (interactions) between the 
components. 
 
The interface between components is any means by which they share information.  This includes 
parameters passed during a call, or a series of calls, as well as any shared (global) objects.  These 
shared objects may be accessed either directly, generally by name, or through an alias, generally 
through a pointer.  This considers such things as: 
 
• The size and structure of the data (e.g., Current_Altitude is a signed 32-bit Institute of 

Electrical and Electronics Engineers (IEEE) floating point number), along with the valid 
values (states) the data can assume and the valid operations that can be applied to the 
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data.  This is generally referred to as the type.  The rules of strong-typing and type-safety 
require that both components have the same view of the size and structure of the data, its 
valid values and the valid operations. 

• The meaning (i.e., semantics) behind the data (e.g., Current_Altitude is the number of 
feet above mean sea level).  Note that the meaning goes beyond the type of the data, 
though modern languages supporting abstract data types can incorporate a great deal of 
the semantic information into the type system.  Good practice requires that both 
components use the same semantics for the data (i.e., have the same understanding of the 
meaning of the data) [12]. 

• The type of information flow interaction (data dependency) between the components.  
Figure 2 uses data dependency graphs (DDG) to illustrate the different types of 
information flow interactions.  DDGs show a data item, the components that write to it 
(generally on the left) and the components that read from it (generally on the right).  
Directed edges connect writers to the data, and the data to the readers. 

• In figures 2(a) and 2(b) there is one writer and one (1:1) or multiple (1:N) readers, 
respectively.  The interoperation between the components in these two types of 
interactions is simple and straightforward—the writer needs to write the data before the 
readers need to read it (e.g., Current_Altitude is written by the altimeter and read by the 
Primary_Flight_Display). 

• In figure 2(c), there are multiple writers and one reader (N:1).  The interoperation 
between these components is not so simple as the previous cases with a single writer, 
since now the correct writer needs to write the data for the reader to read it under the 
correct circumstances (e.g., the Primary_Flight_Display will read and display the 
Current_Speed, which is provided by the Ground_Speed function when the aircraft is on 
the ground, and the airspeed function when the aircraft is in flight). 

• In figure 2(d), there are multiple writers and multiple readers (N:N).  This is the most 
complex interaction, since the correct writer needs to write the data before a particular 
reader reads that data under the correct circumstances. 

Multiple writers providing data under the correct circumstances require logic to control when the 
appropriate writer is used.  This logic could be neatly incorporated into the logic of a single 
component, or could be distributed across multiple components and be visible only at the system 
level.  DO-178B requires verification of logic at the DC and MCDC levels for software at Level 
B and Level A, respectively [2].  However, the current practice of applying the criteria only 
measures the logic within a single component.  Logic distributed across multiple components 
may require something beyond the current practice. 
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Figure 2.  Data Dependency Types 

The relations between components include such things as: 
 
• Sequencing—a requirement on the execution order of components, e.g., component C1 

must execute before component C2, component C3 calls component C4.  Certain forms of 
call trees can be used to both express these sequencing requirements and to document the 
implementation.  When the traditional input-process-output functional decomposition 
model is used for architecting a system and its components, sequencing requirements are 
generally due to some form of data dependency between the components.  Earlier 
components prepare outputs that become inputs for later components.  Traditional 
structure charts and data flow diagrams can be used to both express these sequencing 
requirements and to document the implementation.  UML Sequence and Activity 
diagrams [7] can also be used to both express these sequencing requirements and to 
document the implementation. 

• Timing—a requirement on time between components, e.g., component C1 must execute 
37 ms before component C2, component C4 must complete execution within 25 ms after 
being called by component C3.  For real-time embedded systems, timing requirements are 
generally due to the necessary interactions between the system and the rest of the world.  
Timing diagrams can be used to both express these timing requirements and to document 
the implementation. 

• Dependency—statements in component C1 influence the execution of statements in 
component C2.  In particular, for integration verification, faults in the statements of 
component C1 affect the execution of statements in component C2 [13]. 

Sequencing and timing are concerns that have well-established disciplines for their specification 
and verification.  As identified previously, methods already exist to document both the 
requirements and the implementation.  Checking that the implementation is in conformance with 
the requirements is part of the verification of these relationships.  Dependency relations require 
further explanation, which is provided in the following sections. 
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2.3  DEPENDENCY—GENERAL. 

Dependency relations require an interface between the components.  This interface can be direct 
between call-pairs (e.g., component C1 calls component C2, and both components access object 
A), or indirect (e.g., component C1 calls components C2 and C3 at different times, either directly 
or indirectly, and both C2 and C3 access object A).  Dependency relations are also known as 
coupling [13].  Many types of dependency relations exist [14]: 
 
• Syntactic—one statement affects the execution of another based on the syntax of the 

programming language used. 

• Semantic—one statement affects the execution behavior of another during execution.  A 
semantic dependency always implies a syntactic one (i.e., a semantic dependency is 
always allowed by the syntax of the programming language used).  A semantic 
dependency can be executed dynamically (i.e., witnessed) during some operational 
scenario of the system containing the software. 

• Control—one statement controls the execution of another statement.  This may be either 
syntactic or semantic.  In figure 3, statements 4 and 5 are control dependent on statement 
3, since the outcome of statement 3 determines which statement will be executed.  All the 
statements in figure 3 are control dependent on statements in other components that call 
the function Maximum_Of, since none of the statements will execute unless a call is 
made. 

• Data—one statement defines the value of an object used in another statement.  This may 
be either syntactic or semantic.  In figure 3, the statements labeled 3 and 4 are data 
dependent on the statement labeled 1 because X is defined in the statement labeled 1 and 
used in the statements labeled 3 and 4.  Likewise, the statements labeled 3 and 5 are data 
dependent on the statement labeled 2 because of Y. 

function Maximum_Of (
1.
2.

3.
4.

begin

else

end if;
5.

end Maximum_Of;

X : in User_Type;

if X > Y then

Y : in User_Type ) return User_Type is

return X;

return Y;

control
dependences

data
dependences  

Figure 3.  Maximum_Of and Dependencies 
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Dependencies are generally represented in a program dependency graph (PDG) [15 and 16].  
Figure 4 shows the source code for function Maximum_Of from figure 3 on the left along with 
the corresponding PDG on the right.  A PDG is a directed graph consisting of a set of nodes 
representing either the entry points or computations within the design or code and a set of 
directed edges, expressed as ordered node pairs (nsource, ndestination), representing either control 
dependencies or data dependencies.  The directed edge flows from the source node to the 
destination node.  In figure 4, the entry node carries the name of the function. 
 

 

Figure 4.  Maximum_Of Program Dependency Graph 

A control dependency edge flows between two nodes and is labeled with the predicate outcome 
if traversal of the edge is conditional on some predicate in the source node.  In figure 4, there are 
unconditional control dependency edges between the entry and statements/nodes 1, 2, and 3.  
This means that if function Maximum_Of is called and entered, these statements in the source 
code and the corresponding nodes in the model will be executed as long as no exceptions are 
raised.  There are conditional control dependency edges between statement/node 3 and 
statements/nodes 4 and 5.  If the predicate in statement/node 3 is True, then statement/node 4 
will be executed, otherwise statement/node 5 will be executed.  One significant difference 
between a control flow graph (CFG), or flowchart, and a PDG is that in a PDG, not all outcomes 
of a decision statement (branch point) need be represented with a control dependency edge [15 
and 16].  Figure 5 depicts an example CFG on the left and the corresponding PDG with control 
dependency edges only on the right where not all outcomes of branch points in the CFG are 
represented with control dependency edges in the PDG.  Note that statement/node 4 is control 
dependent on statement/node 1 being True, as statement/node 4 is reached when statement/node 
2 is both True and False. 
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Figure 5.  The CFG PDG Comparison 

A data dependency edge flows between two nodes where the source node defines the value of 
some object that is used in the destination node and is labeled with the name of the object.  In 
figure 4, there are data dependency edges between statement/node 1 and statements/nodes 3 and 
4.  These edges are labeled “X,” since X receives a value in statement/node 1 that is used in 
statements/nodes 3 and 4.  A similar data dependency for Y is shown for statement/node 2 and 
statements/nodes 3 and 5. 
 
A data dependency edge that flows into a branching predicate is considered by some to be a part 
of the control dependency of the branched-to statements/nodes.  In figure 4, the data dependency 
edges between statements/nodes 1 and 3 for X and statements/nodes 2 and 3 for Y are examples 
of this form of special data dependency.  This makes sense as the execution of statements/nodes 
4 and 5 is dependent on the values of X and Y in statement/node 3, which were defined in 
statements/nodes 1 and 3, respectively.  This is also in conformance with the definition for 
control coupling in DO-178B [2] since the statement (component) defining the data is 
influencing the execution of the other statement (component). 
 
Data dependencies are generally represented with a definition-use pair (du-pair) [17].  A du-pair 
is a pair of statement/node numbers that represent where an object is defined and where that 
definition can be used.  For the definition to be used, at least one subpath (sequence of 
statements) between the definition and use must be definition clear (i.e., not contain another 
definition of the object).  The two intracomponent du-pairs for X in figure 4 are (1,3) and (1,4), 
respectively, while those for Y are (2,3) and (2,5). 
 
A du-pair can be extended into a definition-use association (DUA) by adding a predicate that 
defines when the du-pair exists.  For a du-pair to exist, there must be at least one definition-clear 
subpath between the definition and the use.  This means that the predicate in the DUA defines all 
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the definition-clear subpaths for the du-pair.  For the du-pair (1,3) for X in figure 4, this 
predicate would be that the function Maximum_Of is entered without an exception being raised.  
This would make the DUA (1, 3, Enter(Maximum_Of)), where the function “Enter” means that 
the identified subprogram must be entered without an exception being raised.  For the du-pair 
(1,4) for X in figure 4, the predicate would be that the function Maximum_Of be entered without 
an exception and that the value of X at statement/node 3 be greater than the value of Y at 
statement/node 3.  Since the values of X and Y at statement/node 3 are just the values on entry, 
the DUA would be (1, 4, Enter(Maximum_Of) and (X > Y)). 
 
A syntactic dependency can be identified with a static analysis of the code.  The analysis needs 
only to identify where objects are defined and where those same objects are used when a 
definition-clear control-flow path exists between the definition and the use.  Figure 6, on the left-
hand side, shows the syntactic dependencies for object A.  Object A has definitions and uses on 
all lines.  Note that there are definition-clear paths from both lines labeled 1 and 2 to both lines 
labeled 3 and 4, which leads to the following four syntactic intracomponent du-pairs for A are 
(1,3), (1,4), (2,3), and (2,4). 
 

 

Figure 6.  Syntactic vs Semantic Dependencies 

However, a syntactic dependency may not be realizable with execution data (i.e., there is no data 
that would cause that dependency to be executed).  Semantic dependency overcomes this 
problem by requiring that the dependency be executable.  Figure 6 shows the difference between 
syntactic dependencies on the left and semantic dependencies on the right of the code.  Since 
there is no redefinition of C between the two if-statements, when C is True, the statements 
labeled 1 and 4 will be executed, and when C is False, the statements labeled 2 and 3 will be 
executed.  This means the only realizable dependencies and intracomponent du-pairs for A are 
(1,4) and (2,3). 
 
Semantic dependency requires that one statement affects the execution behavior of another.  This 
is demonstrated by either modifying one statement, or changing the value of one statement, to 
see if the execution of the other statement is changed [18 and 19].  In figure 6, if the statement 
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labeled 1 is changed from a sum to a difference (i.e., changed from A: = A + B to A: = A – B), 
then for all nonzero values of B, the result at the statement labeled 4 will differ between the two 
executions.  This establishes that there is a semantic dependency between the statements labeled 
1 and 4.  A corresponding analysis can be done to establish the semantic dependency between 
the statements labeled 2 and 3. 
 
Unfortunately, determining if a dependency is semantic is generally indeterminable [14].  
However, it has been shown that reachability over the PDG, that is, finding program data that 
will execute (witness) the dependency represented by the PDG edge (i.e., cover the PDG edge), 
is a conservative approximation of semantic dependency [14].  That is, semantic dependency 
implies PDG reachability, but PDG reachability does not imply semantic dependency. 
 
Covering all PDG edges is the same as achieving four levels of coverage: 
 
• Executing all statements for the unconditional control dependency edges and those 

conditional control dependency edges leading to statements (statement coverage, partial 
decision coverage, partial MCDC). 

• Executing those branch point outcomes that lead to statements for the conditional control 
dependency edges (partial decision coverage, partial MCDC).  Recall that not all 
branches of a branch point need be represented in a PDG. 

• Executing all executable du-pairs for the data dependency edges.  This leads to execution 
of all statements containing definitions and uses of objects (partial statement coverage, 
partial MCDC).  This may lead to executing branch point outcomes that do not have a 
corresponding PDG control dependency edge but form a definition-clear subpath (partial 
decision coverage, partial MCDC). 

• Executing all subprogram calls for both forms (control and data) of dependencies (a 
byproduct of MCDC, therefore, partial MCDC). 

Table 1 compares the levels of coverage identified in Table A7 of DO-178B [2] along with those 
of PDG edges beyond that currently in DO-178B [2].  In table 1, the first column identifies the 
four levels of coverage.  Note that only the branch point/branches portion of DC is considered.  
The second through fifth columns show which of the coverage criteria are required by software 
Levels A, B, and C, and PDG edges, respectively.  The point where a particular coverage 
criterion is satisfied by a software level, or by PDG edges, is indicated by an X in the 
row/column intersection.  Note that covering PDG edges will require coverage beyond that 
required for all software levels.  Note also that covering PDG edges does not satisfy all coverage 
required for Levels A and B software. 
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Table 1.  Coverage Comparisons 

 Level A Level B Level C PDG Edges
Statement coverage X X X X 
Decision (branch point) 
coverage 

X X   

MCDC X    
Coverage of calls X1   X 
Coverage of du-pairs    X 

1Byproduct of MCDC. 
 
Covering all of the realizable dependencies may lead to excessive testing.  When the cost of 
discovering valid semantic dependencies is less than the cost of executing the additional test 
cases, analysis to identify the unnecessary tests is justified.  The Propagation, Infection, 
Execution (PIE) model is one of the approaches for fault-based testing [18 and 19].  The PIE 
approach can also be used to determine semantic dependencies.  During one part of the PIE 
analysis, statements are mutated and the changes in execution between the original program and 
the mutated one are identified.  During another part of the PIE analysis, the results of 
computations are mutated and the changes in execution between the original program and the 
mutated one are identified.  Statements that execute differently (e.g., branch points that branch 
differently, computations that compute different results) are semantically dependent on the 
statement that was either mutated or had its outcome mutated.  Note that with all nonexhaustive 
techniques, the PIE technique is not guaranteed to identify all semantic dependencies. 
 
2.4  DEPENDENCY—INTEGRATION. 

This section examines the use of dependency for integration. 
 
2.4.1  From Intracomponent to Intercomponent Analysis. 

For integration verification, there is a concern with relations between components.  To extend 
dependency relations from intracomponent to intercomponent usage, one of the statements in the 
definitions and examples given in section 2.3 must be in one component, while the other 
statement resides in a different component. 
 
Note that reference to the object can be direct, generally by name, or indirect through an alias.  
An alias is an object name that can refer to other objects.  The other objects do not need to have 
the same name, but generally need to have the same, or compatible, type.  Examples of aliases 
are the formal parameter names for the actual parameters and pointers.  Read-only formal 
parameters, also known as pass-by-copy or in-mode, will represent uses of the actual parameters.  
Write-only formal parameters, also known as out-mode, will represent definitions of the actual 
parameters.  In some languages (e.g., Ada95), these parameters are allowed to be read after an 
initial assignment, in which case these reads will represent uses of the actual parameter.  Read-
write formal parameters, also known as pass-by reference or in-out-mode, will represent both 
definitions and uses of the actual parameters.  Pointers are equivalent to read-write parameters. 
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The previously mentioned extension to intercomponent dependencies means that for a particular 
object, there will be a definition of that object in one component and the usage of that object 
definition in another.  The object will now have an intercomponent du-pair.  As mentioned 
previously, the two components can be involved in a direct call or invocation (e.g., tasking, 
interrupt) relationship (e.g., one calls the other, one rendezvous with the other) or an indirect 
one.  Figure 7 gives some examples of the cross component dependencies. 
 

 

Figure 7.  Intercomponent Dependencies 

Within figure 7, components C2 and C3 are shown as control dependent on C1 as C1 calls C2 and 
C3.  Similar control dependencies exist between components C2/C4 and C3/C5.  There is also a 
control dependency between components C4 and C5 due to a shared object named G.  This is an 
example of the special form of data dependency mentioned previously where G receives a 
definition in component C4, and that definition is then used in the predicate of a branch point in 
component C5.  During this study, it was determined that handling this special form of data 
dependency as any other (i.e., normal) data dependency does not appear to compromise the 
verification in any way and is illustrated for completeness. 
 
Several forms of normal data dependency are also shown in figure 7.  Data dependency between 
direct call-pairs is shown by object A between components C1/C2 and between indirect call-pairs 
by object B between components C1/C4 (indirect because C1 calls C2 which in turn calls C4).  
Data dependencies between components that are not part of the same calling subtree are shown 
by object D between components C2/C3, object E between components C2/C5, and object F 
between components C4/C5.  The details behind these forms of dependencies will be discussed in 
sections 2.4.2, 2.4.3, 3.1, 3.2, 3.5, and 3.8. 
 
Figure 7 represents a simplified view of the dependencies between components.  PDGs are 
extended to system dependency graphs (SDG) to model multicomponent systems (i.e., programs 
with subprograms, generally known as procedures and functions) [16].  An SDG consists of a 
collection of individual PDGs connected together with additional nodes representing 
calls/returns and additional dependency edges based on the relationships that cross calls/returns.  
Strictly speaking, an SDG is a PDG for a larger component.  In figure 7, the nodes and edges 
within the component PDGs have been suppressed, and only the dependency edges between the 
components have been shown.  Note that this simplification results in a loss of information,  
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specifically whether there are multiple accesses to the objects within the components and 
whether these accesses are conditional or not (i.e., nested within a conditional statement). 
 
SDGs come in many forms and are known by many names.  Some of these forms enhance CFGs, 
while others enhance call graphs.  Representations of SDGs enhancing CFGs are given in 
references 13, 17, 20-24 and others not referenced in this report.  One representation of SDGs 
enhancing call graphs is given in reference 25.  Matrix versions of these graph representations 
are also employed by some [25]. 
 
One matrix representation, adapted from reference 25, consists of building a matrix where the 
rows identify the object, the columns identify the subprograms (methods in OOT), and the 
intersections are annotated with D if the subprogram defines the object, with U if the subprogram 
uses the object, and left blank otherwise.  A version of this intercomponent definition-use matrix 
(DUM) for the dependencies expressed in figure 7 is given in table 2. 

Table 2.  Intercomponent Definition-Use Matrix 

 C1 C2 C3 C4 C5 
A D U    
B D   U  
D  D U   
E  D  U  
F    D U 
G    D U 

 
Within table 2, six intercomponent du-pairs are identified.  It appears that all that is needed to 
realize these intercomponent du-pairs is a component execution sequence where the definers are 
executed before the users.  However, two types of information may be found in an SDG that are 
not found in DUM:  (1) multiple occurrences of definitions and uses within a component and (2) 
whether these definitions and uses are conditional (i.e., nested within a conditional statement).  
Because of this, DUMs must be extended to capture this information when necessary.  One 
extension is to list multiple definitions and uses in the matrix intersections and the predicates 
under which the definitions and uses are executed.  This extension changes a DUM from listing 
the components of intercomponent du-pairs to listing the components of intercomponent DUAs. 
 
Comparatively, all the previous dependency representations (e.g., PDG, SDG, DUM) connect 
definitions of objects in one component with uses of those definitions in another component.  All 
of these representations are different variations on the DDG.  In the DDG, components are 
shown linking to the data without regard to how many instances of definitions or uses there are 
in the components.  In the PDG and SDG, statements containing definitions are shown linking to 
other statements containing uses with the links identifying the data.  This captures the essential 
property of components having multiple definitions or uses and their conditionality.  In the 
DUM, the intersections between subprograms and objects show the link(s).  DUMs need to be 
extended to capture multiple definitions and uses, when present, and their conditionality.  Any 

14 



 

representation and analysis that captures all of the nonredundant intercomponent dependencies 
(i.e., intercomponent du-pairs) are considered acceptable. 
 
In a previous study, information flow analysis was identified as providing support for DCCC 
verification [1].  In information flow analysis, the inputs and outputs of subprograms are 
specified during design and checked for conformance in the implementation [26].  Additionally, 
the dependencies of outputs on inputs can also be specified (e.g., X depends on Y and Z in the 
assignment X := Y + Z).  Inputs and outputs include both parameters as well as globals.  This 
analysis provides a list of the data items defined and used in each subprogram.  When globals are 
used, they can be directly listed in a DUM (or other equivalent representation).  When 
parameters are used, the actual parameters can be listed in the DUM.  One benefit of the 
information flow approach is that information is available during the design phase, before code 
is available.  Once code is available, it is confirmed to be in conformance to the design, and 
further details can be added to the analysis (i.e., actual parameters are used to refine the 
dependencies on formal parameters).  To verify the linkages between components, further 
analysis and testing is required. 
 
2.4.2  Non-OOT Intercomponent Dependency Development. 

Coverage of intercomponent dependencies for integration testing was suggested by Harrold and 
Soffa [17 and 20].  This work was then expanded upon by Jin and Offutt [13, 21, and 22] who 
introduced the phrase “coupling-based integration testing” (CBIT).  Both groups adapted 
standard data-flow coverage criteria to apply interprocedurally, allowing different levels of 
coverage criteria.  Harrold and Soffa followed the more traditional data-flow-dependency 
analysis approach, which requires whole program analysis and tracking of aliases.  The benefit 
of this approach is that all intercomponent du-pairs are identified, even when there is no calling 
relationship between the components.  Jin and Offutt limited their analysis to direct call-pairs, 
which simplifies the analysis by only requiring the tracking of parameters.  During the course of 
this research, no evidence was found to indicate which approach should be chosen. 
 
Jin and Offutt suggested CBIT as partial satisfaction of the DO-178B [2] objectives for DCCC 
and showed how the criteria could be used when integrating atomic components, as well as 
collections of components (subsystems).  They also demonstrated that in one study, CBIT 
detected more faults with fewer test cases than other methods for integration testing. 
 
Support for coverage of dependencies is provided not only in research reports and papers, some 
of which are cited throughout this report, but in published books for practitioners as well.  
Coverage of intracomponent dependencies is discussed in many non-OOT testing books 
[12, 27-30].  These books point out that coverage of dependencies, specifically data-flow 
oriented testing, addresses a set of concerns that are missed by the control-flow approaches.  
Coverage of intercomponent dependencies for integration testing, though using dissimilar 
approaches, is discussed in three of those books by two different authors [12, 28, and 29].  All of 
these books follow the more traditional data-flow-dependency analysis approach, possibly 
because they were published before the work of Jin and Offutt. 
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Coverage of data dependencies by testing has been shown to be more effective, though costlier, 
than coverage of control dependencies [29].  The result concerning cost is in general agreement 
with the analysis presented previously in table 1.  This project was unable to formally address 
either the cost or effectiveness issues. 
 
2.4.3  Object Oriented Technology Intercomponent Dependency Development. 

Object-oriented programming provides features not available in procedural software.  OOT 
software centers on a class (fundamental concept); inheritance, aggregation and association 
(fundamental building blocks); encapsulation and information hiding, and polymorphism and 
dynamic binding (fundamental principles and building blocks) [5].  However, procedural 
programming controls the flow between the methods and operations applied to the objects of the 
classes.  Therefore, methods useful for procedural integration can be used for object-oriented 
integration. 
 
Several authors have extended CBIT to OOT [23, 24, 31-38].  These OOT CBIT approaches fall 
into two camps:  those following the more thorough whole-program analysis approach first put 
forth by Harrold and Soffa [31, 33, 34, and 37]; and those following the call-pairs approach first 
put forth by Jin and Offutt [23, 24, 32, 35, 36, and 38].  Both of these camps had two 
independent sets of researchers following the respective approach.  In addition, the OOT CBIT 
approach has been extended by other authors to a higher level of abstraction, using UML to 
define the dependencies based on messages and interactions. 
 
In contrast to the non-OOT testing books where CBIT is rarely mentioned, OOT testing books 
discuss CBIT frequently [25, 30, 39, 40, and 41].  Each of these books uses different terminology 
and methodology to accomplish CBIT.  Marick [30] and Siegel [39] use higher-level 
representations with a methodology close to the Harrold and Soffa approach.  Note that these 
two books were published before Jin and Offutt.  Bashir and Goel [25] use higher-level 
representations along with the Jin and Offutt call-pairs approach.  Binder [40] uses higher-level 
representations and the Harrold and Soffa approach.  McGregor and Sykes [41] use higher-level 
representations and a methodology close to the Harrold and Soffa approach (i.e., not restricted to 
call-pairs). 
 
Inheritance and polymorphism has been shown to introduce new error classes and faults not 
present in non-OOT [42 and 43].  The fault detection capabilities of CBIT for OOT have been 
found to be effective against these OOT-specific faults, and more effective than control coverage 
[42 and 44].  CBIT for OOT has also been found to be more effective against 
integration/interface faults than other traditional approaches (i.e., smaller test sets and higher 
fault detection rates) [23 and 24].  Both of these results, the presence of CBIT in OOT testing 
books and its effectiveness, are not surprising as OOT is a data-flow paradigm. 
 
Intracomponent dependencies (i.e., intracomponent du-pairs) are an unambiguous and 
automatable identification of coupling between statements.  Many optimizing compilers already 
perform dependency analysis, and commercial tools performing this analysis (e.g., CodeSurfer® 
from GrammaTech) are available.  Extension to coverage of intercomponent dependencies for 
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integration verification has been well motivated in both the academic and practical literature for 
both non-OOT and OOT software.  As previously mentioned, coverage of intercomponent 
dependencies for integration verification provides better results than traditional approaches for 
integration for both non-OOT and OOT software.  Coverage of the feasible dependencies is an 
unambiguous, measurable, and automatable adequacy criterion for the integration testing 
process. 
 
It is recommended that intercomponent dependencies (i.e., PDG/SDG edges or intercomponent 
du-pairs + calls) be covered during verification by a combination of reviews, analyses, and tests 
to satisfy the DO-178B objectives for confirmation of DCCC.  Coverage to this level will ensure 
that all definitions for each object reach all feasible uses of that definition, all uses of each object 
are reached by all feasible definitions of that object, and all subprograms are called under some 
requirements-based test (operational scenario).  This approach forms the foundation for the 
analyses performed in section 3. 
 
3.  OBJECT-ORIENTED FEATURES. 

The specific OOT features investigated, solutions identified, and issues raised during the course 
of this study are documented within this section of the report.  A previous study [5] identified 
DCCC concerns with the following OOT features: 
 
• Class 
• Encapsulation and information hiding 
• Exceptions 
• Implicit type conversions 
• Inheritance 
• Polymorphism with Dynamic Binding 
 
During the course of this study, integration dependency concerns not identified in the previous 
study were discovered concerning the following OOT features: 
 
• Inheritance (Note:  listed twice due to two disjointed sets of concerns) 
• Aggregation 
• Association 
 
Each of the OOT features is covered in its own following subsection.  When appropriate, how 
dependency relations handle the DCCC concerns associated with the feature is discussed. 
 
Note:  The analysis performed in this report, as well as the references cited, assume subtype 
inheritance that conforms to the Liskov substitution principle [45].  This means that a subclass 
must accept all messages that its superclass will accept and it must produce appropriate results.  
As a result, “subclass objects can be substituted for superclass objects without causing failures or 
requiring special case code in clients” [40].  This ensures that “the objects of the subtype ought 
to behave the same as those of the supertype as far as anyone or any program using supertype 
objects can tell” [45]. 
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3.1  CLASS. 

A previous study [5] identified class helper functions, known as constructors, as having an effect 
on DCCC.  Constructors are responsible for creating an object of a class at the beginning of its 
existence and can be used for initializing the attributes of the object necessary to establish its 
initial state.  When constructors are used to set state variables, a strong coupling exists between 
the constructor’s data input (parameters) and any method or class that employs state variables for 
control or data flow.  Additional couplings to other classes in the hierarchy are possible through 
aggregation and association, with a ripple effect possible throughout the entire system.  
Aggregation is addressed in section 3.6 of this report, while association is addressed in 
section 3.7. 
 
Errors can result due to all helper functions and their side effects, not just the constructors 
mentioned.  Destructors and Finalizers are methods responsible for freeing memory or closing 
some resource when the object has completed its work at the end of its existence.  Further 
discussion on helper functions is provided in the following sections.  The first section discusses 
constructors, while the second discusses destructors and finalizers.  Because the constructor 
coupling problem is recognized in the OOT community, patterns have been developed to deal 
with the problem. 
 
3.1.1  Constructors. 

Constructors set state variables by having the caller pass in the values for its attributes as 
arguments in the constructor.  Figure 8 shows a class (TASCalculator) with two constructors (the 
TASCalculator methods) where the internal variables set in the constructors cause the class to 
acquire state information.  These internal state variables effect (determine) both the data and 
control flow within the class when the airspeed calculation is made in method getSpeed as 
indicated in figure 9. 
 

TASCalculator

- units_code : int
- indicatedAirSpeed : int
- altitude : int

+ getSpeed() : int
+ TASCalculator(

units_code : int,
indicatedAirSpeed : int,
altitude : int) : void

+ TASCalculator(
indicatedAirSpeed : int,
altitude : int) : void

Speed_Context

+ CalculateTrueAirSpeed() : int

 

Figure 8.  Open Class for Calculating Airspeed 
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data dependences control dependences

True

   TASCalculator (
units_code int,
indicatedAirSpeed int,
altitude int)

Speed = (indicatedAirSpeed * (altitude/1000) * ((0.02) *
indicatedAirSpeed)) + indicatedAirSpeed;

function getSpeed () return Speed

if units_code == 2

Speed = 0.8689762 * Speed

units_codedefault

   TASCalculator (
indicatedAirSpeed int,
altitude int)

 

Figure 9.  Constructor Dependencies 

Figure 9 shows that the operation of the getSpeed method is dependent on which constructor is 
used to create the TASCalculator object.  One of the constructors, depicted on the left of figure 
9, allows the user to specify whether the returned airspeed will be returned in knots by 
specifying whether the units_code attribute is set to the value 2 (for knots), while the other 
constructor, depicted on the right of figure 9, will use a default value.  Defining the dependency 
relations between the different constructors helps to identify those methods sensitive to state.  
These state-sensitive methods will generally have different dependency relations between the 
different constructors.  As the analysis in figure 9 shows, the getSpeed method is one such 
method.  The differences in dependency require verification. 
 
Within standard OOT practice, there are design patterns that encapsulate the operations that set 
the internal state of an object into a separate helper class.  These patterns also decouple the data 
and control flow.  One such pattern, the Bridge pattern, separates the implementation from an 
abstraction for performing some function [9].  In figure 10, the Bridge Pattern is applied to the 
class for calculating airspeed shown in figure 8. 
 
Within figure 10, all implementation is contained within the Airspeed Implementer class, while 
the data is now encapsulated within its own object (AirSpeedData).  All data flow takes place 
within the private getAirspeedData method where the state values are assigned to the 
AirSpeedData object.  The AirSpeedData object is an example of a J2EE design pattern, the 
Transfer Object [46]. 
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Airspeed Implementer
- AirSpeedData : AirSpeed Data

+ getSpeed() : int
- getAirspeedData() : AirSpeed Data

Speed_Context

+ CalculateTrueAirSpeed() : int

AirSpeed Data

- units_code : int
- indicatedAirSpeed : int
- altitude : int

+ SetUnits_Code(units_code : int) : void
+ SetIndicatedAirSpeed(indicatedAirSpeed : int) : void
+ SetAltitude(altitude : int) : void

 

Figure 10.  Bridge Pattern Class for Calculating Airspeed 

The difference in dependencies between the class designs given in figure 8 versus that given in 
figure 10 is shown in figures 11 and 12.  Figure 11 shows the dependencies for the getSpeed 
method of figure 9 when that method is within the class given in figure 8, while figure 12 shows 
the dependencies for the getSpeed method of figure 9 when that method is within the class given 
in figure 10. 
 

 

Figure 11.  Dependency Graph for Open Class 
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Figure 12.  Dependency Graph for Bridge Pattern Class 

The bridge pattern encapsulates business data and has the following purported advantages: 
 
• State data is only set through methods that have the name of the state variable and the 

word “Set”—greatly lowering the chance of mixing up the state variables.  With the 
TASCalculator constructor method of figure 8, there is a risk that the state variable 
values could be incorrectly assigned via transposition, since all three parameters have the 
same type (int). 

• State data can be updated during the life of the object.  As can be seen in figure 11, 
objects of the TASCalculator class in figure 8 are constant, while figure 12 shows that 
bridge pattern objects of the AirSpeedData class in figure 10 are not. 

• Data can be passed throughout an application by sending a single object encapsulating 
multiple data items using the Visitor Design Pattern [9].  Encapsulation is addressed in 
section 3.2. 

• Data flow criteria have to be applied to only one method that sets the state, and this is 
external to the object—the getAirspeedData method in the implementation class. 

3.1.2  Destructors and Finalizers. 

Destructors and Finalizers are methods responsible for freeing memory, closing some resource, 
cleaning up data structures, or performing whatever other activities are needed when an object 
has either completed its work or is no longer needed.  They are supposed to be considered final, 
in that no other actions concerning the object will be possible after they run.  Unfortunately, 
these actions can appear as side-effects, especially when other objects are impacted.  As 
mentioned in reference 5, these methods can be employed by other features of the language (e.g., 
exceptions, implicit type conversions).  However, these methods are not always invoked because 
some types of exceptions and other modifications in the control flow circumvent their calling.       

21 



 

Because of this, there may be one set of dependencies when the methods are invoked, and a 
different set when their invocation is circumvented.  Analysis of both sets of dependencies is 
needed. 
 
3.2  ENCAPSULATION AND INFORMATION HIDING. 

Encapsulation and information hiding is the separation of the external (public) and internal 
(private) aspects of a class and its objects.  A previous study [5] identified encapsulation and 
information hiding as having an effect on DCCC when intermediary objects are involved in the 
interactions between objects.  For example, consider the three objects shown in the collaboration 
diagram presented in figure 13.  In response to an event, Object_1 sends a message to Object_2 
through Method_1.  As a result of this message, Object_2 updates its attributes with values 
provided by Object_1.  Later, in response to another event, Object_2 sends a message to 
Object_3 through Method_2.  As a result of this message, Object_3 updates its attributes with 
values provided by Object_2.  In this example, there is a dependency between Object_3 and 
Object_1, but that dependency may only be discovered through the code. 
 

 

Figure 13.  Collaboration Diagram 

One solution to this problem is to chain dependencies together [12] to remove intermediaries.  
This chaining is simply the transitive closure over the dependency relations.  For example, 
consider the dependency diagram in figure 14.  In the upper portion of figure 14, object O_2 is 
shown updating its attribute B with object O_1’s attribute A.  Object O_3 is also shown updating 
its attribute C with object O_2’s attribute B.  The lower part of figure 14 shows the transitive 
closure where the intermediary object O_2 has been removed. 
 

 

Figure 14.  Transitive Closure 

Note that this closure is only possible because the same attribute B of object O_2 appears on 
both sides of the transformation.  If different attributes appeared on one side versus the other, the 
removal of object O_2 would not be possible.  Figure 12 provides another example where 
transitive closure over the encapsulating AirSpeedData object will be needed to determine 
complete dependencies. 
 
An example of coupling between classes on an aircraft’s instrument panel is shown in figure 15.  
In figure 15, the individual display modules are tightly coupled to the sensors that provide basic 
information.  Each display module is also tightly coupled to the next so that common 
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information can be shared.  Failure of one component, or an incorrect value, can cause others to 
fail or show incorrect data. 
 

 

Figure 15.  Instrument Panel Object Coupling 

The Mediator design pattern provides a hub or central location for the interconnections between 
objects, while serving as a bridge to the data [9].  This pattern applied to the instrument panel 
objects of figure 15 is shown in figure 16.  It converts many-to-many relationships to one to 
many relationships.  This eliminates the possibility of errors that result from tightly coupling a 
number of classes together.  The classes are then free to change independently of other classes, 
except the Mediator that records and monitors the changes. 
 

DistanceTraveled

FuelConsumption

FuelTankIndicator

AirSpeed

Altitude

Position

AmountOfFuel

AtmosphericPressure

Mediator

 

Figure 16.  Instrument Panel Mediator Object Coupling 

Another pattern, not shown, that decouples classes is the Observer pattern [9].  This pattern 
requires the classes to register with a subject or topic to receive event notice and any state 
change information from the topic.  This is used mostly in queues and other asynchronous 
systems, but could also find application here. 
 
Both the Mediator and Observer design patterns inject a new object into the system so that 
many-to-many dependency paths between multiple objects are reduced down to one-to-one paths  
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with the central (intermediary) object and each of the other objects.  This and other forms of 
indirection are used in the patterns in [9] to achieve flexibility and variability.  However, this 
indirection may in turn complicate the design and its verification [9].  Taking the transitive 
closure of the dependency relations over the intermediary object is a necessary step to dealing 
with this complexity. 
 
3.3  EXCEPTIONS. 

A previous study [5] identified exceptions as having an effect on DCCC when destructors and 
finalizers invoked by the exception handler have side effects.  As mentioned in section 3.1, 
identifying and verifying the dependency relations between all helper functions and the other 
class methods will address this concern. 
 
3.4  IMPLICIT TYPE CONVERSIONS. 

A previous study [5] identified implicit type conversions as having an effect on DCCC through 
the side effects of helper functions (i.e., constructors and destructors).  As mentioned in section 
3.1, identifying and verifying the dependency relations between all helper functions and the 
other class methods will address this concern.  The previous study [5] mentioned that one 
complication is the need to perform some analysis at the object code level to detect implicit type 
conversions.  The use of dependency relations has no impact on this need for supplemental 
analysis (i.e., it does not eliminate the need to perform some analysis at the object code level to 
detect implicit type conversions). 
 
The previous study [5] also identified implicit type conversions as having an effect on DCCC by 
impacting the resolution of polymorphic references.  Polymorphism is addressed in section 3.8. 
 
3.5  INHERITANCE. 

Inheritance is a mechanism whereby a class is defined in terms of other classes (its parents), 
adding the features of its parents to its own without disturbing either the relationships between 
its parents and their clients or the parent’s concrete implementations.  Figure 17 contains a 
simple class hierarchy demonstrating inheritance. 
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Figure 17.  Inheritance Hierarchy 

Inheritance is implemented by three basic mechanisms: 
 
• Extension is the inclusion of the attributes and methods of ancestor classes (parents, their 

parents, etc.) in a subclass.  In figure 17, Class_2 and Class_3 extend Class_1.  They each 
inherit a copy of Attribute_1.  Class_2 also inherits Method_1 and Method_2. 

• Specialization is the definition of attributes and methods that are unique to that class.  In 
figure 17, Class_2 specializes Class_1 by adding a new attribute, Attribute_2, and by 
adding four new methods, Method_3, Method_4, Method_5, and Method_6.  Class_3 
specializes Class_1 by also adding a new attribute, Attribute_3, and two new methods: 
Method_3 and Method_4.  Note that the added methods, Method_3 and Method_4, in 
Class_2 and Class_3 are each distinct methods even though they have the same names.  
This occurs because there is no inheritance between these two classes. 

• Overriding is the definition of either an attribute or method in a class with the same 
signature as in a parent class.  A signature consists of the name of the feature, the type for 
attributes, parameter signatures for methods, and in some languages a return type for 
methods (e.g., Ada).  In figure 16, Class_3 overrides Method_1 and Method_2 in Class_1 
by providing its own methods.  Overriding requires polymorphism with dynamic binding, 
which is discussed in section 3.8. 

A previous study [5] identified inheritance as having an effect on DCCC through specialization 
and overriding changing the dependency relations between superclasses and subclasses.  Table 3 
presents an example set of definitions and uses of the class attributes by the class methods for the 
inheritance hierarchy in figure 17.  In table 3, the first column identifies the class.  The second 
column lists the methods.  Note that Method_1 and Method_2 are inherited in Class_2, and are 
shown enclosed in angle brackets in table 3.  The third column identifies the attributes defined 
by the method, while the fourth column identifies the attributes used by the method.  Note that 
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Attribute_1 is inherited in Class_2 and Class_3 and is shown enclosed in angle brackets in 
table 3.  Recall that the data in columns three and four are example data.  This data was 
generated to support the analysis of the effects that inheritance mechanisms have on dependency 
relations. 

Table 3.  Class Methods Definitions and Uses 

Class Method Defines Uses 
Class_1.Method_1 Class_1.Attribute_1  Class_1 
Class_1.Method_2  Class_1.Attribute_1 
<Class_1.Method_1
> 

<Class_1.Attribute_1>  

<Class_1.Method_2
> 

 <Class_1.Attribute_1> 

Class_2.Method_3 Class_2.Attribute_2  
Class_2.Method_4  Class_2.Attribute_2 
Class_2.Method_5 <Class_1.Attribute_1> Class_2.Attribute_2 

Class_2 

Class_2.Method_6 Class_2.Attribute_2 <Class_1.Attribute_1> 
Class_3.Method_1 <Class_1.Attribute_1>, 

Class_3.Attribute_3 
 

Class_3.Method_2  <Class_1.Attribute_1>, 
Class_3.Attribute_3 

Class_3.Method_3 <Class_1.Attribute_1> Class_3.Attribute_3 

Class_3 

Class_3.Method_4 Class_3.Attribute_3 <Class_1.Attribute_1> 
 
Specialization adds new dependency relations for the added features and extends existing 
dependency relations if the added features interact with the inherited ones.  Table 3 shows new 
dependency relations for Attribute_2 using Class_2.Method_3, Class_2.Method_4, 
Class_2.Method_5, and Class_2.Method_6.  Table 3 also shows extended dependency relations 
for Class_1.Attribute_1 using Class_2.Method_5 and Class_2.Method_6.  These changes are 
graphically depicted in the DDGs in figure 18.  In figure 18, attribute is abbreviated as A, class is 
abbreviated as C, and method is abbreviated as M.  The inherited methods and attributes are 
shown enclosed in angle brackets as in table 3.  Figure 18(a) presents the DDG for Class_1’s 
attribute:  Attribute_1.  Figure 18(b) presents the DDGs for Class_2’s attributes:  Attribute_1 and 
Attribute_2.  Note that Attribute_1 is inherited.  Figure 18(c) presents the DDGs for Class_3’s 
attributes:  Attribute_1 and Attribute_2.  As with Class_2, Attribute_1 is inherited in Class_3.  
The extended dependencies for Attribute_1 are demonstrated by the differences between the left 
DDGs of figures 18(a) and 18(b).  The new dependencies for Attribute_2 are demonstrated by 
the right DDG of figure 18(b). 
 
Overriding can remove existing dependencies, replace existing dependencies, and add new ones.  
Table 3 shows removed dependencies for Attribute_1 in Class_3 in that the inherited 
Class_1.Method_1 and Class_1.Method_2 no longer access the attribute.  Instead, Attribute_1 in 
Class_3 is now being accessed by all of Class_3’s methods.  Class_3.Method_1 and 
Class_3.Method_2 replace the inherited dependencies, and Class_3.Method_3 and 
Class_3.Method_4 add new dependencies.  The removed and replaced dependencies for 
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Attribute_1 are demonstrated by the left DDGs of figures 18(a) and 18(c).  The new 
dependencies for Attribute_3 are demonstrated by the right DDG of figure 18(c). 
 

 

Figure 18.  Inheritance Data Dependency Changes 

Each of the removed dependencies invalidates the verification associated with the dependency in 
the superclass (parents and ancestors), while each of the new dependencies will need new 
verification.  Because of this, the testing that was performed in a superclass may no longer be 
valid for a subclass [47].  For structural coverage measures to perform their proper role in the 
lifecycle, inheritance requires different coverage measures [48].  These measures require the 
standard coverage data to be sensitive to the class context under which they are collected [5, 40, 
and 48]. 
 
One way to achieve this context sensitivity is to collect the coverage data in the flattened class 
[5, 40, and 48].  This has become the recommended practice in the standard object-oriented 
testing literature [39, 40, and 41].  Although this is always a conservative approach, there are 
circumstances where it is not necessary: 
 
• If a subclass only extends the superclass (i.e., does not override any of its inherited 

features and does not add any of its own), then no retesting is necessary [47 and 49].  In 
this case, the dependency relations from the superclass remain unchanged in the subclass. 

• If a subclass extends and specializes the superclass by only adding attributes and methods 
that do not interact with any inherited features, then only the added features require 
testing [49].  In this case, the dependency relations from the superclass also remain 
unchanged in the subclass.  In addition, new dependency relations are added in the 
subclass. 
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• There are circumstances when complete testing of a subclass is not necessary even when 
inherited features are overridden and when new interacting features are added, such as 
those noted in reference 49. 

The hierarchical integration testing (HIT) method can be used to determine when and how much 
retesting is required in a subclass [49].  Inherited tests that can be rerun as-is, tests that require 
modification, and newly-identified tests are also identified by the analysis [49].  The analysis 
treats inheritance as an integration problem and relies, in part, on changes in dependencies to 
make the identifications. 
 
The effect on DCCC through specialization and overriding within subclasses is demonstrated by 
the class diagram in figure 19.  At the top of the hierarchy is an EngineSensor class that wraps 
the actual transducers for the engine information.  Extending the EngineSensor superclass 
produces a Display class. The Display class is further specialized to form individual classes for 
displaying the individual readings. 
 
The more child classes, the more impact on DCCC can result at the lower (child) levels, where 
the implementation occurs.  All classes in an inheritance hierarchy are tightly coupled.  Changes 
to classes at the top of the hierarchy (parents) impact all those below (children).  For example, in 
the hierarchy of figure 19, if the readValue method changes in the Display class, it will impact 
only the RPM class, as the Oil class has its own readValue method.  DCCC errors can occur 
anywhere within the class hierarchy, especially if changes are made to those methods at the top.  
The more classes beneath the top level classes, the greater the chance for DCCC and the greater 
the difficulty in predicting behavior. 
 
For example, if the readValue method on the Display class is changed, it could be expected that 
all the subclasses of Display will reflect the changes.  However, the Oil and Temperature, and 
Pressure classes have their own ways to read data, with the Pressure class actually overriding the 
readValue method within the Oil class.  Therefore, someone expecting to change all of the 
display values by changing a method in the Display class will have to look through all classes of 
the hierarchy to actually change the way all the classes read the sensor values. 
 
Within standard OOT practice, the Builder design pattern separates the construction of a 
complex object from its representation, producing a complex object ready for use [9].  In the 
scenario where complex information displays are needed, figure 20 shows how the Builder 
pattern can produce the same objects as are in figure 19, but with less dependencies and chance 
of DCCC errors. 
 
Instead of a number of dependencies spread throughout a class hierarchy, the Builder pattern 
yields ready-made objects.  All control flow operations to create the objects are encapsulated in 
the DisplayFactory class, while the data flow is contained within the Display class.  DCCC 
errors are reduced, since both data and control flow is limited to a single class. 
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Figure 19.  Inheritance Hierarchy for Engine Data Display 

 

 

Figure 20.  Builder Pattern for Engine Data Display 
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During the current study, it was discovered that inheritance, aggregation, and association add 
additional dependencies that need to be considered by the integration process for object-oriented 
software.  These dependencies address the integration order of classes, the need for stubs and 
drivers, and how to generate an integration order that minimizes the number and complexity of 
stubs.  Many publications have resulted to provide solutions [50 through 59] for these 
dependencies.  While this is apparently a significant issue for object-oriented integration testing, 
this is, strictly speaking, not a DCCC issue, and appears to be out-of-scope of DO-178B [2]. 
 
3.6  AGGREGATION. 

Aggregation occurs when one class is defined as a combination of other classes.  It is generally 
implemented with objects of one class incorporating objects of other classes as attributes.  
Classes are coupled when a message is passed between objects of different (i.e., noninheritance 
related) classes.  This means that methods declared in one class use methods or attributes of 
another class.  Aggregation is one mechanism that enables this coupling.  Dependency relations 
between the coupled classes require verification. 
 
As noted in section 3.5 for inheritance, it was discovered that inheritance, aggregation, and 
association add additional dependencies that need to be considered by the integration process for 
object-oriented software.  These dependencies address a number of items of concern for object-
oriented integration testing, but these dependencies are not a DCCC issue and appear to be out-
of-scope of DO-178B. 
 
3.7  ASSOCIATION. 

Association occurs when two classes exchange messages.  This can occur as a result of: 
 
• A call association—one of class A’s methods calls one of class B’s methods. 

• An access association—one of class A’s methods accesses one of class B’s attributes. 

• A parameter association—one of class A’s methods contains a parameter that is an object 
of class B. 

Classes are coupled when a message is passed between objects of different (i.e., noninheritance 
related) classes.  This means that methods declared in one class use methods or attributes of 
another class.  Association is one mechanism which enables this coupling.  Dependency relations 
between the coupled classes require verification. 
 
Again, as noted in section 3.5 for inheritance, and restated in section 3.6 for aggregation, it was 
discovered that inheritance, aggregation, and association add additional dependencies that need 
to be considered by the integration process for object-oriented software; however, these 
dependencies are not DCCC issues.   
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3.8  POLYMORPHISM WITH DYNAMIC BINDING. 

Polymorphism is the ability of a name in software text to denote, at run time, one or more 
possible entities.  Polymorphism is required by inheritance as an object declared to be of a 
superclass can, at run time, be a member of any of the subclasses of that superclass.  Which 
method to call and which attribute to access may depend on the class of which the object is a 
member at the time of dispatch.  Polymorphism is generally supported by dynamic binding and 
dispatch.  This has been compared to a goto statement with multiple variable destinations [60] or 
a case/switch statement [61].  A previous study [5] identified that most of the need for context 
coverage covered in section 3.5 is due to the altered dependencies caused by the use of 
polymorphism with dynamic binding and dispatch. 
 
3.8.1  Static Binding and Dispatch. 

Static binding and dispatch is the matching of attribute references to attributes and calls to 
methods at compile time or link time.  With static binding and dispatch, each reference resolves 
to a single receiver entity (object, attribute, method).  This creates a single set of dependency 
relations between the dispatch site entity and the receiver entity at each dispatch site.  Static 
binding and dispatch present no new issues for traditional integration testing and can be tested 
with a single test set for the dependency relations.  Note that both static and dynamic binding and 
dispatch can be present in object-oriented programming. 
 
Figure 21 depicts a simple class hierarchy for demonstrating the differences between static and 
dynamic binding.  Table 4 presents the definitions and uses of the class attributes by the class 
methods for the inheritance hierarchy in figure 21.  Table 4 follows the same format as table 3. 
 

 

Figure 21.  Dispatch Class Diagram 
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Table 4.  Dispatch Class Methods Definitions and Uses 

Class Method Defines Uses 
Display.readSensorValue 
Display.applyCorrection 

Display.measurement 
Display.value Display.measurement 

Display 

Display.writeDisplay Display.displayValue Display.value 
OilPressur
e 

<Display.readSensorValue
> 
<Display.applyCorrection> 
OilPressure.writeDisplay 

<Display.measurement> 
<Display.value> 

OilPressure.displayValu
e 

<Display.measuremen>t
<Display.value> 

 
Figure 22 presents the source code for a method that uses the class hierarchy in figure 21. 
 

 

Figure 22.  Dispatch Source Code 

Figure 23 depicts what happens in the code of figure 22 during a static binding and dispatch for 
an object of the class hierarchy in figure 21.  In the center of figure 23, a CFG segment is 
depicted.  For this example, the interest is in when the calls display.readSensorValue and 
display.applyCorrection are made.  In figure 23, to the left of the CFG, the methods that are 
dispatched to when the actual type of display is Display are identified with dashed flow lines 
connecting them to the CFG (e.g., display.readSensorValue dispatches to 
Display.readSensorValue).  Within the methods, the attribute accesses from table 4 are identified 
(e.g., Display.readSensorValue defines Display.measurement).  To the right of the CFG in figure 
23, the same analysis is depicted for when the actual type of display is OilPressure.  Note that the 
methods invoked and the attribute references remain unchanged.  The methods are the same 
because OilPressure inherits Display.readSensorValue and Display.applyCorrection from 
Display.  The inheritance is depicted by the method name being enclosed in angle brackets.  
Figure 23 shows that there is one dependency relation set and one du-pair for measurement in 
this subset of code. 
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Figure 23.  Static Binding and Dispatch 

3.8.2  Dynamic Binding and Dispatch. 

Dynamic binding and dispatch is the matching of attribute references to attributes and calls to 
methods at run time as opposed to compile time or link time.  With dynamic binding and 
dispatch, each (polymorphic) reference resolves to a set of possible receiver entities instead of a 
single unchanging (invariant) entity.  This creates a set of possible dependency relation sets, one 
for each possible receiver entity.  Covering each of these different contexts is needed, as 
mentioned in section 3.5. 
 
Figure 24 depicts what happens in the code of figure 22 during a dynamic binding and dispatch 
for an object of the class hierarchy in figure 21.  Figure 24 follows the same format as figure 23.  
In figure 24, the method display.writeDisplay is dynamically dispatched as OilPressure overrode 
the inherited method from Display.  In figure 24, different methods are invoked and different 
attributes are referenced for the dynamic binding and dispatch case compared to the analysis for 
static binding and dispatch presented in figure 23.  Figure 24 shows that there are two relation 
sets.  One relation set is for the du-pair for display.value.  The definitions for the two different 
intercomponent du-pairs occur in the same method:  Display.applyCorrection.  However, the 
uses appear in different methods:  Display.writeDisplay, when display is of type Display, and 
OilPressure.writeDisplay, when display is of type OilPressure.  The second relation set concerns 
the definition of display.displayValue within writeDisplay.  Though this attribute has the same 
name and type in both classes, it is unique to each as OilPressure overrode the attribute it 
inherited from Display.  Should displayValue be used in another method, and that use uses the 
definition from writeDisplay, two different intercomponent du-pairs will be possible (or none if 
there is a DCCC error). 
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Figure 24.  Dynamic Binding and Dispatch 

The efficiency of dynamic binding and the reduction of code makes its use widespread in 
traditional OOT applications.  Two surveys of the OOTiA community show that dynamic 
binding is being avoided by some and employed by others [1 and 4].  Best practice should be to 
document polymorphic methods well and to mark them as possible places to check for errors.  
The Command Design Pattern could be used to encapsulate requests within an object, while 
lessening the chance for errors that can arise from dynamic binding [9].  The Command Design 
Pattern applied to the Display class of figure 21 is presented in figure 25. 
 
The Command Pattern does add some extra classes, as shown in figure 25. The Command 
classes encapsulate the action, forcing the proper object to be used.  The DisplayCommand class, 
for example, requires a Display object be passed into its constructor.  Within its execute 
method—shown in figure 26—the overloaded method is called.  Strong typing within the 
constructor of the Command object ensures that the proper object gets loaded and used. 
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Figure 25.  Command Design Pattern for Display 

Figure 26 shows the invoking of the method shown in figure 22.  While the data and control flow 
are still tightly coupled, the strong typing in the constructors reduces the chance of error due to 
the wrong type of object.  Object errors will be caught at compile time and not run time, as the 
dynamically bound object is encapsulated by the Command object.  Another benefit is that the 
execution of the method that uses dynamic binding is done within a command object, making it 
easier to maintain and extend. 
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public class DisplayCommand implements ICommand {

/**

this.display = D;

}

private Display display;

public DisplayCommand(Display D) {

}

   * Required method
   */

DisplayContext context = new DisplayContext();
public void execute() {

}
context.MakeDisplay(display);

public class DisplayCommand implements ICommand {

/**

this.oilPressure = O;

}

private OilPressure oilPressure;

public OilPressureCommand(OilPressure O) {

}

   * Required method
   */

DisplayContext context = new DisplayContext();
public void execute() {

}
context.MakeDisplay(oilPressure);

strongly typed constructor

strongly typed constructor

 

Figure 26.  Command Pattern Source Code 

3.8.3  Polymorphism Verification. 

Adequate testing of polymorphism with dynamic binding and dispatch is an issue with OOT [40, 
62, 63-65].  Defining adequate testing of polymorphism with dynamic binding and dispatch is an 
active research area with no definitive answer yet.  Many approaches have been suggested by 
both academia and industry [5, 6, 25, 32-42, 50, 61, 66-69].  Most of these approaches treat 
polymorphism as an integration issue. 
 
Most proposals for the adequate testing of polymorphism with dynamic binding and dispatch 
require testing that covers some subset of all possible polymorphic bindings for a polymorphic 
reference (note that a subset can be a complete set).  Two levels of coverage have been proposed.  
Figure 27 is a simple class hierarchy that will be used to illustrate the difference between the two 
coverage criteria.  For the following examples, an object named sensor is used, which is declared 

36 



 

to be of type Sensor from the hierarchy in figure 27, and a dispatch site where the polymorphic 
reference is sensor.applyCorrection(measurement). 
 

Sensor
- measurement : float

+ read() : float
+ applyCorrection(measurement : float) : float

Engine RPM
- rpm : int
+ writeRPM(value : int) : void

Engine Temperature
- temperature : float

+ writetemperature(value : float) : void
+ applyCorrection(measurement  : float) : float

 

Figure 27.  Class Diagram 

The first criterion is known as the receiver-classes criterion (RCC) in reference 70 and 
inheritance coverage in reference 69.  This coverage criterion requires exercising all possible 
classes at a dispatch site:  the base class plus all of its subclasses.  This criterion would require 
three tests for the example polymorphic reference.  For the first test, the actual type of sensor is 
Sensor.  For the second test, the actual type of sensor is EngineRPM.  Note that the first and 
second tests will dispatch to Sensor.applyCorrection, since EngineRPM inherits that method 
from Sensor.  For the third test, the actual type of sensor is EngineTemperature.  This test will 
dispatch to EngineTemperature.applyCorrection as EngineTemperature overrides the inherited 
applyCorrection from Sensor. 
 
The second criterion is known as the target-methods criterion (TMC) in reference 70 and 
overriding method coverage in reference 69.  This coverage criterion requires exercising all 
possible concrete methods at a dispatch site:  the base class method plus all overriding methods 
in the subclasses.  This criterion would require two tests for the example polymorphic reference.  
For the first test, the actual type of sensor is either Sensor or EngineRPM.  Either actual type is 
acceptable since both will dispatch to Sensor.applyCorrection.  For the second test, the actual 
type of sensor is EngineTemperature.  This test will dispatch to the overriding 
EngineTemperature.applyCorrection. 
 
A summary of the approaches taken for the adequate testing of polymorphism with dynamic 
binding is presented in table 5.  The approaches are arranged in order of first publication.  In 
table 5, the first column gives an identifying number for the approach.  This number is used to 
identify the brief explanations of each approach following the table.  The second column 
identifies the authors, while the third column lists their publications referenced by this report.  
The fourth column identifies what form of RCC, if any, is used by the proposed approach.  The 
fifth column identifies what form of TMC, if any, is used by the proposed approach.  The sixth  
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column identifies if dependencies are used.  Each of the approaches is briefly explained after the 
table.  The following entries are used in table 5 for the entries concerning RCC and TMC. 
 
• E—exhaustive.  Every possible binding at every polymorphic reference. 
• S—subset.  A subset of every possible binding at every polymorphic reference. 
• D—distributed.  Every possible binding over all the equivalent polymorphic references. 
 
If dependencies are used, an X appears in the last column.  Note that the majority of approaches 
only use data dependencies. 

Table 5.  Polymorphism Coverage Approaches 

ID No. Authors Publications RCC TMC Dependencies
1 Kirani 66   X 
2 McDaniel and McGregor 67 S   
3 Overbeck 68 S   
4 Paradkar 50 S   
5 Siegel 39 S  X 
6 Watson and McCabe  61 D + E1   
7 Alexander and Offutt 32, 35, 36, 38  E X 
8 Bashir and Goel 25  S X 
9 Chen and Kao 42 E  X 
10 Orso, Pezzè, and Martena 33, 34, 37 S  X 
11 Binder 40 D + E1  X 
12 McGregor and Sykes 41 S   
13 Chilenski, Timberlake, and 

Masalskis 
5 D   

14 OOTiA 6 D   
15 Supavita and Suwannasart 69 E E  

1  The one exhaustive case may be in a test driver. 
 
1. Kirani [66] proposes that testing covers message-method interactions and message 

sequences based on the specifications for the classes and methods.  Guidance is not 
provided for selecting bindings for the polymorphic calls in the exercised combinations.  
The interactions and sequences are augmented with data-flow information to perform a 
certain form of dependency testing. 

 
2. McDaniel and McGregor [67] propose that testing covers a subset of RCC.  Additionally, 

this approach includes covering the states of the objects involved (i.e., message/state 
combinations).  This approach uses a bottom-up pairwise integration test strategy using 
orthogonal arrays (latin squares) [71] to ensure coverage of all pairwise combinations of 
polymorphic resolutions with states.  This approach does not address DCCC. 

 
3. Overbeck [68] proposes that testing covers a subset of RCC.  This approach uses a 

bottom-up pairwise integration test strategy using interface constraint specification  

38 



 

patterns extended from reference 49 to cover interactions between classes.  This approach 
does not address DCCC. 

 
4. Paradkar [50] proposes that testing covers a subset of RCC.  Additionally, this approach 

includes covering the states of the objects involved (i.e., message/state combinations).  
This approach uses a bottom-up pairwise integration test strategy using a set of heuristics 
based on reference 47 to choose from feasible message/state combinations only.  This 
approach proposes using orthogonal arrays (latin squares) [71] to further reduce the test 
set.  This approach does not address DCCC, since data and control dependencies between 
methods are specifically identified as details that are not required for integration testing, 
though inheritance and polymorphism are identified as affecting data and control 
dependencies. 

 
5. Siegel [39] proposes that testing covers a subset of RCC.  This approach uses a bottom-

up pairwise integration test strategy using HIT [49] and dependencies to ensure the test 
set is sufficient to cover differences in use case behavior. 

 
6. Watson and McCabe [61] propose three possible approaches (optimistic, pessimistic, and 

balanced).  Two of the approaches (optimistic and balanced) treat polymorphism with 
dynamic dispatch as a case statement based on the class of the object.  None of the 
approaches address DCCC. 

 
- The optimistic approach proposes that testing executes each polymorphic 

reference at least once and each polymorphic resolution (class binding) at least 
once across the entire testing effort.  This approach could be considered a 
distributed RCC approach. 

- The pessimistic approach proposes that testing covers RCC. 

- The balanced approach proposes that testing execute each polymorphic reference 
at least once, each polymorphic resolution at least once (distributed RCC), and for 
one polymorphic reference that forms an equivalence class with all others 
dispatching on the same base class, cover RCC.  It is suggested that the RCC site 
could be in a test driver instead of the application code.  This is the approach 
reported in table 5. 

7. Alexander and Offutt [32, 35, 36, and 38] propose that testing cover TMC.  They extend 
coupling-based testing [13, 21, and 22] (which extended data-flow testing) to cover the 
additional dependencies polymorphism allows.  This approach uses a bottom-up pairwise 
integration strategy where data coupling is restricted to parameters only (i.e., no global 
data), and direct call-pairs only. 

 
8. Bashir and Goel [25] propose that testing covers a representative subset of invocations of 

interfaces via use cases to cover intermethod dependencies.  The approach is very data 
and state centric, since classes are sliced into individual attributes and the methods that 
access them.  They point out that polymorphism compels one to many invocations of the 
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same interface to catch differences.  The coverage of these dependency differences will 
achieve a subset of TMC. 

 
9. Chen and Kao [42] propose that testing covers RCC.  When multiple objects are 

involved, every possible combination of bindings must be tested (strong inheritance 
coverage in reference 69).  Dependencies are covered to the all-du-pairs data flow testing 
criterion (i.e., every definition reaches every use at least once, every use is reached by 
every definition at least once). 

 
10. Orso, Pezzè, and Martena [33, 34, and 37] propose that testing covers a subset of RCC.  

They extend traditional data flow testing to consider the additional dependencies 
polymorphism allows [31], which allows for all data flow coverage criteria to be applied.  
This approach uses a bottom-up pairwise integration test strategy using compiler 
optimization techniques to reduce infeasible bindings. 

 
11. Binder [40] proposes that testing covers RCC at one polymorphic reference for each 

class, all polymorphic references must be executed at least once and all dependencies 
must be covered at least once.  It is suggested that the RCC site would generally be in a 
test driver instead of the application code.  This approach is similar to the balanced 
approach of [61]. 

 
12. McGregor and Sykes [41] propose that testing covers a representative sample of life 

cycle scenarios and interactions based on the specifications for the classes.  This 
approach uses a bottom-up pairwise integration test strategy using orthogonal arrays 
(latin squares) [71] and HIT to achieve representative coverage of pre- and 
postconditions, invariants, states, state transitions, and sequences of operations and 
messages.  This approach achieves a subset of RCC. 

 
13. Chilenski, Timberlake, and Masalskis [5] propose that testing covers every polymorphic 

reference and every entry in every method table.  This approach achieves distributed 
RCC.  DCCC is identified as an issue in need of further study and resolution. 

 
14. The OOTiA Handbook [6] also proposes that testing covers every polymorphic reference 

and every entry in every method table just as in reference 5, with the observation that 
DCCC requires something more.  This approach achieves distributed RCC. 

 
15. Supavita and Suwannasart [69] define a set of five coverage criteria to test 

polymorphism.  One of the criteria, base class coverage, requires that each dispatch be 
covered.  They provide an analysis showing that this is an unacceptable level of coverage 
(i.e., insufficient testing).  One criterion, overriding method coverage, is TMC, while 
another, strong overriding method coverage, adds all combinations in multiobject 
dispatches to TMC.  One criterion, inheritance coverage, is RCC, and the final one, 
strong inheritance coverage, adds all combinations in multiobject dispatches to RCC.  
This is the same criterion used in reference 42.  They show that changes in dependencies 
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can make TMC inadequate for even purely inherited methods.  They also show that these 
criteria are insufficient adequacy criteria and that further work is required. 

 
The majority of the approaches listed in table 5 use coverage of dependencies as one of the 
adequacy criteria for the adequate testing of polymorphism with dynamic binding and dispatch.  
As mentioned previously, the majority of the approaches also treat polymorphism as an 
integration issue.  Only the approaches of Siegel [39]; Alexander and Offutt [32, 35, 36, and 38]; 
and Orso, Pezzè, and Martena [33, 34, and 37] employ dependencies and integration.  These last 
two approaches focus on the dependencies between the classes formed by polymorphic 
references and how those dependencies should be covered.  They have been referred to as 
coupling-based testing. 
 
The coverage of intercomponent dependencies (i.e., PDG/SDG edges or intercomponent du-pairs 
+ calls) recommended in section 2.4.3 will fall somewhere between TMC and RCC and between 
the approaches of Alexander and Offutt and Orso, Pezzè, and Martena.  As discussed in 
reference 69, inherited methods involved in new dependency relations require testing beyond 
that required by TMC.  These new dependencies will be covered by the recommended approach.  
Dependency relations beyond direct call-pairs and involving globals require testing beyond that 
required by the approach of Alexander and Offutt.  These dependencies will be covered by the 
recommended approach.  Inherited methods that are not involved in any new dependency 
relations do not require the additional testing required by RCC and the approach of Orso, Pezzè, 
and Martena.  The recommended approach will also not require this additional testing.  Finally, 
the recommended approach achieves a subset of distributed RCC since exhaustive coverage is 
not required at each polymorphic reference, but over the collection of polymorphic references 
dispatching on the same base class. 
 
4.  RESULTS AND FURTHER WORK. 

This report presents the results of an investigation into issues and acceptance criteria for the 
verification (confirmation) of DCCC within OOT in commercial aviation as required by 
Objective 8 of Table A-7 in DO-178B.  The intent of the structural coverage analyses 
(confirmation) of DCCC is to provide an objective assessment (measure) of the completeness of 
the requirements-based tests of the integrated components (i.e., objectively measure integration 
testing).  Currently, DO-178B does not impose an objective measure for the confirmation of 
DCCC between the code components called out in Section 6.4.4.3c of DO-178B [2]. 
 
This report recommends that intercomponent dependencies (i.e., PDG/SDG edges or 
intercomponent du-pairs + calls) be covered during verification by a combination of reviews, 
analyses, and tests to satisfy the DO-178B objectives for confirmation of DCCC.  Coverage to 
this level will ensure that all definitions for each object reach all feasible uses of that definition, 
all uses of each object are reached by all feasible definitions of that object, and all subprograms 
are called under some requirements-based test (operational scenario).  This coverage provides an 
objective measure for the confirmation of DCCC.  As adequate testing of polymorphism with 
dynamic binding and dispatch is still an active research area, this recommendation may only be 
considered an interim solution. 
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Dependency analysis is well-established within the computer science and software engineering 
disciplines.  Current compilers perform this analysis in support of optimization, and commercial 
tools performing this analysis in support of a number of activities (e.g., maintenance, change-
impact analysis, and reverse engineering) are currently available.  The use of dependency 
analysis as an adequacy criterion for testing, particularly integration testing, is also well-
motivated in both the non-OOT and OOT testing literature and is known as CBIT. 
 
The study, “Issues Concerning the Structural Coverage of Object-Oriented Software,” identified 
a number of OOT features with DCCC concerns.  This study showed how the DCCC aspects of 
each of these concerns is addressed by coverage of intercomponent dependencies.  Some of these 
concerns resulted in additional dependencies that must be considered by the integration process 
for object-oriented software.  These dependencies concern the determination of a proper 
integration order for classes and the minimal generation of stubs and drivers.  However, these 
dependencies are, strictly speaking, not a DCCC issue, and appear to be out of scope of DO-
178B. 
 
Four open issues requiring further work remain.  Three of these issues relate to the guidance 
provided by Objective 8 in Table A-7 of DO-178B.  Within this table, test coverage 
(confirmation) of DCCC is required for Software Levels A through C.  The only difference 
identified for this objective in the table is that Level C software does not require independency.  
This is in contrast to the control-flow adequacy criteria of objectives 5 through 7, where there are 
software-level-dependent differences. 
 
The first issue concerns the level of dependency coverage required by the two major CBIT 
approaches:  Harrold and Soffa, and Jin and Offutt.  Both approaches adapted standard data-flow 
coverage criteria to apply interprocedurally, thus allowing for different levels of coverage.  Both 
approaches were further adapted to apply to OOT.  Orso, Pezzè, and Martena adapted Harrold 
and Soffa while Alexander and Offutt adapted Jin and Offutt.  A follow-up study is 
recommended to determine if different levels of dependency coverage should be applicable to 
different software levels, just as different levels of control-flow coverage are applicable to 
different software levels. 
 
The second issue concerns the level of dependency tracing required by the two major CBIT 
approaches.  The Jin and Offutt/Alexander and Offutt approach only requires coverage for 
dependencies concerning parameters between direct call-pairs.  The Harrold and Soffa/Orso, 
Pezzè, and Martena approach requires coverage for all interprocedural dependencies.  The 
recommended approach in this report conforms to the more thorough analysis required by 
Harrold and Soffa/Orso, Pezzè, and Martena.  A follow-up study is recommended to determine if 
the alternate approach of Jin and Offutt/Alexander and Offutt should be considered acceptable, 
and at what level.  For example, the Jin and Offutt/Alexander and Offutt approach could be 
acceptable for software Levels B and C, where B requires independency, while the Harrold and 
Soffa/Orso, Pezzè, and Martena approach with independency could be required only for software 
Level A. 
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The third issue, considered major, concerns the level of coverage required for the adequate 
testing of polymorphism with dynamic binding and dispatch.  Defining adequate testing of 
polymorphism with dynamic binding and dispatch is an active research area with no definitive 
answer yet.  As such, the recommendation in this report may only be considered an interim 
solution where polymorphism with dynamic binding and dispatch is concerned.  Two major 
approaches emerged during the course of this study:  the TMC and the RCC.  The majority of 
proposals studied in this report achieve a subset of RCC.  The recommended approach in this 
report also achieves a subset of RCC, however, it is closer to TMC in application.  A follow-up 
study is recommended to determine the acceptability of any of these approaches, and at what 
software level. 
 
The fourth issue concerns the cost and effectiveness of the coverage of intercomponent 
dependencies.  Though studies have shown the cost and effectiveness of other dependency 
approaches, the specific approach recommended in this report has not undergone such an 
analysis.  A follow-up study is recommended to determine the cost and effectiveness of the 
coverage of intercomponent dependencies as recommended in this report. 
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APPENDIX A—UML 2.0 CONVENTIONS USED 

This appendix contains a brief overview of the Unified Modeling Language (UML) 2.0 used in 
this report.  More detailed information can be found in the UML 2.0 standard. 
 
The first table defines the basic components of object-oriented technology (OOT) used in this 
report.  The first column gives the name of the component, the second column gives the symbol 
used, and the third column gives an overview of the use of the component. 
 
The second table defines the relationships of OOT used in this report.  The first three columns 
are just like the three columns of the first table.  The last column gives an example of the use of 
the relationship. 
 
Basic Components 
 
Name Symbol Use 
Interfac
e 

 

An interface is a type, just as a class is a type.  Both 
define methods, but only classes define attributes.  
An interface never implements methods, only defines 
their method signature to enforce uniformity across a 
number of classes.  A class can implement multiple 
interfaces. 
 

Class 

 

A class is the specification for objects, specifying 
each object’s behavior (operations or methods) and 
state variables (attributes or properties).  The 
constructor for the class has the same name as the 
class, but there is no return type. 
 
Visibility of attributes and methods, when depicted, 
is either public (“+”) or private (“-“). 
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Relationships 
 
Name Symbol Use Example 
Inheritance   Implementation 

Inheritance 
(Generalize/Specialize) 
Object-oriented systems 
define classes in terms 
of other classes.  For 
example, The 737, 747, 
767, 777, and 787 are all 
types of Aircraft.  In 
object-oriented 
terminology, 737, 747, 
767, 777, and 787 are all 
subclasses of the aircraft 
class.  Similarly, the 
aircraft class is the 
superclass of the others. 
 

 
Implement-
ation 

 
 

Interface Inheritance 
(Specifies/Refines) 
An interface is the 
boundary between two 
systems where they 
interact.  Within the 
Java programming 
language, an interface is 
a type, just as a class is a 
type.  Both define 
methods.  An interface 
never implements 
methods; this is left to 
the classes that 
implement the interface.  
By providing a common 
interface, classes of 
different types can 
interact.  
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Aggregation  

 

Aggregation 
A part exists 
independently of the 
whole.  

 
Composition 

 

Composition 
A collection or other 
class that does not exist 
independently. 

 
Dependency 

 

Dependency 
Primary Object has 
another object as a typed 
attribute or variable. 
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