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EXECUTIVE SUMMARY 

Databus and data network technology continues to play an ever-increasing role in aviation digital 
electronics architectures throughout the range of aviation markets.  The evolution of integrated 
modular aviation digital electronics architectures comprising multiple subsystems integrated into 
single and redundant data networks is increasing the influence of data networking.  The 
criticality of data networks has previously led avionics manufacturers and aircraft original 
equipment manufacturers to design specific aerospace solutions to meet their requirements.  In 
recent years, cost challenges have led to the adoption of commercial off-the-shelf (COTS) 
communication solutions in avionics.  Although attractive from a cost perspective, the adoption 
of COTS presents certification issues, particularly as the complexity and increased leverage of 
technology continues to evolve.  Subtleties may escape the system designer and leave 
dependability holes.  An example is the interference of the Controller Area Network bit-error 
stuffing mechanism with message cyclic redundancy code coverage.  COTS can be adopted as-
is, or with fixes added so it is a better fit for dependable avionics requirements, i.e., the 
adaptation of Ethernet to Aeronautical Radio, Incorporated (ARINC®) Part 7.  Helping this trend 
is the arrival of “safety-critical COTS” in the marketplace, particularly in automobile and 
process-control areas.  However, even with designed-for-purpose technology, it is necessary to 
ensure that the technology has dependability consistent with real-world requirements and 
redundancy management schemes. 
 
Development and evaluation of aviation digital electronics data networks that are suitable for 
safety-critical aviation digital electronics is a complex subject area.  It requires detailed 
knowledge of communications systems, aviation communication and application requirements, 
mechanisms for creating dependable architectures, certification expectations, and assurance 
strategies.  It is also important to note that, with correct architectural mitigation, almost any data 
network may be used in a certified system.  For example, a layer of fault tolerance can be placed 
above the network to fix any of its shortcomings. 
 
The objective of this Handbook is to provide criteria for evaluating data network technology for 
use in safety-critical applications.  However, this should not be taken to mean that these criteria 
can be used to rank data networks in a scale of absolute goodness, independent of the avionics 
systems in which they are employed.  Because the operation of a data network is so entangled 
with the avionics system it supports, it is not possible to make an evaluation of a data network on 
its own.  The goal is to create a sufficient breadth of criteria that can be used to evaluate the 
widest range of data networks with respect to the avionics systems in which they may be 
employed. 
 
This Handbook builds on previous documents in this area, particularly the Certification 
Authorities Software Team (CAST-16) position paper, “Databus Evaluation Criteria,” 
“Handbook for Ethernet-Based Aviation Databuses:  Certification and Design Considerations,” 
and Advisory Circular 20-156, “Aviation Databus Assurance.” 
 
This Handbook includes a structured list of issues and criteria related to evaluating data network 
technologies for digital electronics applications.  Many of these issues and criteria are 
overlooked or are underappreciated by many of today’s digital electronics designers. 
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The material contained in this Handbook is part of the work done for the Databus Evaluation 
Criteria research project.  This project was carried out in collaboration with Honeywell 
Laboratories, Minneapolis, MN; Carnegie Mellon University, Pittsburgh, PA; and Certification 
Services Inc., Eastsound, WA.  The funding was provided by the Federal Aviation 
Administration. 
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1.  INTRODUCTION. 

The goal of this Handbook was to document objective evaluation criteria for data networks to be 
used in aviation products.  Of particular interest are digital electronics applications that are safety 
critical.  The evaluation of databus and networking technology is not a simple matter.  It requires 
a detailed review and analysis of the lowest-level implementation characteristics of the selected 
technology together with the ability to map significant behaviors and failures to their 
architectural relevance.  Avionics data networks are becoming more complex.  They are evolving 
from half-duplex links Aeronautical Radio, Incorporated (ARINC®) 429 to full-duplex buses 
with multiple transmitters.  Single master buses (ARINC 429, Military Standard (MIL-STD) 
1553) are becoming networks with multiple masters or peer-based networks where effectively all 
nodes are masters (ARINC 664).  These data networks are increasing their complexity by 
offering more features than in the past, for example, multiple classes of service.  In the drive to 
reduce cost and weight, more integrated networks are shouldering a larger responsibility for 
correct system operation and avionics system fault containment. 
 
For the purposes of this Handbook, the term “evaluation criteria” means the standards on which a 
judgment can be made regarding the suitability of a data network for use in digital electronics 
systems, given the characteristics or features of the data network that may have an impact on 
system safety.  One cannot definitively say that a particular characteristic or feature would have a 
safety impact, because the architecture in which the network is used may be insensitive to (e.g., 
may not need) the particular characteristic or feature that would be a problem for other 
architectures.  Thus, this Handbook will describe all the evaluation criteria that need to be 
considered, regardless of any particular architecture.  The system designer and evaluators then 
must determine whether a particular evaluation criterion is applicable to the data network being 
evaluated and the system being designed. 
 
This Handbook is not intended to provide a “go/no-go” checklist for justifying any particular 
data network technology since such a decision is very dependent on how a particular technology 
is used within an application.  Therefore, if the evaluation of a network’s suitability for a 
particular avionics system is unsure or unsatisfactory, the system designer has three options (only 
the first of which could be considered a go/no-go type of decision): 
  
• Select a different data network 
• Alter the data network design or implementation to overcome shortcomings 
• Change the system design to accommodate the shortcoming(s) 
 
Instead of a simple checklist, this Handbook provides a set of criteria with ancillary questions 
that form a framework for a data network technology, e.g., examination of conscience, that can 
be used to bridge the gaps between a data network technology’s behaviors and the system-safety 
assumptions that underpin the top-level safety case.  This is in contrast to a simplistic go/no-go 
judgment of the data network technology evaluated outside of any context of a digital electronics 
architecture in which it may be used. 
 
1.1  ORGANIZATION. 

Section 1 gives an introduction that provides a rationale for creating this Handbook.  
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Section 2 describes some aspects of the environment surrounding the evaluation of a data 
network. 
 
Sections 3 through 9 of this Handbook present a discussion of data network technology attributes 
that must be considered when evaluating the technology within aviation digital electronics 
systems.  This information is organized in relation to the hierarchies of communication stack 
models (e.g., the International Standards Organization (ISO) Open Systems Interconnect (OSI) 
model) for evaluation criteria that fit well with these models (sections 3 through 6) and by 
themes of special interest that require attention in the system design and deployment (sections 7 
through 9).   
 
Organizing the criteria along a communication stack model should make them easier to find and 
to correlate against communication network description documents, which are often organized in 
this way.  However, a pure communication stack model approach misses essential attributes of 
data network design.  Therefore, it is these areas of special interest (sections 7 through 9) that are 
most likely to be missed.  
 
Sections 3 through 9 include criteria paragraphs that are numbered sequentially according to 
their relation to the protocol stack hierarchy.  These paragraphs are inserted at the end of sections 
where the introduction of the criteria is appropriate.  Each criterion is formatted in bold font 
beginning with a criterion number followed by a short title, and the main criterion question or 
statement.  An optional paragraph of ancillary questions may immediately follow a criteria 
paragraph.  These questions are intended to help the reader evaluate the criterion by calling 
attention to various aspects of the network design.  
 
Note that criterion 2 is an exception to the standard for numbering criteria paragraphs 
sequentially.  While the criterion 2 is numbered appropriately for its relationship to the protocol 
stack hierarchy, for the purpose of this document, it is placed where it will be best understood 
(section 4.2) after line-level encoding, has been explained. 
 
Section 10 suggests an evaluation process using this Handbook. 
 
Section 11 provides a summary. 
 
Section 12 lists the references. 
 
Section 13 provides a list of the technical terms used throughout this Handbook. 
 
Appendix A provides additional information on data network technology and its issues. 
 
1.2  BACKGROUND. 

From a list of data network technology behaviors and beginning with the Certification 
Authorities Software Team (CAST-16) position paper, “Databus Evaluation Criteria” [1]; 
“Handbook for Ethernet-Based Aviation Databuses:  Certification and Design Considerations” 
[2]; and Advisory Circular (AC) 20-156, “Aviation Databus Assurance” [3] as departure points, 
an examination was made of how communications primitives and services can be leveraged at 
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the application level, and what impacts the behaviors may introduce with respect to certification.  
The “Data Network Evaluation Criteria Report” [4] also serves as a source for this Handbook. 
 
1.2.1  Data Network Evaluation Relative to a System Safety Process. 

The sheer variety of network and databus technology makes it difficult to characterize generic 
attributes that can be used for a set of all-encompassing evaluation criteria.  The details of the 
implementation of these networks determine their characteristics; they may be serial, parallel, 
synchronous, asynchronous, external, internal, intersystem or intrasystem wired, or wireless, etc.  
In addition, the potential failure behavior of the databus or network technology may be mitigated 
at the system architecture level, for example, by employing multiple independent data paths, 
design dissimilarity, or enhanced end-to-end integrity mechanisms above the core network 
behavior.  For these reasons, a bottom-up go/no-go checklist is very difficult to elicit at the 
network level.  Instead, a holistic view of the entire system is required to ensure that the use of 
the network technology is sufficient to meet the system-level functional responsibility and safety 
assumptions.  Therefore, databus and network technology have traditionally been evaluated on a 
case-by-case basis against federal aviation regulation Title 14 Code of Federal Regulations 
(14 CFR) (Aeronautics and Space, Airworthiness Standards) XX.1309 (the safety-related 
regulations) and 14 CFR XX.1301 (the intended function-related regulations) with a detailed 
review of the implementation mechanisms.  Pertinent regulations related to this research, and 
adopted and enforced by the Federal Aviation Administration (FAA) are contained in 14 CFR 
Chapter I Parts 1-199, FAA, Department of Transportation) Part XX (identified below), Subpart 
F (Equipment), Section XX.1301 (Function and Installation) and Section XX.1309 (Equipment, 
systems, and installations), and are identified as follows: 
 
• Part 23—Small Airplanes (Normal, Utility, Acrobatic, and Commuter Category 

Airplanes) 
 

• Part 25—Transport Category Airplanes 
 
• Part 27—Small Helicopters (Normal Category Rotorcraft) 
 
• Part 29—Large Helicopters (Transport Category Rotorcraft) 
 
• Part 33—Aircraft Engines 
 
In addition, 14 CFR 33.28 (Aircraft Engines, Electrical and Electronic Engine Control Systems) 
also applies.  This process is initially top-down, focusing on functions at the aircraft level that are 
enumerated in a function list. 
 
The hazards associated with the functional failure conditions are determined for each function at 
the aircraft level.  Note that at the initial stages of the process, designers and evaluators may not 
know how these functions will be allocated to subsystems.  While it can be the common cause 
for failures in multiple functions, the bus or network has not traditionally been viewed as an 
airplane-level function, rather, it is a tier design choice for how the functions are provided, so at 
this point, there is no impact.  One or more candidate system architectures for aircraft-level 
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functions are proposed.  The system could be a single processing module (analog or digital) with 
a number of inputs or outputs fed directly to the box, or a single box for each function (analog or 
digital), or any of a number of alternative architectures.  This architecture then forms the basis 
for an aircraft-level fault tree that demonstrates how failure conditions will flow through the 
architecture. 
 
At this stage, it is not uncommon to start looking at common cause analysis (CCA).  CCA 
consists of three components:  (1) particular risk analysis (e.g., lightning), (2) common-mode 
analysis (e.g., all boxes receive cooling from a single source or data from a shared network), and 
(3) zonal analysis (e.g., a fire in the wheel well damages wires that pass through the area but are 
not related to any equipment in the wheel well), at the architecture level (for example, consider 
the implications of the two mentioned architectures).  As the architecture is refined, an airplane-
level network may be derived; this will need to be considered as part of the system fault tree 
analysis (FTA).  This process continues iteratively until a detailed component (i.e., line 
replaceable unit) level design emerges.  This iterative top-down process is captured by a 
preliminary system safety analysis (PSSA), system and subsystem fault trees, and revisitation of 
the common cause and zonal analysis as appropriate.  The lower levels of the fault tree will 
contain a number of different faults that can be traced to aircraft-level failure conditions.  As the 
architecture is continuously refined, the use of databuses and network technology can appear at 
any level and feed into the continuously evolving PSSA.  When a preliminary complete design 
emerges, then a bottom-up approach, called a failure modes and effects analysis (FMEA) or a 
failure modes, effects, and criticality analysis (FMECA), is instituted on the actual design 
looking at specific failures of components or group of components and their contribution to the 
aircraft hazards.  A failure condition would be phrased as “loss of all braking” due to a hardware 
failure (unspecified), and analysis would be conducted to determine all possible failures that 
could cause the failure condition.  The FMEA would start with something like the failure of a 
power supply and trace it to a system effect.  Ideally, the top level of an FMEA or FMECA can 
be identified with the faults from one or more fault trees.  Databuses and network technology 
services may, therefore, appear in any level of the system design and are required to be analyzed 
from both the bottom-up (FMEA/FMECA) and top-down (FTA/PSSA, as well as the CCA).  
When the iterative process is finished, the safety results are documented in the system-safety 
analysis, including the summaries of the FMEA/FMECAs and the CCA.  
 
For this process to work effectively, it is paramount that the impact of the behavior and potential 
failure of the databus and network technology is adequately captured and represented in the 
FTA.  For low-complexity network and databus technology, the process above is relatively 
straightforward.  In such cases, the network services assumed by the upper levels of the system 
behavior are simple and restricted to point-to-point communication primitives only (for example, 
those concerned with the loss, delay, or corruption of information restricted to a few nodes).  
However, as silicon integration increases (enabled by continually decreasing process 
geometries), the failure modes of integrated devices are getting considerably more difficult to 
bound.  Hence, even in the case of simple communication services, great care is required to 
ensure that the failure mechanisms and assumptions are suitably captured.  In addition, as 
networking technology has advanced, a number of additional services have been implemented at 
the network level (for example, acknowledgement, message agreement, global time 
synchronization, system mode change distribution, fault diagnosis, power distribution, etc.).  The 
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system-level impact of such services may be significant, and in many cases, the databus or 
network may form the intelligence backbone of the system or entire aircraft.  In these cases, a 
more detailed analysis of network behavior and system logic and assumptions is required.  For 
example, if message agreement or interactive consistency is leveraged by applications operating 
above the network infrastructure to implement active replication strategies (for example, replica 
determinism for triple-modular replication), the justification of the application-level behavior 
needs to address implications of network failures or transient upsets that may affect the coverage 
of such strategies in the event of a fault or external system upset. 
 
1.2.2  The CAST-16 Position Paper. 

The CAST-16 position paper, “Databus Evaluation Criteria,” [1] was published in February 2003 
with the stated purpose of documenting “criteria that should be considered by databus 
manufacturers, aircraft applicants, and certification authorities when developing, selecting, 
integrating, or approving a databus technology in the context of an aircraft project”.1  A CAST 
position paper expresses regulatory concern about technical and safety issues.  These concerns 
have been captured in the August 2006 publication of AC 20-156, Aviation Databus Assurance, 
which is described in section 1.2.4. 
 
1.2.3  Ethernet Handbook. 

In September 2004, the “Handbook for Ethernet-Based Aviation Databuses:  Certification and 
Design Considerations” [2] was published.  Its purpose was “to provide the network designer and 
developer with some guidelines to develop an Ethernet-based databus framework deployable in 
certifiable avionics systems.” 
 
This Ethernet Handbook builds on the CAST-16 position paper and adds guidelines specific for 
Ethernet-based data networks.  These guidelines were not developed solely for the Institute of 
Electrical and Electronic Engineers (IEEE) 802.3 standards, but also for aviation digital 
electronics-specific Ethernet derivatives. 
 
The IEEE 802.3 standards constitute a wide variety of data networks.  Speeds range from the 
1990 version that operated at a maximum of ten megabits per second to ten gigabits per second 
at the time of this Handbook’s publication.  It can be expected that even higher-speed versions 
will be created in the future.  The physical line symbol coding includes Manchester, 4b/5b, 
8b/10b, and several lesser used encoding schemes.  The topologies include buses and stars.  
There are a number of Ethernet variants, with the simplest using a total of two wires, and the 
most complex using eight wires per node.  Fiber-optic versions of Ethernet use two fibers for 
each node.  The media access control (MAC) mechanisms include Carrier Sense Multiple 
Access/Collision Detect (CSMA/CD), which is primarily used for buses and in switch-based 
mechanisms used for stars. 
                                                 
1  It is important to note that all CAST papers include the following disclaimer:  “This position paper has been 

coordinated among the software specialists of certification authorities from the United States, Europe, and 
Canada.  However, it does not constitute official policy or guidance from any of the authorities.  This document is 
provided for educational and informational purposes only and should be discussed with the appropriate 
certification authority when considering for actual projects.” 
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Adding to this wide variation of IEEE standard, Ethernets are Ethernet derivatives designed 
specifically for aviation digital electronics.  These include ARINC 646 Ethernet Local Area 
Network, ARINC 664 Aircraft Data Network, and the Avionics Standard Communications Bus, 
Version D.  These derivatives range from simple adaptations to the aviation digital electronics 
rugged environment to whole-scale usurping of the MAC protocols with protocols that provide 
varying degrees of increased media access determinism.  (See section 2.3.1 for a detailed 
discussion of determinism.) 
 
While the Ethernet Handbook covers a wide variety of Ethernet derivatives with guidelines that 
are more detailed than the CAST-16 position paper, it covers only a small fraction of the possible 
data networks that can be used for aviation digital electronics. 
 
1.2.4  Advisory Circular 20-156 Aviation Databus Assurance. 

AC 20-156 was published in August 2006, which follows very closely to the CAST-16 position 
paper.  Thus, it does not include specific and detailed criteria.  AC 20-156 describes a means to 
gain FAA approval of an aviation data network; wherein the means show that the data network 
design performs its intended function and satisfies the applicable airworthiness requirements 
when installed on an aircraft or aircraft engine.  This AC is not mandatory and does not 
constitute a regulation.  It describes an acceptable means, but is not the only means, by which a 
data network can be successfully included in a certified aircraft or aircraft engine. 
 
AC 20-156 calls out eight criteria categories based largely on those created by the CAST-16 
paper.  Within each category, specific criteria were enumerated.  The eight categories and 
number of criteria in each are:  
 
• Safety—7 criteria 
• Data Integrity—10 criteria 
• Databus Performance—12 criteria 
• Software and Hardware Assurance—3 criteria 
• Electromagnetic Compatibility—4 criteria 
• Verification and Validation—10 criteria 
• Configuration Management—7 criteria 
• Security Assurance—2 criteria 
 
1.3  PURPOSE. 

This Handbook is intended to facilitate the overall certification process for aircraft or aircraft 
engines that employ digital electronics systems containing data networks.  It builds on the 
previous work described above, by providing specific and detailed criteria for evaluating a wide 
range of data network technologies and components with respect to the possible adverse impacts 
on certification due to their use. 
 
The characteristics of data networks are so varied that it is impossible to create a single set of 
detailed and specific criteria in which all the criteria are applicable to all data network 
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technologies and components in all possible applications.  Because of this extremely wide 
variation, creating a concise set of specific and detailed criteria for data networks is much more 
difficult than creating a similar set of criteria for microprocessors.  The combination of 
extremely wide variation and detail leads to a set of criteria that can be overwhelming.   
 
However, for safety-critical systems, it is usually true that the accuracy of the details is essential.  
Therefore, this Handbook tries to include as much breadth and depth of criteria as possible.  To 
partially mitigate the problem of having an overwhelming set of criteria, this Handbook presents 
the criteria on two levels.  The higher level is presented in the body of the Handbook with much 
more detailed discussions included in appendix A.  Someone still needs to determine what 
criteria are applicable to what data network, a task which is too varied to be prescribed in the 
confines of this Handbook. 
 
Certifiability of a data network means that, if the data network is deployed in aviation digital 
electronics and complies with all applicable regulations and guidance, one cannot introduce any 
unacceptable risk to the aircraft as determined by the system safety analysis.  Note that this is 
different from the notion of the product adding quality to the system.  An aviation digital 
electronics component, such as the data network, may add quality.  This Handbook does not deal 
with added quality; rather, it focuses on identifying and preventing aspects of the product that 
detract from the factors impacting certifiability.  Particular attention is given to issues that are 
generally overlooked or underappreciated in the industry. 
 
This Handbook presents and describes criteria that should be considered by data network 
manufacturers, aircraft applicants, and certification authorities when developing, selecting, 
integrating, or approving a data network technology or components in the context of an aircraft 
project. 
 
1.4  SCOPE. 

1.4.1  System Network Role. 

The evaluation criteria described in this Handbook were selected to help in the creation or 
selection of safety-critical aviation digital electronics data networks.  The data networks that are 
safety critical tend to be system data networks (i.e., data networks that connect together a number 
of subsystems) or data networks that connect together the redundant elements of a safety-critical 
subsystem.  These data networks generally have been “box-to-box” rather than backplane 
memory or peripheral extension buses, such as the peripheral component interconnect.  The latter 
are used to connect together cards within a box that implement a single function or form a single 
fault containment zone within the redundancy set (i.e., one replicant). 
 
A few networks, such as SAFEbus, are actually system buses implemented in a backplane.  The 
role of the network is what is important, not where or how it is implemented.  Backplane system 
networks can be differentiated from simple extension backplanes by the fact that they have a 
higher level of safety criticality or that they may connect together multiple subsystems rather 
than just the components of one subsystem. 
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While development of these evaluation criteria were not intended to cover networks within a 
single-function box, subsystem, or those that connect nodes together within a single fault 
containment zone, these types of networks could have an impact on safety.  For example, a 
generic failure in a backplane bus used in each copy of a redundant, safety-critical system could 
cause that system to fail. 
 
If multiple cards and functions are connected by a single backplane network, then the common-
mode influence and failure of the backplane network needs to be considered when the 
availability and integrity of these functions are justified.  This is especially true if functions 
connected by data network infrastructure (backplane or box-to-box) are assumed to fail 
independently.  In such cases, some of the evaluation criteria described by this Handbook may be 
equally applied to these internal networks.  However, the scope of these criteria is not intended to 
entirely cover the case of internal subsystem networks or onboard networks, where all network 
connections lie within a common fault zone. 
 
1.4.2  Protocol Stack. 

Data network protocols are often designed to comprise multiple layers of functionality organized 
within a stack.  Each layer is sufficiently independent of the layer above and below it so that the 
layer can be reused in other stacks.  Generic models for the stacks have been developed.  The 
most widely known model is the seven-layer ISO OSI model, as shown in table 1. 
 

Table 1.  Seven-Layer ISO OSI Model 

No. Name Description 
Layer 7 Application This is the layer at which communication partners are identified, quality of 

service is identified, user authentication and privacy are considered, and any 
constraints on data syntax are identified.  This layer is not the application 
itself, although some applications may perform application layer functions. 

Layer 6 Presentation This is a layer, usually part of an operating system that converts incoming 
and outgoing data from one presentation format to another. 

Layer 5 Session This layer sets up, coordinates, and terminates conversations, exchanges, 
and dialogs between the applications at each end.  It deals with session and 
connection coordination, authentication, and end-to-end encryption. 

Layer 4 Transport This layer manages the end-to-end control (for example, determining 
whether all packets have arrived) and error checking.  It ensures complete 
data transfer. 

Layer 3 Network This layer handles the routing of the data (sending it to the right destination 
on outgoing transmissions and receiving incoming transmissions at the 
packet level).  This layer routes and forwards the transmissions. 

Layer 2 Data link This layer provides synchronization for the physical level.  It furnishes 
transmission protocol knowledge and management. 

Layer 1 Physical This layer conveys the bit stream through the network at the media and 
mechanical level.  It provides the hardware the means to send and receive 
data on a carrier. 
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The widely used Department of Defense Advanced Research Projects Agency Network TCP/IP 
suite does not have an official stack description document.  But it is known to have four or five 
layers, with the bottom three layers generally corresponding to the bottom three layers of the OSI 
stack. 
 
For the embedded real-time systems used in the vast majority of safety-critical aviation digital 
electronics, models with a reduced number of layers have been used to provide lower 
complexity, latency, and overhead. 
 
The lower layers of the stacks deal with the communication media and the hardware connected 
to it.  The higher layers of the stacks represent functionality that is progressively abstracted 
further away from the hardware.  When developing selection criteria for data networks that will 
be used in safety-critical systems, a question naturally arises as to which layers need to be 
evaluated.  This question is equivalent to asking:  What layers can affect the dependability of the 
overall communication system? This will depend on where the designers have implemented 
mitigation means, the type of failures that can be realized at a given layer, and the effect on the 
system safety analysis.  In general, the highest layer, where communication dependability is 
considered, is usually identified as the transport (or equivalent) layer.  Some networks handle 
dependability issues partly or entirely within layers below the transport layer, while others deal 
with them at the application layer that interfaces with the transport layer.  In many cases, 
multiple layers will be needed to provide an acceptable dependability argument.  Communication 
network hardware typically implements stack layers below the transport layer, and many of the 
networks proposed for aviation digital electronics systems only define these lower layers.  
However, some of these hardware devices also provide special application services that support 
system fault tolerance. 
 
In general, the scope of the evaluation criteria described in this Handbook extends from the 
lowest stack layer, up through the dependability features of the transport layer or to the highest 
layer that is part of the network standard (or definition, if the network is not a standard), if that 
network does not include functionality up to the dependability features of the transport layer.  
Safety-critical embedded real-time systems often require services not included in generic 
protocol stack models, such as a time synchronization service.  These special services will be 
included within the scope of these criteria. 
 
1.4.3  Developmental Time Horizon. 

The evaluation criteria were chosen so future data network communication technologies, as well 
as current technologies, can be evaluated. 
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2.  DATA NETWORK CERTIFICATION ISSUES IN CONTEXT. 

2.1  SUPPORTED APPLICATION REQUIREMENTS. 

When evaluating a data network for a particular aviation digital electronics application, one must 
begin by establishing the requirements for that data network.  The requirements placed on a data 
network are highly dependent on the aviation digital electronics architecture that will employ the 
network. 
 
To develop requirements for an avionics data network, the results from the following tasks 
should be captured: 
 
• Establish the most critical system failure condition for each data on the network.  

Determine the failure states of the data that created that condition.  Establish the 
associated probability and assurance requirements. 

• Define the network functions that are required by the system’s applications. 

• For each data element on the network, examine network function failure on the following 
classes of failure: 

- Inability to provide data 
 
- Failure to meet specified criteria (e.g., timing, lack of corruption, latency, 

sequence, identification, etc.) 
 
• Establish the fault containment and fault tolerance requirements from the system safety 

analysis for data hosted by the network.  This may require high-integrity message 
integrity checks or redundant paths.   

• Determine whether the system requires the data network to coordinate action or 
consensus between different networked components (e.g., for synchronization, fault 
diagnosis, or voting). 

Such a top-down examination of network use is needed to establish a context for the detailed 
analysis of the network lower-level properties and behaviors presented in the following sections.  
Therefore, without this system context, the justification of databus and network suitability or 
unsuitability is impossible to determine. 
 
2.2  MULTIPLE-REQUIREMENT ENGINEERING TRADES. 

As with any complex technology, the selection (or creation) of data network technologies 
requires the evaluation of how well a particular technology alternative meets a large number of 
requirements, many of which are contradictory.  What is more important:  size, weight, power, 
cost, bandwidth, latency, availability, integrity,...?  Technology trades must consider all 
requirements simultaneously.  Therefore, the relative importance or weighting of these 
requirements must be established.  After the relative importance rankings of the requirements 
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have been established, ratings of how well a particular technology alternative meets each 
requirement must be created.  Then, the multiple requirement trade-off can be done. 
 
These trades are most often done in a linear compensatory manner.  That is, for each alternative, 
its goodness value for a particular requirement is multiplied by the ranking or weight of that 
requirement; then all of these products are summed to get the overall value of that alternative.  
The best alternative is the one with the highest sum.  This process can be represented by the 
formula 
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where: 
 
Va = Value of the a th technology alternative 
wr  = Weight or importance of the r th requirement 
var = Value of the a th alternative with respect to the r th requirement 
 
Some requirements may have a minimum acceptable level.  That is, any alternative that fails to 
achieve this minimum level will be rejected, regardless of how well it does against other 
requirements.  Above the minimums, how well an alternative meets one requirement can be 
traded for another requirement.  However, even the minimum acceptable levels may be 
adjustable, because a data network is not solely responsible for any particular system 
characteristic.  For example, a data network by itself cannot guarantee system safety; it is only 
one component of the system (although it may be the most important component).  One can 
trade-off the characteristics required for safety, e.g., data integrity, between the data network and 
any architectural mitigation for that characteristic. 
 
The criteria for accepting data network technologies and component implementations with 
respect to a certification process constitute only a subset of the requirements typically considered 
when doing a data network trade study.  This can lead to a multidimensional trade-off.  For 
example, the inclusion of a certain level of data integrity in a network may force other 
characteristics to fail their requirements (e.g., excessive size, weight, and power).  However, 
moving the responsibility for the integrity to some other part of the system design may not incur 
the same level of problem.   
 
2.3  SYSTEM ARCHITECTURE AND DESIGN. 

It is not possible to evaluate data network technologies and components without regard for the 
specific architecture and system design within which they will operate.  Note that architecture as 
used in this context is not synonymous with high-level system design.  Here, architecture refers 
to the set of rules for design, i.e., meta design or design for the design.  Architectural rules can 
apply in any level in a design hierarchy.  For example, an architectural rule may be that triple-
modular redundancy will be used for fault tolerance.  This rule could be applied at a high level, 
where three boxes of electronics are voted on, or it could apply at a low level, where three 
memory chips are voted on. 
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A particular system design may not need certain features of a data network.  Shortcomings in a 
particular data network may be mitigated by architecture.  Architectural mitigation could make 
almost any data network technology work.  However, this extreme mitigation may require the 
use of a large number of replicated networks used in a manner completely outside the original 
intent of the network.  For example, each node in a network could be connected to all other 
nodes in the system via one-way point-to-point Ethernet links.  This would eliminate the 
nondeterminism of Ethernet because each link would have only a single transmitter.  However, 
this would be very expensive; for N nodes it would require N2 Ethernets.  The topology would 
not be a standard Ethernet bus or star; it would be a fully connected mesh.   
 
Architectural mitigation schemes should be carefully analyzed.  This is especially true when a 
number of local architectural mitigations may have been employed but not analyzed in terms of 
the overall system safety requirements.  The coverage of one or multiple layers of architectural 
mitigation should be analyzed for the total effect of their coverage at the system level.  Credit 
should not be given for multiple layers of dubious mitigations. 
 
2.3.1  Determinism. 

Determinism is a widely discussed characteristic of digital electronic systems and, in particular, 
data networks.  Very often these discussions narrow the definition of determinism to be 
applicable only to MAC (see section 4.1).  While MAC is an important area to demonstrate 
determinism, it is not the only area.  Determinism has a much broader applicability.  In general, 
determinism means that the behavior of a system can be determined a priori.  That is, given 
knowledge about the system’s current state and a sequence of events that will effect the system, 
one can predict how the system will behave.  If one cannot predict the behavior of a system in 
this way, one cannot claim that it has determinism as a property.  In most cases within civil 
aviation, the property of determinism is needed to contribute to claims in the system safety 
analysis.  Thus, determinism is an essential characteristic of a system that is used in safety-
critical applications. 
 
An obvious question is:  How accurately must the behavior be known?  Most safety-critical 
aviation applications are real-time systems.  That is, for the system’s behavior to be correct, its 
outputs must have correct values with correct timing.  There are two types of timing 
determinism, ordinal and cardinal.  Ordinal-timing determinism means that the order of events 
can be determined a priori.  Cardinal-timing determinism means that the time between events can 
be determined a priori.  The degree of precision required for values and timing is specific to each 
application. 
 
Since all avionics data networks are digital, the behavior of which can be modeled as a finite 
state machine, value determinism can be established in the absence of failure, including normal 
failures such as those caused by intersymbol interference (ISI), metastability, or single-event 
upset.  An evaluation of a data network must first establish the requirements for ordinal-time 
determinism and the required degree of cardinal-time determinism.  Then, the evaluation must 
consider if the data network can be proven to meet the required time determinism.  Again, this 
time determinism applies to more than just MAC.  For example, the effect of nondeterminism in 
the arbitration for local memory between a network interface and the processor it supports may 
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make it difficult to prove the correct behavior of the processor or the network interface under all 
possible timing conditions. 
 
2.3.2  Robust Partitioning. 

The concept of robust partitioning is such that a function that is robustly partitioned from other 
functions cannot be adversely affected by those other functions.  Partitioning analysis provides 
assurance that one partitioned function’s behavior does not unacceptably affect the behavior of 
another.  With a common data network, there are many opportunities for partition violations to 
occur.  Every data network used in a partitioned environment should be rigorously analyzed with 
regards to maintaining partitioning integrity.  Because partitioning is a system property, it is 
beyond the scope of this report to comprehensively detail the issues associated with it.  However, 
there are specific areas where the impact of some network feature is elaborated to illustrate the 
potential effect on partitioning. 
 
3.  PHYSICAL LAYER. 

The lowest level (layer 1) of most data communication reference model stacks is the physical 
layer (see section 1.4.2).  The function of the physical layer is to send and receive 
communication symbols via network media.  Layer 1 defines mechanical characteristics (such as 
connector configuration) of the media and characteristics of the signal.  The physical layer is 
responsible for transferring individual bits through the communication media. 
 
Because the physical layer is the foundation that all other protocol layers depend on, any failure 
in this layer will adversely affect all the layers above it unless adequately mitigated.  An obvious 
question that must be answered is, What is the probability of failure in the physical layer?  
Failures at the physical layer can be grouped into two main sources, bit errors and component 
failures.  The probability of faults in both of these sources depends on the environment. 
 
3.1  ENVIRONMENT. 

Data network components must meet the requirements of an aviation digital electronics 
environment, as described in RTCA DO-160.  This means that the data network components not 
only must survive this environment, but also must simultaneously satisfy all requirements placed 
on the data network while residing in this environment. 
 
Criterion 1 Environment:  Does the network specification(s) and available components 
allow for the creation of a network that meets the applicable aerospace environment 
requirements of the most recent version of DO-160 or other imposed environmental 
requirements? 
 
Was the components’ environment evaluations done in a configuration and with a behavior that 
will be seen in the fielded system (e.g., the length and type of media segments, the size and rates 
of various types of messages)? 
 

 13



 

3.2  PROBABILITY OF BIT ERRORS. 

Physical layer specifications often state a bit error rate (BER), which gives the probability of 
error for each bit.  However, these BER specifications are usually created from unknown or 
irrelevant conditions.  For a BER specification to be accurate for a particular implementation, the 
tests and analyses used to establish the BER must use the same modulation and encoding 
schemes, noise amplitudes, driver and receiver devices, communication path impedances, and 
clock quality as to be expected in the worst-case implementation.  The BER numbers claimed by 
the manufacturers of data network components are almost always generated by BER test 
equipment that use a linear feedback shift register-generated pseudo-random bit sequence that 
bears no resemblance to the network’s actual traffic.  Either these BER numbers must be 
disregarded and tests with actual traffic done or some demonstrable arguments must be made for 
the BER pattern being a worst-case bound on the actual traffic behavior. 
 
The designs of data network error handling and data network reliability analyses are often based 
on the misconception that bits traversing a data network are independent of other bits on the 
same network medium.  However, designers of data network physical layers are familiar with a 
phenomenon called ISI that can cause some bits to affect other bits on a data network.  A bit can 
be adversely affected by other bits that are relatively near (due to level shifting) or by bits that 
are relatively far away (due to distant reflections).  With the phenomena of ISI and its causes 
now well established, it is hard to argue that bits fail independently. 
 
To summarize, the probability of bit error criterion is that the probability of bit errors has been 
calculated correctly; the tests providing the inputs to these calculations have been done, 
accounting for the issues described in this section; the calculated error rate was slow enough to 
meet system requirements; and justification for the probability calculation was available for 
regulatory review. 
 
Note that there is a close relationship between the probability of bit errors described here and 
Criterion 2 in section 4.2, Line-Level Encoding, and Criterion 8 in section 4.4.3, Interactions 
Between Line-Level Encoding and Error Detection. 
 
Criterion 3 Probability of Bit Errors:  Was the BER (or symbol) determined under the 
worst-case conditions expected to be encountered in the application environment? 
 
Has an upper bound on anticipated BER (or symbol) been established by testing, using the worst-
case-anticipated signal path characteristics (e.g., impedances and impedance discontinuities), 
environment (e.g., DO-160), local clock and clock recovery characteristics (e.g., drift and jitter), 
sampling margin (worst-case eye pattern), encoding schemes, and data patterns?  If the network 
uses signal regeneration without elasticity buffers, the worst-case-accumulated jitter must be 
included in this determination.  If the data network exploits the mixing of dominant and recessive 
signals on its media to perform some logic function, have the receivers been designed to tolerate 
“Wired-Or” glitches or have suitable design rules been created that limit the glitch duration to 
one that can be tolerated? 
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3.3  PROBABILITY OF ELECTRICAL COMPONENT FAILURES. 

While there are statistics available for determining the failure rate of electronic components, 
there are insufficient statistics to address the probability of various types of behavior that can be 
caused by these failures.  Too often, analyses restricted to credible failures have been too narrow.  
Failure modes that have been classified as incredible have actually occurred and must therefore 
be considered when doing a safety probability analysis (e.g., fault tree, FMEA, etc.).  Any such 
analysis must not dismiss fault behaviors as incredible without a supportable basis for doing so.  
In particular, integrated circuits must be considered capable of producing any arbitrary output, 
within the limits of the power supplied to it.  And more specifically to data network nodes, the 
“babble” failure mode cannot be assumed to produce only incomprehensible noise.  This noise 
could be interpreted as a legitimate transmission.  Of course, one would expect that the more 
complex a device is, the more complex its faulty behavior can be.  However, there is no way of 
quantifying this expectation. 
 
Criterion 4 Probability of Electrical Component Failures:  Do the data network’s electronic 
components have established hardware failure rates (permanent and transient) and 
characteristics so that avionics designers can do the required FMEA and fault tree 
calculations.  Is the protocol defined well enough that one can determine the effects on the 
protocol by any and all component faulty behaviors? 
 
Are signal margins robust enough to handle aging effects on connectors, media, and drivers; i.e., 
Could aging cause a network to not meet the aerospace environment requirements of DO-160 or 
other imposed environmental requirements at some point in the avionics system’s lifetime?  Has 
a valid synchronizer metastability error rate test been done for every synchronizer design in the 
data network’s electronics and has an acceptable ceiling on the error rate been established? 
 
3.4  ELECTRICAL ISOLATION PROPERTIES. 

Most real-world, total system failures are due to a combination of factors.  Very often one of 
these factors is the lack of fault containment.  One important aspect of fault containment is the 
electrical isolation between redundancies so electrical failures, such as power supply 
overvoltage, are not propagated across defined fault set boundaries. 
 
Many fault-tolerant architectures include the concept of receive-only nodes.  The required 
characteristic of these nodes is that they can receive information that is transferred across the 
media, but are prevented from having any effect on any shared media.  In these architectures, it is 
essential to provide assurances that these receive-only nodes truly cannot affect the data network. 
 
The electrical isolation criterion is that the network must not provide a conduit for electrical fault 
propagation through fault containment zone boundaries.  In addition, network connections, 
which by architecture design must be passive, such as receive only connections, must be shown 
to have the required passive properties even in the event of failures. 
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Criterion 5 Electrical Isolation Properties:  Is there sufficient protection against electrical 
fault propagation? 
 
Does the data network’s physical layer allow for electrical (galvanic) isolation among 
redundancies?  If a fault in a node causes the highest voltage in that node to appear on one side 
of this isolation barrier, can the isolation prevent damage on the other side of the barrier?  If an 
application of the network requires receive-only connections to the media to prevent fault 
propagation, can it be shown (with sufficient assurance) that these receive-only connections 
prevent fault propagation to the media? 
 
3.5  PHYSICAL COMPOSABILITY. 

As the size of a network grows in the number of nodes, links, taps/splices/wyes, link distances, 
etc., performance or signal quality can suffer.  A well-designed data network anticipates the 
effects of growth and can work correctly with any size network up to explicitly stated limits.  
Design rule effects and restrictions for the expansion of the data network must be included in the 
criteria. 
 
Criterion 6 Logical and Physical Composability:  Does the data network have 
characteristics or design rules that will guarantee that it will reliably work with any size 
network, up to an explicitly given maximum size? 
 
For a data network that has the freedom to assume a number of different topologies or topology 
variations, does the network have characteristics or design rules that will guarantee that it will 
reliably work with all possible variations that are not precluded by its design rules (including 
sufficient design margin)?  What is the certification affect of changing the size of the network 
(e.g., number of members in a clock sync algorithm)?  Do these design rules and characteristics 
include the effects of hubs, repeaters, or other devices that extend network propagation delay or 
electrical loading?  For data networks in which bit rate is limited by network distance, are there 
design rules to ensure that a particular network distance supports a given bit rate under worst-
case conditions? 
 
4.  DATA LINK LAYER. 

The data link layer is the layer immediately above the physical layer in most data communication 
reference model stacks.  It provides the functions, procedures, and protocols needed to establish, 
maintain, and release data link connections between the nodes of a network.  A conceptual level 
of data processing or control logic in the hierarchical structure of a node is responsible for 
maintaining control of the data link.  The data link layer’s functions include bit injection into the 
transmitter and bit extraction at the receiver; address and control field interpretation; 
command/response generation, transmission, and interpretation; synchronization; error control; 
and flow control. 
 
The data link layer is divided into two sublayers:  the MAC and the logical link control (LLC).  
The MAC sublayer controls how a node on the network gains permission to transmit on it.  MAC 
protocols often try to provide prioritization or fairness in granting access to the media.  MAC 
protocols also try to maximize the use of the media and minimize the probability of starvation 
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(not granting access to requesters).  The LLC sublayer controls frame synchronization, flow 
control, and error checking.  Conceptually, the LLC sublayer sits on top of the MAC sublayer. 
 
4.1  THE MAC. 

The MAC sublayer is a particularly important part of a data network’s protocol when the 
network is used for real-time systems.  Simple problems in the MAC can cause significant loss 
of the services that the real-time system needs from the data network.  These problems include:  
no access (starvation), not enough access, or wrong time access.  One source of these problems is 
the design of the protocol coupled with access demands and timing of clients, including faulty 
clients that fail to follow the behaviors expected or required by the data network specification. 
 
Other problems can be introduced by failures (including permanent and transient failures) in the 
hardware that directly controls or accesses the network media.  These failures may be introduced 
by any of the sources described in section 3, Physical Layer.  The possible brittleness (lack of 
robustness) of the MAC protocol is of particular concern.  That is, does the MAC protocol 
amplify the effect of small failures and errors such that they become large problems?  For 
example, Does the MAC protocol allow transient failures and errors to have an effect that 
persists longer than current transmissions? 
 
Problems unique to each type of MAC, such as master and slave, bit-dominant arbitration, 
CSMA/CD, time division multiple access (TDMA), token passing, and minislotting, are 
discussed in appendix A. 
 
Many data networks used in dependable, real-time systems use the hardware from an existing 
data communication network that has an inadequate MAC and apply a substitute MAC on top of 
the existing hardware.  This effectively disables the existing MAC without removing its 
hardware.  Many such networks are based on IEEE 802.3 (Ethernet).  The system designer must 
consider whether the unused hardware can cause problems under unintended circumstances. 
 
Criterion 7 MAC:  The MAC sublayer protocol must provide appropriately small bounds 
on message delivery times regardless of likely faults. 
 
Can the behavior of one or more network clients increase latency and jitter beyond the desired 
bound for other network clients?  If collision is used as a protocol element, are there bounds on 
delays incurred?  Can misbehavior of one network client disrupt more than one or two other 
network clients?  Does the MAC sublayer protocol amplify small failures and errors into loss of 
MAC sublayer protocol services?  In particular, does the MAC sublayer protocol allow transient 
failures and errors to have an effect that persists longer than current transmissions?  Does the 
MAC sublayer protocol specify a single physical point of failure, such as a dedicated protocol 
master node?  Does the MAC sublayer protocol have a single logical point of failure, such as the 
current token holder crashing in a token-based protocol, duplicated tokens, or a “babbling” node 
asserting it has high-priority traffic to send?  Does the MAC sublayer protocol have a bounded 
worst-case bandwidth at maximum network loading?  If a mixed or hybrid MAC is used (e.g., 
master and slave polling on top of Ethernet hardware), are there conflicting properties within the 
portions of the hybrid MAC sublayer protocol that could cause vulnerabilities?  Does the MAC 
sublayer protocol affect message delivery ordering? 
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4.2  LINE-LEVEL ENCODING. 

Line-level encoding is the way that logical data is physically represented on a data network.  As 
discussed in section 3.2, bits on a network can affect each other via ISI.  The characteristics of a 
network’s line-level encoding can heavily influence ISI.  In addition to affecting the data 
network’s own signal quality, line-level encoding can also affect other equipment via radiated 
emissions.  It is important to determine whether the spectrum radiated from the line-level 
encoding has components in frequencies that can adversely affect other equipment. 
 
Criterion 2 Line-Level Encoding:  Was the electromagnetic compatibility testing (e.g., DO-
160 Sections 19-22) done with the actual data line encoding (e.g., Manchester, 8b/10b), 
worst-case network data, message sizes, bit rate, pulse widths, and message repetition 
rate(s)? 
 
4.3  MESSAGE FORMATING (FRAMING). 

A message (also known as the frame or packet) may contain control and addressing information, 
as well as error detection, for example, cyclic redundancy code (CRC) information or forward 
error correction information.  In evaluating the dependability of a message format, one must 
examine the consequences of any part of that format having an error, including the possibility 
that an error could cause the loss of many messages. 
 
Some information that is transmitted in a message in one protocol (where it is vulnerable to 
errors) may not be transmitted in another protocol.  For example, there are table-driven protocols 
in which all addressing, length information, etc., are held in a memory protected from errors 
rather than being transmitted on the network.  There also are protocols that use redundant signal 
lines for error detection and correction instead of adding check bits to the message.  Combining 
these two ideas, one could have a data network (such as SAFEbus) where messages have 
absolutely no overhead; every message bit is a data bit. 
 
Criterion 8 Message Formatting (Framing):  Message framing must ensure that only 
complete, properly synchronized messages are accepted at clients, and that improper 
synchronization is recovered from in bounded time. 
 
Are there distinctive preamble or postamble bit patterns, including break characters, used to 
delimit messages?  Is there sufficient hamming distance (HD) and bit-slip tolerance present to 
prevent an ordinary data pattern from being interpreted as a message preamble under expected 
error conditions?  Do receivers tolerate any preamble bit(s) being erroneous?  Do receivers 
tolerate any preamble bit(s) other than the one(s) that would make the preamble look like a start 
delimiter?  Is the HD between the start delimiter bit pattern and any shift of the preamble bit 
pattern always greater than one?  Is the data network’s framing structure brittle (i.e., do simple 
errors cause a node to lose more than one message per error)?  Are there parts of a message 
where an error could cause the loss of more than one message?  Are there two independent 
checks on whether expected and actual frame length match (e.g., a length field and an 
unambiguous end delimiter; distinctive start and end delimiters)?  If this is an implicit token 
protocol (reservation CSMA or minislot system) or time-sliced protocol (TDMA), is there 
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sufficient information in the message to validate that the time position of the message is 
interpreted correctly, avoiding incorrect interpretation of the message due to timing inaccuracies? 
 
4.4  ERROR DETECTION. 

Network criteria that have significant influence on the overall safety are the error detection 
capabilities of the link layer.  This section discusses error detection of the link layer.  Link layer 
errors can occur in the communication media, in its drivers and receivers, or in intermediate 
nodes (such as repeaters).  Section 5 addresses some error detection mechanisms that may reside 
in the equipment at the ends of the network or at intermediate stages within the network. 
 
4.4.1  Protocol Violation Error Detection. 

Many protocols can detect errors by checking for protocol rules or format violations.  The 
probabilities of detecting errors via protocol violation checking should be combined with 
message data error detection coverage to determine the probability of detecting erroneous 
messages. 
 
4.4.2  Parity and Frame Check Sequences. 

There are many different error detection mechanisms and encodings, such as CRC, Fletcher, 
Adler, AND, XOR, etc. with different characteristics; however, this document focuses only on 
the characteristics of a few representative mechanisms.  
 
CRCs are one of the most commonly used error detection schemes.  The metric most commonly 
used for determining the quality of CRC error detection is HD, i.e., the minimum number of 
independent bit flips that can result in an undetected error.  Given the HD and BER for the 
medium, the designer can compute the probability of an undetected error.  This probability 
should be sufficiently small for the reliability requirements of the data network.  However, this 
coverage assumes that the bit errors are independent, an assumption that is known not to be true 
with the existence of ISI.  With interbit dependencies, the calculation for error detection 
probability would have to be adjusted accordingly. 
 
4.4.3  Interactions Between Line-Level Encoding and Error Detection. 

In addition to the effects of ISI causing interbit dependencies on the medium, line encoding can 
cause further dependencies among the bits due to the encoding and decoding processes.  Typical 
line-encoding transformations include symbol encoding (e.g., Manchester, 4b/5b, 8b/10b) that 
produce symbols (each symbol consists of a block of bits), bit stuffing, and phase encoding.  For 
most of these commonly used line-encoding transformations, the corresponding decode 
processes can cause error expansion.  That is, even a fault-free decode process can create more 
errors on its output than it has on its input.  To accurately calculate the coverage of in-line, error 
detection mechanisms, this error expansion must be taken into account.  On the other hand, the 
line encoding itself often can detect errors on its own.  Because the interactions between the line-
encoding mechanisms and error detection mechanisms are generally ignored in coverage 
calculations, published error detection coverage values for most networks are incorrect and must 
be recalculated. 

 19



 

Criterion 9 Error Detection:  The Data Link Layer must provide sufficient guarantees of 
message delivery free of undetected errors, using error detection mechanisms with 
coverages that have been calculated correctly. 
 
Does the network meet the required integrity values (undetected error probabilities and HD) for 
the worst-case error pattern requirements (error bursts, maximum BER, and temporary 
blackouts)?  Does the network deliver valid messages within bounded latency with sufficient 
probability despite expected error rates?  Does the network meet availability requirements for the 
worst-case error probabilities and distributions?  Have the potential effects due to encoding of 
the data on the physical layer and its implications to the coverage of error detection been 
quantified?  For example, have corrupted bit-stuffing formats been accounted for in an error 
analysis?  Are messages vulnerable to corruption of length fields that cause receiving clients to 
use the incorrect frame location for frame check sequence (FCS) fields?  If it is a required 
service of the network, can receivers of data be certain of the sender’s identity, even in the 
presence of faults?  If messages use FCS hidden data (data that is included in the FCS calculation 
but not transmitted as part of the message), has there been an accounting for the loss of FCS 
coverage? 
 
5.  NETWORK LAYER, TRANSPORT LAYER, AND NETWORK MANAGEMENT. 

In the OSI model, the network layer provides switching and routing technologies, creating 
logical paths (known as virtual circuits) for transmitting data from node to node.  Routing and 
forwarding are functions of this layer, as well as addressing, inter-networking, error handling, 
congestion control, and packet sequencing.  Above the network layer, the transport layer 
provides transparent transfer of data between end systems, or hosts, and is responsible for end-to-
end error recovery and flow control.  It ensures complete data transfer.  In embedded systems, 
the functionality of these layers is often merged into a single layer of functionality.  This section 
discusses the issues related to the functions of both layers together.  In addition, in some newer 
protocols (for example, Time Trigger Protocol/SAE Class C (TTP/C), FlexRay2, and Avionics 
Full-Duplex Switched Ethernet™), a network management layer is emerging to describe 
hardware or software services that facilitate message agreement, network diagnosis, and 
synchronization.  Related issues are also discussed within this section. 
 
5.1  NETWORK VULNERABILITY TO ADDRESSING INFORMATION FAILURE. 

Errors in message content labeling or node-addressing information can cause serious problems in 
a data network.  An example failure mode is the masquerade failure, where one network node 
can impersonate another node of the system.  For the network to be dependable, there must be 
mechanisms to handle these errors.  The influence of software on network-addressing 
information is also an issue, as discussed in section 5.8.  Network technologies that use 
configuration tables for network routing and addressing are also vulnerable errors.  Addressing 
that is done via tables created at run time have slightly less error exposure than protocols that 
include addresses in every message.  Addressing that is done via tables created at design time 
have even less exposure. 
 
                                                 
2 FlexRay is a registered trademark of the DaimlerChrysler AG Corporation. 
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Network error-handling logic that may be invoked by erroneous addressing information or that 
may impact protocol flow needs to be analyzed to establish a bound on the influence of the 
invocation of the error-handling logic and its impact (degradation) on network performance.  The 
behavior of any such logic and its associated vulnerability needs to be analyzed and justifiably 
bounded.  This is especially true for centralized intermediate stages, as discussed in section 5.3. 
 
Criterion 10 Network Vulnerability to Addressing Information Failure:  Mechanisms 
should ensure correct forwarding, routing, or conversion failures despite likely failure 
scenarios of network components. 
 
Does the network technology use message addressing or message identification fields?  Does the 
network technology implement mechanisms to detect or mitigate the corruption of message 
addressing or message identification fields?  Has the fault coverage of this detection and 
mechanism been established?  Are the message-addressing or message identification fields 
vulnerable to host software corruption?  Does the network technology use tables to assist with 
message addressing and routing?  Does the network technology implement adequate checking 
mechanisms to ensure the run-time integrity of the routing tables?  Does the network technology 
build routing information at run time?  Are the algorithms and associated mechanisms used to 
build run-time routing tables vulnerable to corruption or run-time errors?  What network action 
causes the network routing tables to be rebuilt?  Can erroneous node software or electronic and 
electric hardware invoke incorrect invocation in the table-building activity?  Is the network 
routing discovery time suitably bounded?  Can addressing or routing errors cause lost packets or 
fragments to circulate on the media and inordinately consume needed bandwidth?  If multiple 
layers of addressing are used (such as MAC and Internet protocol) then errors and masquerading 
faults in all levels of addressing must be considered. 
 
5.2  NETWORK VULNERABILITY TO FLOW FAILURE. 

As with network-addressing failures, the network technology’s flow regulation logic also needs 
to be evaluated.  Issues relating to acknowledgement and retry logic are discussed in section 5.9.  
Issues relating to host interface load balancing and buffering are discussed in section 6.1.  Issues 
relating to intermediate stages are discussed in section 5.3.  Because of the complexity of modern 
protocols, it is far from obvious how far-reaching the misbehaviors propagated from a failure can 
be.  It is recommended that a protocol level FMEA be performed. 
 
5.3  IMPACT OF INTERMEDIATE STAGES. 

If a network encompasses intermediate buffering or relay stages, then the behavior, 
implementation, and impact of the intermediate stages needs to be established and evaluated with 
the network behavior.  In critical networks, it is common for such intermediate stages to 
incorporate error detection or fault containment mechanisms.  This section discusses some of the 
issues and network attributes related to such intermediate buffering schemes that need to be 
considered and evaluated. 
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5.3.1  Vulnerability to Intermediate-Stage Failure. 

In networks that deploy intermediate stages, the influence of the intermediate-stage components 
may be significant.  For example, in networks using stars or hubs, the intermediate-stage 
component impacts all data flowing through it.  One of the difficulties in analyzing the possible 
adverse impacts of intermediate stages is bounding the failure modes of the intermediate-stage 
component.  If a network intermediate stage is developed to have full coverage (for example 
using self-checking or monitoring schemes), then the failure modes of the intermediate stage 
component causing data failure may be suitably justified as benign (e.g., fail-stop, assuming that 
fail-stop is an acceptable mitigation in the failure analysis).  It is imperative, however, that the 
coverage of the self-checking or monitoring scheme be suitably justified, as discussed in 
section 7.4. 
 
It is common for networks to rely on in-line integrity mechanisms, for example, CRCs 
checksums, parity, etc.  In such cases, the failure modes of the intermediate-stage component 
become more significant.  With complex intermediate-stage logic, it is difficult to bound failure 
modes of the intermediate devices.  Without such bounds, one cannot determine the coverage of 
in-line integrity mechanisms. 
 
5.3.2  Vulnerability of the Intermediate Stage to Fault Propagation. 

The vulnerability of the network intermediate stages to faults propagating from erroneous end 
nodes should be analyzed.  Such vulnerabilities may be related to erroneous control data or 
erroneous temporal behavior.  Any error-handling logic that may be invoked in response to 
erroneous end-node traffic and behavior should also be analyzed so that any associated 
intermediate-stage or -switch performance degradation or other propagated erroneous behavior 
can be suitably bounded. 
 
Criterion 11 Impact of intermediate stages:  Intermediate stages (e.g., repeaters, gateways, 
routers, and switches) must guarantee sufficient availability and integrity, as well as 
sufficient logical and physical independence from other replicated intermediate stages to 
ensure correct operation.  
 
If the network uses intermediate stages, Is the availability of the intermediate stage sufficient to 
fulfill network channel availability requirements?  Are network intermediate stages for different 
network channels independent?  Is intermediate-stage-to-intermediate-stage signaling required 
between independent network channels?  Does the intermediate-stage-to-intermediate-stage 
signal path introduce any fault propagation or common-mode influence?  Do network 
intermediate stages incorporate sufficient fault detection and coverage?  Can fail-stop, 
intermediate-stage behavior be justified?  Does the network technology rely on in-line, integrity- 
checking mechanisms?  Can the network intermediate-stage action introduce failure modes that 
will defeat network frame- or integrity-checking logic?  What is the intermediate-stage response 
to erroneous signals?  Do intermediate stages ignore erroneous framing and cleanup and reshape 
erroneous data streams?  What is the intermediate-stage response to out-of-specification errors; 
i.e., elasticity exhaustion, etc.?  Does the network perform store-and-forward action?  Does the 
intermediate-stage perform recalculation of the integrity check sequences?  Is the intermediate-
stage buffer memory suitably protected from transient upsets?  Does the protection mechanism 

 22



 

simply detect or does it detect and absorb transient upsets?  Does the intermediate-stage response 
to transient upsets lower the availability of the intermediate stage, i.e., do transient errors force 
intermediate-stage resets and re-integration?  What mechanisms exist to detect erroneous 
message forwarding; i.e., the forwarding of old messages or sending messages to incorrect 
addresses?  Can intermediate-stage errors affect higher-order redundancy management 
mechanisms to reduce overall network availability?  Can network intermediate-stage action 
introduce head-of-line blocking?  What network mechanisms exist to mitigate these effects?  Can 
babbling or other erroneous node action impact intermediate-stage performance, for example, 
result in buffer exhaustion?  Can intermediate-stage start-up and reintegration time be bounded 
with a faulty node present?  Can intermediate-stage start-up or reintegration be impeded by the 
erroneous action of intermediate stages on other channels?  Are the failure assumptions of the 
interstage justified by a complete FMEA?  Is it possible for a faulty guardian to cause 
irrecoverable network failures? 
 
5.4  NETWORK CONFIGURATION DATA. 

Many network technologies require configuration and routing tables to be programmed to assist 
network operation.  Therefore, design correctness of these tables is obviously important to 
correct network operation.  Design assurance issues relating to network table correctness are 
discussed in section 8.  The run-time integrity of the tables is also important.  Therefore, the 
storage, operation, and load integrity mechanisms of the configuration data need to be evaluated 
with the network technology.  In networked systems, the consistency between the copies of run-
time tables in different nodes is also an important issue.  Hence, protocol mechanisms to ensure 
table consistency should be evaluated.   
 
Criterion 12 Network Configuration Data:  Network topology and component 
configuration data must be commensurate with the applications’ fault tolerance and 
performance requirements—considering table production, loading, errors during 
operation, run-time environmental effects (e.g., impact of radiation), and maintenance 
actions. 
 
Are network configuration data tables stored with sufficient integrity?  How are network 
configuration tables loaded?  What network mechanisms are used to ensure network 
configuration tables are not corrupted during loading?  Does network configuration loading use 
the same network data paths as normal traffic?  Are specialized load protocols used for 
performing network loading?  Does the network incorporate sufficient interlocks to prevent the 
inadvertent invocation of such download protocols?  Are network tables updated during live 
network operation?  How are network modes and network table versions agreed at run time?  
Does the network incorporate maintenance or query protocols operating on top of the live 
network operation?  Does the network incorporate sufficient interlocks to prevent the inadvertent 
invocation of such protocols? 
 
5.5  START-UP AND RECOVERY. 

Network start-up and recovery mechanism are important since, in critical environments, start-up 
and recovery time of the system is often a key attribute of the system performance.  The behavior 
of network start-up performance is, therefore, another attribute that requires careful evaluation. 
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During start-up or recovery, the network is usually more vulnerable to faults.  Many algorithms 
and mechanisms are designed to work correctly, only if some minimum amounts of good 
resources are available.  However, if just prior to start-up, it appears that “everything has failed.”  
A good design for start-up must be able to get past this “everything has failed” phase and be able 
to bootstrap itself up to full operation.  However, all too often, network designs assume that the 
network was “born running” and cannot meet their fault-tolerance claims during start-up.  On a 
related issue, a system experiencing more faults than its design fault limit must return to proper 
operation within bounded time after the number of faults are reduced to within its design limit. 
 
Criterion 13 Start-Up and Recovery:  Component and network integration, start-up, and 
recovery must be performed in bounded time, considering dependability requirements, 
environmental and deployment constraints, and interactions with different systems and 
applications (such as application-level timing impact and power architecture influence). 
 
Is network start-up time bounded even in the case of fault scenarios?  Are the network start-up 
and integration mechanism fault tolerant?  Are the assumed faults consistent with the coverage 
and FMEA declarations?  If network start-up requires coordinated power sequencing, is the 
required power-sequencing action assured to have the required network availability?  Is the start-
up dependent on single components?  What are the effects of such dependence, considering 
failure scenarios?  If host nodes are required to participate in network integration, start-up, or 
recovery, are those host node behaviors considered in the analysis?  Is there a host or other node 
behavior within the protocol fault model that can cause repeated integration, start-up, or recovery 
events and, thus lead to unbounded time to achieve normal network operation even if each 
integration, start-up, or recovery attempt completes individually within bounded time?  If there is 
more than one statically designated network master, is the leader election process guaranteed to 
converge within bounded time under worst-case assumptions and all faults within the specified 
fault model?  If system start-up is inhibited in the presence of hardware failures (e.g., start-up is 
precluded with a network fault on one redundant bus), is the risk of system unavailability after an 
in-flight restart mitigated? 
 
5.6  GLOBAL SYNCHRONIZATION. 

Data networks may have a need for synchronization of clocks among nodes for coordinated 
network access or as an application level service.  The following paragraphs focus on clock 
synchronization services, but a subset of the aspects to be considered for clock synchronization 
services are equally applicable to synchronization of logical clocks (counters) used for 
redundancy management. 
 
Clock synchronization algorithms and mechanisms must be able to acquire initial 
synchronization, reacquire synchronization with a running network, and maintain 
synchronization even while experiencing data network faults, including Byzantine and 
masquerade failures.  Clock synchronization algorithms and mechanisms are acceptable only if 
they have been subjected to formal proofs of correctness and the assumptions used in these 
formal proofs hold for the particular implementation being evaluated.  Also, the quality of the 
clock synchronization (e.g., precision, jitter, and monotonicity) must meet the system 
requirements.  Places that may cause derived requirements in this area include (1) time-triggered 
operating systems and communication buffer management systems that cannot tolerate 
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significant jitter or nonmonotonic time (periods where time appears to run backwards due to 
clock corrections) and (2) applications that use delta time for differentiation or integration. 
 
Criterion 14 Global Synchronization:  If synchronization is required, have the 
synchronization mechanism(s) been shown to work correctly under all defined scenarios, 
including faults? 
 
Has the stability of the algorithm been analyzed under different environmental and expected fault 
conditions, including stability after power up of nodes and under all expected network 
configurations?  Similarly, has the precision been analyzed and is it bounded under expected 
fault scenarios and operational conditions?  Have the effects of single dependencies of 
synchronization reference data been considered (faulty or no synchronization data)?  Are such 
dependencies adequately mitigated for the required safety levels?  Have the effects of different 
synchronization data view (e.g., due to different propagation delay, data acquisition delays, etc.) 
been considered in the stability analysis?  Have the effects of merging of data from different 
network paths and potential differences due to different paths and propagation delays been 
considered in the algorithm stability analysis?  In algorithms using multiple clock sources, has 
the use or election of the source been considered under the assumed failure conditions and 
considering source coverage mechanisms?  Are mechanisms in place that adequately verify or 
support that the data used for synchronization does stem from the assumed or elected source, i.e., 
the synchronization algorithm is not vulnerable to masquerade faults?  Have effects of the clock 
correction been analyzed (such as task-time dependence on the clock synchronization and 
influence of the correction on the available (potentially decreased) execution time to tasks)?  For 
asynchronous interfaces between two or more isochronous clock domains running at the same 
frequency, is there a mechanism to prevent pathological metastability (the metastability 
condition persists indefinitely due to the clocks not having any relative drift)? 
 
5.7  FAULT DIAGNOSIS. 

Some network technologies include fault diagnosis services to identify and isolate faulty member 
nodes.  Such services are strongly related to group membership and interactive consistency 
services, which may use fault diagnosis services to manage network state-dependent application 
decisions and guaranteed consistent delivery of messages.   
 
Requirements of group membership being consistent and effects such as inconsistent reception 
status of messages at different receiving nodes and potential consequences are discussed in detail 
below.  In general, it should be said that any diagnosis service will be nonperfect, e.g., due to 
transients having local effects or due to failure modes of the sending nodes (e.g., Byzantine 
failure modes).  
 
Diagnosis information can be used by the network to build additional services for management 
of redundancy sets or simply as acknowledgement.  In this context, the use of the diagnosis 
information needs to be in alignment with the expectations of the applications.  
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Applications that use networks that provide group membership services should analyze: 
 
• The underlying assumptions 
• The consistency and correctness guarantees of group membership 
• Their effects on the application level 
 
Such analysis and effects on the application should also include temporal aspects, because 
diagnosis information lags in time and so does membership. 
 
Criterion 15 Fault Diagnosis:  Any diagnosis, detection, or system-level agreement 
mechanisms must justify fault assumptions and consider effects of diagnosis action. 
 
What does the source of the diagnosis information rely on?  What is the information’s source 
integrity value and how is it in agreement with the assumptions?  What is the influence of faulty 
relaying components, lightning, high-intensity radio frequency (HIRF), and other external effects 
on the diagnosis data and diagnosis algorithms?  Have such influences been analyzed and 
quantified to have acceptable effects?  Does the diagnosis assume certain failure modes?  Are the 
consistency and correctness guarantees of the diagnosis information (such as group membership) 
in agreement with the application’s use?  Are the assumptions and properties quantified to the 
level required?  Does the application use diagnosis information?  Is the application’s use of 
diagnosis information in compliance with guarantees and assumptions of the diagnosis 
information?  Are there effects on the application level?  Is the semantics of the group 
membership information (e.g., nodes operational or node not operational) in alignment with the 
application-level assumptions of its use; e.g., does the application assume correctness of the 
message even though the membership only indicates operation?  Has the coverage of the 
mechanisms used to establish a nodes health with respect to group membership signaling been 
evaluated against requirements?  Has the safe use of membership semantics been analyzed in 
“corner” cases, like start-up and integration of systems?  Have temporal lags in error detection 
and diagnosis been quantified and found suitable?  Have start-up and integration been included 
in the analysis of diagnosis and group membership? 
 
5.8  CLIENT EFFECT ON NETWORK OPERATIONS. 

A data network is often the glue that holds together a dependable system.  A system data network 
tends to become either the main fault containment mechanism in itself or is a major component 
of the main fault containment mechanism(s).  As such, it is important that a system data network 
is not adversely affected by the clients it serves, no matter how badly the clients misbehave.  
Many data networks allow their clients to influence the timing of network start-up by affecting 
the timing of their nodes.  It is possible for data network protocols to take an inordinately long 
time to start, or they may not start at all, if the timing behavior of its nodes follows some 
pathological pattern during start-up.  During data network operation, some protocols allow 
clients to adversely affect their behavior if the clients can control addressing, routing, priorities, 
etc.  Some systems require applications of different safety criticality levels to share the network.  
When this is the case, the network must be robustly partitioned so that applications and clients of 
low criticality cannot adversely affect the use of the network by high-criticality applications or 
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clients.  Another possible avenue for a client to adversely affect a system data network is via 
unprotected test or network management paths. 
 
Criterion 16 Client Effect on Network Operations:  Can a network client adversely effect 
network operations? 
 
What is the assumed faulty behavior?  If a restricted failure model of clients is assumed, what 
substantiates the restricted faulty behavior?  Do the analyses of clients include start-up and 
integration scenarios and are they considered temporal effects of clients (such as potential long 
software response times)?  Do client-side actions or data impact network addressing (i.e., 
message identifiers (labels or addresses) are written under client control).  Does the network 
allow client impact of protocol-level control flow, such as mode changes?  What network 
mechanisms are in place to ensure that such actions or data do not endanger the operation of the 
network?  Do any protocol operations, such as start-up, require behaviors or constraints on 
behaviors of the network clients and, if so, are such behavioral requirements or constraints 
ensured in the system design? 
 
5.9  ACKNOWLEDGEMENT. 

For network protocols that employ acknowledgement schemes, the behaviors of this logic need 
to be carefully analyzed, especially with respect to inconsistent message reception (i.e., some 
nodes receive a message or an acknowledgement, while some do not).  It cannot be assumed that 
any acknowledgement mechanism provides, by itself, consistent message reception (also called 
atomic broadcast).  The implications of inconsistent message delivery, different message 
delivery times to the application, and multiple deliveries should be analyzed with respect to the 
overall system and its safety.  In addition, if the acknowledgement mechanism calls for retries, 
this additional load must not cause the network to exceed its bandwidth and timing budgets (e.g., 
jitter). 
 
Criterion 17 Acknowledgement:  Does the acknowledgement mechanism work adequately 
under all fault scenarios? 
 
What are the impacts of the acknowledgement mechanisms?  (Are they fault tolerant)?  Has the 
acknowledgement scheme been analyzed, assuming adequate failures modes (e.g., such as 
inconsistent or Byzantine message reception)?  What are the effects of such failures?  Have 
adverse effects been suitably compensated by other means?  Have effects of negative 
acknowledgements (NACK) and message retries been analyzed during the performance analysis?  
Is the number of retries bounded, and is this bounded number determined as a consequence of 
the impact of retries on the performance?  What are the effects of acknowledgement errors on the 
application?  Are effects suitably bounded (e.g., with respect to processor overhead)?  If 
acknowledgements are not supported, does the protocol support aging or staleness indications for 
periodic messages that have not been received for more than a certain period? 
 
6.  APPLICATION SERVICES. 

Current data network technologies comprise a number of application services that may or may 
not be used by an application.  All services need to be analyzed in the context of a safety 
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assessment.  In its simplest form, buffer management has associated properties that need to 
concur with the application assumptions.  Newer generations of data networks supply voting 
schemes or redundancy management mechanisms.  An example for such buses is ARINC 664.  
In this section, the criteria for data network services used by applications are examined. 
 
6.1  HOST INTERFACE MANAGEMENT. 

Buffer management concerns itself with the message access order to the network, partitioning 
requirements, and performance aspects of the network interface buffer as well as implications to 
the host. 
 
6.1.1  Client Buffer Queue Management. 

Buffer management of systems may have system-level implications.  One example of system-
level impact may occur if messages are associated with priority.  In certain combinations of 
buffers and accesses, priority inversion on the system-level may occur.  When evaluating 
networking technology for the deployment in systems, client buffer queue management 
mechanisms should consider effects on the access to the network, such as fairness and 
implications to the network and the host. 
 
6.1.2  Buffer Management Partitioning. 

In a robustly partitioned system, software partitions running on a node have a strict execution 
budget and should adhere to their execution budget.  On nodes where the data from a data 
network is managed by a direct memory access (DMA) controller, the DMA controller may 
repeatedly stall the execution time of running partitions, potentially having significant effect on 
the execution time of software tasks.  Unless effects such as cycle stealing are accounted for in 
the execution budget of software tasks or the overall node architecture, software may miss 
execution deadlines.  Unless the access to the common buffer is restricted or controlled for each 
partition, software partitions may overwrite messages of other partitions or use network 
resources from other partitions.  A partition may even be able to send data masqueraded as 
another partition, unless protected.  As stated in the introduction, a full treatment of partitioning 
related to databuses is beyond the scope of this report.  
 
6.1.3  Buffer Management Performance Considerations. 

The performance considerations of buffer management should be considered when selecting a 
network.  In the past, the low-speed aviation digital electronics networks (such as ARINC 429 
and 629) have put less emphasis on the performance of buffer management, because memory 
access times or memory bus access times were often an order-of-magnitude quicker than 
required for serving the data copying and coordination activities.  With the advent of high-speed 
communication in avionic systems, the need for a balance on the buffer management side with 
respect to performance becomes more prevalent. 
 
A push interface host management mechanism pushes data onto the network when the 
application has finished computation and has released the associated data buffer.  In such 
models, primarily used in loosely periodic network approaches like ARINC 664, the data release 
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time from the application is dependent on the application performance because the data is sent 
when the application is finished with it and indicates it is available.  The network data in such 
push models is dependent on the application execution schedule and its release of data to the 
network.  If the release times and the data size are highly variable, the data released to the 
network can be bursty in nature.  Such host interface approaches can lead to peaks in bandwidth 
use in integrated multidrop network systems, which can lead to longer data delivery times.  
Network analysis for sizing of the network bandwidth and related resources may need to 
consider application-level schedules and performance, taking into account application variations 
and worst performance due to the influence of release times on data patterns.  It should be 
understood that the effect of release times can have system-level latency and jitter effects, e.g., 
the latency of data can change over a wide range due to nonaligned data patterns in integrated 
network systems.  The resulting jitter variations need to be considered on the application level to 
ensure proper performance of the application in all possibly encountered latency values.  
 
Criterion 18 Host Interface Management:  The protocol’s interface to the host application 
(including gateways) must provide promised prioritization, latency, and loss prevention of 
messages for supported categories of service. 
 
Has the buffer management been analyzed with respect to effects and system-level implications 
(e.g., combined priority and buffer management causing head-of-line blocking or priority 
inversions)?  In mixed criticality systems, are communications buffers reserved per partition and 
are assured not to be accessible for other software partitions in cases where there are partitioning 
requirements for software?  Have potential masquerading effects due to buffer management been 
considered (e.g., software partitions masquerading as other partitions)?  How is the access to the 
buffers being controlled (control between different software partitions and control of access 
between network and host software access)?  Has this been analyzed with respect to safety 
(effects of different criticality partitions)?  Are system-level effects of blocking buffer access 
being analyzed (e.g., increased software execution time and increased buffer size needs)?  Has 
the performance of the buffer been analyzed with respect to the needs of the communication (i.e.,  
is the network speed and the buffer management speed balanced)?  Are there relationships 
between network configuration flow and buffer management configuration?  Is there an effect of 
changing network tables on the buffer management tables or mechanisms?  Have such 
relationships been considered during the design and what is done to ensure compatibility?  Is 
there a way to ensure that received messages are not overwritten in the buffers before being 
retrieved, or that such overwriting is detectable and handled appropriately by the system an error 
condition? 
 
6.2  SUPPORT FOR APPLICATION LAYER REDUNDANCY. 

6.2.1  Support for Active Replication. 

Networks may signal the application of reception status, which may assist the application in 
voting or selecting a correct value.  Such mechanisms should be evaluated with respect to the 
mechanisms’ correctness.  In case the indication status stems from the same source as a possible 
faulty value, the use of such status information might be limited. 
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Application layer membership is a mechanism to manage the redundancy sets at an application 
layer.  Such application layer membership algorithms should be evaluated with the same scrutiny 
as the node-level memberships described in section 5.7. 
 
In some networks, the network host interface incorporates a life-sign mechanism to support 
application membership and health diagnosis.  The life-sign action should be evaluated with 
respect to its effectiveness of detection of the failures. 
 
6.2.2  Support for Passive Replication. 

Some networks support mechanisms for passive-redundancy strategies, i.e., the ability of 
multiple network nodes to share network bandwidth.  These mechanisms are discussed in section 
7.7.  The network’s mechanisms to inform clients of the state of the passive-redundancy scheme 
(what application is in control and how many spare applications are online) should also be 
considered.  Often a certain degree of transparency is required for the switchover between 
members of the redundancy set.  The network will have to be shown to meet this required degree 
of transparency. 
 
6.2.3  Support for Increased Integrity. 

Some network technologies implement host interface support for self-checking pair host 
configurations.  Self-checking pair data is compared, and if it agrees, it is delivered as correct.  
Self-checking, pairs-based input data should be compared before computation; otherwise, the 
self-checking pair computation results are likely to diverge, even though both halves of a pair are 
correct.  Self-checking pairs should also be evaluated with respect to their independence from 
power, common memory, vulnerability, and common design faults.  
 
Self-checking host support is strongly influenced by the network-level, self-checking 
mechanisms discussed in section 7.4.  
 
Criterion 19 Support for Application Layer Redundancy:  Any support for application 
layer redundancy must fully meet stated redundancy management mechanism 
requirements. 
 
Has the application group membership service been analyzed with respect to its performance, 
availability, and integrity targets under adequate fault scenarios?  How are failures in 
membership or similar services covered?  What assumptions were made in determining this 
coverage?  How are these assumptions verified?  Are the assumptions of correctness and 
completeness of the application layer group membership service in agreement with the system-
level assumptions?  Has the effect of the lag in updating the application been analyzed in the 
system context?  Do the provided services conform to the requirements from the application?  
How is the synchronization ensured between the different replicants that are to be voted or 
agreed?  Any voting or selection scheme may lead to different results at different observers for 
certain failure modes (Byzantine or local nonreception of a single message).  Has the impact of 
different results been taken into account in the safety analysis?  Are there other mechanisms that 
may influence the selection logic?  Are such mechanisms analyzed with respect to potential 
unwanted interaction?  Is the network implementation vulnerable to masquerading faults 
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resulting in potential defeat of redundancy?  Are passive-replication strategies analyzed with 
respect to control handover in failure cases?  How is the state of faulty replica signaled to the 
application?  Do the two halves of a self-checking pair communication interface compare their 
two copies of received data before it is allowed to be used for computation?  Is this comparison 
designed to be immune to Byzantine faults?  Are the halves of a self-checking pair suitably 
independent (e.g., independent power, separate memory, or memory sections)?  If the same 
message information is sent over redundant buses, are those redundant copies cross-checked, or 
is the first seemingly valid message used?  If the same message information is sent over 
redundant buses, are those copies sent at the same time or staggered to mitigate against 
correlated network disturbances? 
 
6.2.4  Support for Robust Partitioning. 

While robust partitioning (see section 2.3.2) is a characteristic of an architecture that is largely 
outside the control of data networking, there are certain facets of robust partitioning that may 
need to be supported from the network.  First, the network should protect itself against 
misbehavior of any of its clients (see Criterion 16).  Then, if required, the network should protect 
each of its clients from its other clients.  This includes protecting robustly partitioned 
subdivisions of each of its clients from other clients or partitioned subdivisions. 
 
Criterion 20 Robust Partitioning (ARINC 651):  If the network is required to provide 
robust-partitioning guarantees, what has been done to substantiate any partitioning 
claims? 
 
If required, does the network enforce robust partitioning among its clients, even if multiple 
clients share the same node?  If required, does the network enforce robust partitioning among its 
partitions within its clients?  Does the partitioning against software faults include vulnerabilities 
resulting from timing faults? 
 
6.3  TIME SERVICE FOR TIME STAMPING AND TIME INTERRUPTS. 

Application time services that may be supplied by the data network include time stamping and 
time interrupt.  Synchronization aspects of time are discussed in section 5.6, including a 
discussion of the implications of time services to the applications.  The quality of time services 
can be adversely affected by a data network time-service design that is not robust. 
 
Criterion 21 Time Service for Time Stamping and Time Interrupt:  If time-stamping and 
time-interrupt services are provided, are they sufficiently dependable and robust? 
 
Is the time service robust with respect to potential implications such as effect of clock 
differences?  Is the use of time-stamping and time-interrupt services adequately mitigated or 
included in a robustness analysis of application data algorithms?  If the protocol is based on a 
centralized time service, is failover for the time master supported?  If it is based on a distributed 
time service, is timekeeping maintained even for Byzantine clock faults? 
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7.  FAULT TOLERANCE MECHANISMS. 

Some network technologies incorporate fault tolerance mechanisms to mitigate the failure of 
network components such as guardians and monitoring schemes.  Such mechanisms may be 
particularly advantageous in aviation digital electronics environments in which high-network 
availability and integrity is required.  These mechanisms and associated evaluation criteria are 
discussed the following sections. 
 
7.1  TOPOLOGICAL FAULT TOLERANCE. 

The network topology may have significant impact on the network tolerance to zonal or spatial 
proximity faults, e.g., physical damage that affects a certain area of the vehicle.  If the network 
uses a bus topology, then any failure along the bus path may destroy network availability (even 
for signals that do not have to traverse the failed part of the bus path).  The bus zonal 
vulnerability is particularly important if multiple redundant buses are assumed to increase 
network availability.  If all units are connected to all buses, then all buses are required to be in 
physical proximity at the point of their interface to the other nodes.  A failure at this point of 
interface may, therefore, damage all of the independent bus channels. 
  
Networks using intermediate stages may perform better in relation to zonal fault tolerance, as the 
point-to-point relaying action of such technologies alleviates the impact of physical layer 
damage.  However, the placement and data-path planning of such intermediate-stage schemes 
should also be considered as the network technology is mapped to a vehicle architecture; i.e., 
there is little benefit in placing two redundant, central intermediate stages in the same location. 
 
Criterion 22 Topological Fault Tolerance:  Redundant network components must be 
physically separated and isolated to prevent correlated outages due to physical equipment 
damage, loss of electrical power, and credible media faults. 
 
Is the network vulnerable to spatial proximity faults, such as physical damage that is within a 
specified distance limit?  If a single piece of equipment is faulty, can its faults propagate to take 
down the entire network (e.g., Can a single fault cause babbling behavior simultaneously on 
redundant network paths?)?  Is an adequate communication path availability ensured despite 
faulty end equipment (babbling devices or short circuits)?  Are common network resources, such 
as switches, placed at adequate distances from each other so as not to be vulnerable, but to be 
independent of physical damage or spatial proximity faults?  Are redundant resources attached to 
different power sources within the system? 
 
7.2  GUARDIAN SCHEMES. 

Some network technologies incorporate covering functions or guardian mechanisms to contain 
node faults.  Such guardians may be argued to increase network availability.  However, the 
implementation and performance of the guardian function needs to be carefully evaluated to 
verify that suitable coverage and independence is provided. 
 
Irrespective of any guardian implementation, it is imperative that suitable tolerances for guardian 
enforcement action are established to provide suitable design margin.  As with other critical 
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protocol parameters, these tolerances should accommodate worst-case aging and expected life-
time degradations of all components related to the guardian.  The criteria for establishing suitable 
guardian parameterization would ideally be formalized and verified, as discussed in section 8.  
 
Latent failure of guardian schemes is another consideration; this is discussed in section 7.6. 
 
Criterion 23 Guardian Schemes:  Some techniques, such as network guardians, must be 
used to ensure that a single-point client failure will not take down the network. 
 
Does the network deploy guardians?  What is the intent of the guardians?  What coverage is the 
guardian assumed to provide (what failure modes can the guardian detect or contain)?  What is 
done to substantiate the coverage claims?  Does the claimed coverage of failure modes consider 
boundary system conditions such as start-up or integration?  What is done to ensure 
independence of the guardian (power, time, logical dependence, and physical dependence)?  
Have potential side effects of the guardian behavior been considered (especially central 
guardians)?  Is there an effect on in-line coverage due to guardians?  Have tolerance margins 
(different oscillators) due to difference between the guardian and the guarded device been 
established and quantified? 
 
7.3  PROTOCOL LOGIC FAULT TOLERANCE. 

Networking technology may also incorporate protocol flow and algorithmic fault tolerance 
strategies, i.e., voting on protocol-state information or required protocol actions.  The strength of 
such protocol mechanisms should be evaluated in the context of the coverage provided by the 
network implementation.  For example, if all nodes are self-checking, then little protocol-state 
fault tolerance is required as all protocol errors are contained at the source and justified to be 
benign.  Similarly, if the guardian mechanisms contain protocol flow errors, then less protocol-
state fault tolerance is required.  However, if suitable fault containment or coverage cannot be 
established, the protocol layer vulnerabilities to erroneous state and addressing information 
should be evaluated. 
 
If fault-tolerant protocol logic is implemented, the impact of its protocol algorithms will also 
need to be evaluated.  This means that any protocol layer mechanism needs to ensure the 
required agreement on protocol state for integrity and the required replication for availability.  
Often in two-channel systems, there is a conflicting goal between availability and integrity.  
Hence, mechanisms to improve protocol integrity may reduce protocol availability. 
 
Criterion 24 Protocol Logic Fault Tolerance:  The protocol must ensure that errors in 
protocol logic and protocol state do not result in unacceptable reduction of integrity and 
availability. 
 
Can mismatches in protocol logic and state occur during protocol start-up?  If such mismatches 
occur, is there a bound on the time until they are resolved?  Does the network protocol logic rely 
on information from single sources; or is protocol logic dependent on agreeing data from 
different sources?  Does protocol dependence rely on different sources to increase the robustness 
of algorithms to potential node failures?  Are the integrity and availability levels of the protocol 
logic met by the network? 
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7.4  LOCAL TRANSMISSION-MONITORING AND SELF-CHECKING SCHEMES. 

Network technologies may also implement monitoring or self-checking services to improve fault 
detection and fault tolerance.  As with the guardian action, the effectiveness of such schemes 
depends on the amount of independence and coverage that can be claimed by the 
implementation.  For example, Controller Area Network incorporates an error-checking 
mechanism that will switch the network to a passive state if the transmissions of the controller 
are not suitably acknowledged.  Since this is implemented within the same integrated circuit as 
the communications component, the action may be degraded by common-mode failures.  In 
addition, such schemes may introduce potential fault propagation vulnerabilities, since it is 
possible for a node to transition to the passive state in response to the erroneous NACK 
generated from a faulty node.  Such vulnerabilities should be analyzed as the network is 
evaluated. 
 
Other networks may employ local wrap-back schemes where a node monitors its own 
transmission via local receivers.  Such schemes should be analyzed for vulnerability to Byzantine 
faults, as a local monitoring circuit may perceive the local wrapped-back signals as good, but 
receivers at the end of a loaded transmission line may see a degraded or erroneous signal. 
 
Criterion 25 Protocol Transmission-Monitoring and Self-Checking Schemes:  The protocol 
must reliably detect transient and permanent faults in both nodes and message 
transmissions. 
 
Does the network incorporate local health-monitoring schemes to detect node health?  Are the 
network-monitoring schemes suitably independent?  Are network-monitoring schemes 
vulnerable to faulty status sent by erroneous nodes?  Does the network technology use local 
transmission wrap-back?  Has transmission wrap-back been analyzed for Byzantine failure 
vulnerability?  Does the network incorporate self-checking pair configurations?  Has the 
coverage and independence of the self-checking configuration been justified? 
 
7.5  RECONFIGURATION AND DEGRADED OPERATION. 

Network technologies may also incorporate mechanisms to implement reconfiguration or 
continued operation in a degraded mode.  For example, some physical layers may incorporate a 
degraded mode of operation that allows communication to continue even if one-half of a 
differential communications channel is faulted.  If such degraded modes are to be leveraged, then 
the performance (e.g., BER) of the degraded operation needs to be evaluated to ensure that 
adequate performance is maintained.  The protocol mechanism for the detection and 
announcement of such degraded operation should also be evaluated to verify that timely and 
correct diagnosis is provided. 
 
Other protocols such as IEEE 1394 may reroute the network path to mitigate physical or node 
paths.  If such protocol action is to be leveraged by a system, then mechanisms used to 
implement such actions will need to be evaluated to ensure that the reconfiguration time is 
suitably bounded.  As discussed in section 5.5, the issues surrounding the erroneous invocation 
of such logic must also be considered.  The recovery mechanisms for such logic should also be 
investigated to ensure nodes are not permanently isolated in response to local transient errors. 
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Criterion 26 Reconfiguration and Degraded Operation:  Capabilities provided in the 
presence of a specified number and type of faults must be sufficient to meet operational 
requirements. 
 
Can a faulty node cause good nodes to be evicted from system configuration or otherwise cause 
degradation into a mode that worsens the effects of the fault?  Does the network technology 
provide degraded modes of operation?  Is the network performance under degraded mode 
sufficient to meet network functional requirements?  Is network degraded mode operation 
suitably annunciated to network clients?  Does the network perform dynamic reconfiguration of 
routing to mitigate bad network paths or nodes?  Is the reconfiguration time suitably bounded?  If 
online reintegration is supported, what mechanisms are in place to cope with intermittent failures 
and ensure the health of nodes to be reintegrated? 
 
7.6  LATENT FAILURE DETECTION. 

Fault detection, isolation, and recovery functions used within aviation digital electronics systems 
are often required to be periodically tested to ensure that the detection and recovery actions 
remain effective.  Such detection and recovery functions are usually transparent to normal-mode 
operations (i.e., have no visible action as long as there are no failures).  Hence, without test, it is 
possible that such functions may fail passively (“stuck at good”) and the protection will be lost 
without indication.  Network fault detection and covering functions have the same issue.  
Therefore, network mechanisms to assist the latent fault detection should be analyzed to ensure 
that they do not introduce failure vulnerabilities.  Interlocks and protection mechanisms to ensure 
that such testing occurs only in safe system states should also be evaluated.  The coverage of the 
network test procedures should also be evaluated to verify that all key network mechanisms are 
suitably verified. 
  
Criterion 27 Latent Failure Detection:  Latent faults must not accumulate to where they 
threaten network failure (availability or integrity).  
 
Can an accumulation of latent faults overwhelm a network’s ability to tolerate faults?  Can a 
latent fault (e.g., a stuck-at-good fault detector) lead to network failure due to lack of coverage?  
Does the network technology support a mechanism for latent fault detection, especially in a 
mismatched protocol state among network clients?  If state variables are maintained by the 
protocol at each client, can multiple unrelated state variables be corrupted before the first 
corruption is detected?  Is the coverage of the network latent fault detection suitable to establish 
the health of all critical network protection functions?  Are suitable test activation interlocks 
incorporated into the network technology to inadvertent test mode activation? 
 
7.7  VOTING, SELECTION, OR AGREEMENT SERVICES AND REDUNDANCY 
MANAGEMENT. 

Networks may also incorporate redundancy management and voting mechanisms to simplify 
application-level fault tolerance.  Voting algorithms supplied by the network should be compared 
with the assumption of the application to avoid unsafe operation. 
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7.8  BYZANTINE FAULT TOLERANCE. 

Byzantine fault tolerance is an essential part of any ultradependable system’s design.  Today, 
with over 20 years of published papers on the subject, there are still many misconceptions 
relating to Byzantine failure, both with respect to what makes a system vulnerable and the nature 
and reality of Byzantine faults.  A Byzantine fault is any fault that produces different symptoms 
for different observers.  This can happen at any point where a signal splits; i.e., one source goes 
to more than one destination.  Byzantine faults are a lot like metastability in that there is no way 
to prevent them; you can only treat the symptoms so the faults do not become system failures. 
 
A Byzantine generals’ problem (BGP) is a system failure caused by a Byzantine fault.  If the 
multiple observers do not require any mutual coordination, a BGP cannot occur.  But, if the 
observers have to coordinate in some way or if their actions are compared (by voting or some 
other means) for fault tolerance, then a BGP is possible.  Thus, if a system uses any mutual 
coordination to achieve its dependability requirements, Byzantine fault tolerance is needed. 
 
Byzantine fault propagation escapes most classical fault containment techniques.  Solutions to 
the BGP are well known, but require a large amount of additional communication bandwidth, a 
minimum set of redundancy that exceeds what is needed for systems that do not need to tolerate 
Byzantine faults, and the use of coverage-tested Byzantine filters.  Discussions of actual 
Byzantine failures and methods for coping with them can be found in references 5 and 6.  The 
theoretical basis for Byzantine agreement protocols can be found in reference 7. 
 
Criterion 28 Voting, Selection, or Agreement Services and Redundancy Management:  The 
network protocol must support the ability to determine what nodes are part of the active 
network quorum. 
 
Does the network support selection and agreement services directly?  Does the network provide 
adequate mechanisms for application software to implement selection and agreement services?  
Are such agreement services targeted at integrity or availability?  Is the overhead for agreement 
function evaluated and justified to be acceptable?  Have temporal effects been evaluated in the 
selection?  Are the time constants of tracking changes in membership fast enough for the 
application?  Are assumptions made by the membership or agreement service justifiable?  What 
vulnerabilities exist while the quorum is inconsistent? 
 
Criterion 29 Fault Model:  The protocol must be evaluated with respect to a precisely and 
completely stated fault model, and the fault model must be compatible with the system 
architecture. 
 
Does the network claim to be Byzantine fault tolerant?  Has the network been analyzed with 
respect to Byzantine fault tolerance?  What are the effects of Byzantine fault tolerance on 
integrity and availability?  If a hybrid fault model is used, is there justification for the relative 
rates of occurrence of different classes of faults (e.g., Byzantine, strictly omissive, or symmetric) 
for different failure scenarios.  Has the Byzantine fault-tolerant algorithm been suitably analyzed 
and has coverage been justified (Byzantine fault containment properties)?  Has the Byzantine 
filtering coverage been justified?  Has the fault model been analyzed with respect to influences 
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to all services even those that are possibly not used (this should exclude any effects of services 
not used)? 
 
8.  DESIGN ASSURANCE. 

8.1  DEVELOPMENT PROCESSES. 

Often network technology forms the backbone of the system architecture.  The design 
correctness of the network implementation is, therefore, of utmost importance as the network 
provides a significant common-mode failure vulnerability.  With the increasing complexity of 
network technology, the design correctness problem is increasing with every generation of 
silicon.  Therefore, the network technology should be designed with best-practice design 
procedures.  Within the aviation digital electronics domain, this would correspond to DO-178B 
for software-related network components and DO-254 for hardware components.  Network 
technologies that have formal design assurance artifacts will pose less certification risk than 
other technologies and may be preferred for that reason.  Technologies without formal design 
assurance processes will need to be considered on a case-by-case basis.  The complexity and 
degree of commercial use of the networking technology will then need to be considered.  The 
commercial off-the-shelf (COTS) provisions within DO-254 were designed to handle COTS 
hardware technologies that have been used in many systems and have accumulated a huge 
service experience base.  While this experience may be leveraged to assist the design assurance 
case, certification credit will require substantiation of the service experience data.  This treatment 
is commonly applied to microprocessors.  The techniques’ applicability to networking-related 
hardware will need to be considered as the network is evaluated. 
 
Criterion 30 Design Assurance Processes:  Have appropriate design assurance processes 
been followed for design and deployment of the network? 
 
Has the network technology been developed to be in compliance with avionics design assurance 
guidelines, i.e., DO-178B or DO-254?  Does the network technology’s commercial use volume 
support COTS classification, including intellectual property block used within new integrated 
circuits, as well as manufactured devices?  If COTS classification is used, has the COTS product 
been deployed in similar applications to justify suitable coverage for correctness claims?  Is the 
network technology behavior simple enough to be fully tested?  Do diverse approaches (e.g., 
design diversity) provide adequate and quantifiable coverage if credit is taken for such diversity?  
Is there a Plan for Hardware Aspects of Certification and a Plan for Software Aspects of 
Certification for the network infrastructure? 
 
8.2  AVAILABILITY OF STANDARDS AND CONFORMANCE EVIDENCE. 

8.2.1  Open Specification and Standardization. 

The use of open specifications and standardization might assist a certification authority in 
establishing the acceptability of a network.  Irrespective of the formality of the design artifacts, 
the quality of the network technology specification is a key attribute.  It is preferable if the 
technology is open with a standardized and published specification, as this will enable the 
protocol mechanisms to be analyzed and discussed within the academic and industrial 
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community, including the application for formal verification studies.  The standardization 
process itself is beneficial because the committee activity usually associated with the open 
standardization process may also lead to an open detailed examination of the network behaviors.  
However, care is required for network technology that is not designed specifically for use in a 
safety-relevant environment; the completeness of the specification will need to be carefully 
reviewed.  Often, such standards may specify the normal mode of operation only; the protocol-
actions-to-erroneous behavior and the associated degraded modes of operation may not be 
sufficiently treated in the standard document.  The evaluation of the network specification should 
include such completeness analysis. 
 
Another area where specification completeness may be lacking for COTS protocols is in the area 
of implementation choices that have been made below the protocol specification.  COTS 
solutions may not be fully described because of the need to maintain competitive advantages 
between vendors.  Hence, many key implementation choices may not be visible and this may 
impact assurance process where detailed understanding and analysis of the interactions of all 
technology layers is required.  The availability of suitable design information should be 
considered as the network technology is evaluated. 
 
8.2.2  Conformance and Interoperability Testing.  

As with the specification, the availability of standard conformance test campaigns and 
specifications may also be advantageous.  This is especially important for network technology 
that is sourced from multiple vendors, since it may assist in identifying interoperability glitches.  
The issues raised in relation to specification completeness also arise in relation to the 
completeness of the conformance test campaigns:  Are all operating modes covered, and are 
exception and error reactions sufficiently traveled? 
 
8.2.3  Protocol Design Correctness. 

In addition to completeness, the correctness of the specification is obviously important.  The use 
of formal methods and development of formal proof arguments for protocol algorithms show 
much promise, as they can exhaustively verify the algorithmic behavior.  However, when 
reviewing formal verifications, the assumptions that underpin the formal proofs need to be fully 
understood and evaluated against the real-world failure expectations and behavior.  Similarly, the 
composability of the formal verifications needs to be understood to ensure interactions between 
different protocol algorithms (for example, membership services and clock synchronization).  In 
some protocols, for example TTP/C, interdependencies exist that may need to be evaluated with 
formal arguments.  That said, formal verification of protocol algorithms can increase design 
correctness confidence, and therefore, network technology that has such verification evidence 
may be more attractive. 
 
Criterion 31 Availability of Standards and Conformance Evidence:  The technology and 
protocol of the network should be clearly specified and analyzable.  
 
The use of open specifications and standardization might assist a certification authority in 
establishing the acceptability of a network.  Credit for analysis of specification properties and 
interoperability between different networks should be supported by conformance and 
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interoperability tests.  The use of formal methods to demonstrate protocol design correctness 
should be proposed and accepted by the certification authorities.  Is the network technology 
supported by an open specification?  Is the specification that is being standardized available to 
open-industrial committees?  Is the network specification complete?  Does the network 
technology address all operational modes of the network, including erroneous node action and 
associated fault recovery actions?  Is the network specification sufficiently detailed to address all 
required protocol action?  Does the networking technology have published conformance test 
criteria and campaigns?  Do the conformance test criteria cover all network protocol behaviors, 
including fault detection and recovery actions?  Have the critical protocol mechanisms and 
algorithms of the network technology been formally verified?  Have the assumptions 
underpinning the formal verifications been reviewed to ensure that they are consistent with real-
world-targeted environment?  Are protocol mechanisms and associated formal proofs 
composable:  i.e., Do protocol mechanisms and associated proofs stand by themselves or are they 
interrelated?  Has the network technology been subjected to other validation activities?  Did the 
fault injection campaign include suitably sufficient visibility to observe the key behaviors of all 
important network mechanisms?  Have anomalies and fault observations from such activities 
been adequately mitigated? 
 
8.3  DESIGN MARGIN. 

The issues discussed in sections 3 and 4 also require some design assurance to ensure that 
adequate design and safety margins are established for the selected network technology.  Such a 
design needs to be established and justified to be valid over the whole system lifetime, 
addressing parasitic and parametric shifts due to temperature effects, etc.  This safety margin 
evaluation needs to be established in several domains, such as the time and value domains of 
signals under worst-case design parameters, network loading, etc. 
 
For physical layer attributes, this means that influencing factors need to be analyzed with respect 
to their margin and contribution to the safety margin.  Such physical layer attributes may include 
oversampling margins that should include the transceiver skew over the whole lifetime of the 
product, assuming worst-case loading, aging of components (e.g., clock stability over time), 
temperature range of environment, etc. 
 
Criterion 32 Design Margin:  Required design margins should be supported by reviewable 
evidence. 
 
Has the network design margin been established for worst-case component behaviors?  Have all 
contributions to network design margins been identified? 
 
8.4  CONFIGURATION TABLE CORRECTNESS AND PERFORMANCE JUSTIFICATION. 

In addition to the design correctness of the network implementation, the design correctness of 
network configuration parameters and tables is also required.  This is especially important if the 
table parameterization impacts protocol algorithmic-level behavior, for example, clock 
synchronization timing and propagation delay parameterization.  In such instances, the 
parameters may severely impact protocol performance.  The incorrect configuration of such 
parameters may, therefore, invalidate any formal proofs of algorithmic correctness.  Similarly, 
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tools may be used to establish parameters for network-policing policies, for example, message 
transmission rate limiting and maximum message jitter.  In such cases, the correctness of these 
parameters may severely impact network performance assumptions.  Therefore, when evaluating 
a network for suitability, consideration should be given to the rigor applied to ensuring correct 
network configuration parameters.  Ideally, all parameters critical to network operation will have 
explicit formal requirements and invariants that are traceable to network functional behavior, 
assumptions, and requirements.  Such traceability may assist the completeness checking of the 
guidance presented.  Thus, the guidance supplied will be suitably assured for correctness and 
completeness. 
 
The network technology may also provide tooling to assist network configuration and its 
associated verification.  Such tools are often required to handle the size and complexity of 
modern networking technologies and to assist with the generation of nonhuman readable binary 
configuration tables.  If tooling is used for configuration data generation or verification, then the 
development pedigree of the tooling may also need to be examined as the network technology 
suitability is evaluated.  If the tooling is in-line (i.e., the tooling generates protocol configuration 
parameters that are not verified by subsequent process checks), then the generation 
tooling should be qualified in accordance with the DO-178B guidelines for development tools.  
Alternatively, if the tooling is simply used to verify the network configuration parameters, then 
they are less stringent and DO-178B verification tool guidance should be adopted.  The data flow 
path of in-line generation and verification tooling needs to be evaluated to ensure that adequate 
independence exists within the tool chain to prevent a common tooling failure.  Ideally, the 
configuration inspection tools will be driven from reviewed network-related functional data flow 
requirements and the formal network parameter constraints and invariants as described above. 
 
For some modern asynchronous networks (for example, ARINC 664), the size and scale of the 
configuration problem is very large, and end-to-end performance (e.g., data flow latency and 
jitter) is difficult to analyze and bound.  The sheer complexity of the network-level interactions 
between end-nodes behaviors, switch implementations, and the chosen network-policing policies 
(e.g., message rate limiting) may greatly complicate network performance justification.  
However, procedures or tooling to analytically bound and justify the worst-case behavior of such 
networks is required to meet certification requirements.  Therefore, the capability and maturity of 
available analysis tooling should be given careful consideration as these networks are evaluated.  
Similarly, network technologies that incorporate complicated MAC interactions may also 
complicate end-to-end performance calculations.  Such interactions and any associated network 
logic (e.g., retry logic and queuing mechanisms) also need to be considered by performance 
calculations and associated tooling.  It is possible that erroneous node behavior can drain 
network performance until the network has diagnosed the problem and has contained it.  
Networks that bound the magnitude and duration of these adverse performance influences may 
be preferable, as they may greatly simplify performance justification calculations. 
 
Highly integrated, multivendor systems’ network technologies that incorporate tooling to assist 
the incremental change of the network tables, which allows new functions and their associated 
data paths to be added to the network with minimal impact on previously analyzed functions, 
may also be attractive, since such tooling may ease incremental certification effort. 
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Criterion 33 Configuration Table Correctness and Performance Justification:  Justification 
for configuration table correctness and performance justification should be provided. 
 
Has the criteria for correct network parameterization and configuration been established?  Are 
the network configuration criteria traceable to network function behavior or top-level 
requirements or specification?  Does tooling assist network configuration and verification?  Is 
the tooling qualified in accordance with the tool guidance established in DO-178B?  Have 
procedures and criteria to bound the worst-case performance of the network been established?  
Do the worst-case performance criteria address detailed MAC layer interactions?  Do the worst-
case performance criteria address worst-case fault detection and reconfiguration actions?  Does 
the network technology provide automated tools to assist worst-case performance calculation?  
Are intermediate-stage buffers and end-node queues adequately sized?  Are tools providing 
performance-bounding qualified in accordance with the tooling guidelines of DO-178B?  Does 
the network technology and associated tooling accommodate incremental change management? 
 
8.5  NETWORK MONITORING AND TEST EQUIPMENT. 

With the complexity of modern network technology, the ability to monitor and observe network 
behavior is very important to support design validation.  Similarly, the ability to insert faults into 
the different network layers may be required to test the network redundancy management 
mechanisms or the fault response behavior of applications operating on top of the network 
infrastructure.  Therefore, the availability and capability of the test equipment that exists for the 
network technology may also be a very important consideration.  In the ideal situation, such test 
equipment will be able to observe all behavior of all network nodes, including network start-up 
and recovery actions.  The portability of the test equipment should also be considered, as such 
equipment is often required to support flight-testing. 
 
The no-interference guarantees of the test equipment may also need to be evaluated if it is to be 
deployed in a flight test scenario.  The ability to monitor the entire network behavior from 
limited test inspection access points should also be considered.  In some modern switched 
technologies, such access is more difficult than simpler buses.  Hence, work in some newer 
switched technologies is being performed to develop the network-wide controllability and 
observability needed to test the maintenance of these new or more complicated networks; while 
at the same time, trying to minimize the invasiveness and logistics complexity of connecting test 
equipment to these networks. 
 
Criterion 34 Network Monitoring and Test Equipment:  Do adequate test equipment, 
network access points, mechanisms, and procedures exist to ensure that the network is 
configured correctly and operating correctly (including meeting its specified behavior in 
the presence of any faults)? 
 
The use of network monitoring and test equipment to establish certification credit should not 
invalidate the data being observed and should be demonstrated to perform in accordance with the 
operational requirements for the features being used.  Is test equipment available for the network 
technology?  Does the test equipment facilitate the observation of all network operational 
modes?  Does the network test equipment facilitate sufficient fault injection to exercise sufficient 
network fault detection mechanisms?  Does the network test equipment support observation 
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modes with sufficient noninterference guarantees to support flight-testing?  How many network 
test access points are required to monitor the entire holistic network behavior?  (is this feasible 
for achieving flight test requirements)?  Is monitoring and test equipment assured to be 
noninterfering during operation?  Is it guaranteed that the network behavior does not change if 
monitoring is not performed and correct behavior is inferred from monitoring or testing? 
 
9.  SECURITY. 

Historically, data communication security has not been an important issue in commercial 
aviation digital electronics.  This began to change with the growing awareness and sensitivity 
relating to cyber-security in the 1990s.  Subsequent terrorist activities accelerated this awareness 
and sensitivity trend.  At the same time, some developments in aviation digital electronics design 
have made aviation digital electronics systems more vulnerable.  Higher levels of integration and 
more inter-networking connectivity have increased the chances for entrance paths into critical 
aviation digital electronics functions.  Possible gateways onto these paths include, but are not 
limited to:  radio frequency (RF) in the airplane (e.g., portable maintenance access terminals and 
cabin crew tablets), off-aircraft radio, external gatelink and maintenance ports (optical and RF), 
and passenger networks.  The increasing use of COTS protocols and networking technologies 
(with their known weaknesses) has the potential of attracting attackers who are familiar with 
these weaknesses.  With ever-increasing bandwidth of modern network technologies, there are 
also increasing pressures to fully use spare network capacity.  Hence, the mixing of critical and 
noncritical end systems and associated data on common network infrastructure is another 
increasing trend.   
 
A network should protect itself against security threats (e.g., denial-of-service attacks) and 
should not allow itself to be used as a means for supporting attacks against its clients.  The 
ability of the network to suitably secure and authenticate private transmissions between different 
clients on the network should also be evaluated, if such usage scenarios are also anticipated.  
Network firewall schemes should also be evaluated, especially if critical and open systems share 
the same network infrastructure.  While it may be only “security through obscurity,” aviation 
digital electronics systems are really more secure when COTS is not used. 
 
Criterion 35:  Can security weaknesses adversely affect network dependability (safety)? 
 
Does the network technology have security issues that can adversely affect the ability of the 
network to supply the services needed to support system safety; in particular, is the network 
susceptible to denial-of-service attacks (e.g., 100BaseTX “killer packets,” Ping of Death)?  Does 
the network technology use open COTS protocols that are well known enough to be targets of 
security threats?  Does the network technology require specialized security augmentations; e.g., 
firewalls? 
 
Criterion 36:  If needed, does the network deal adequately with the security issues of 
privacy (also known as confidentiality or secrecy), integrity, authentication, or 
authorization? 
 
Does the network technology support sufficient secure services for user and application 
authentication?  Does the network technology support secured data transmission mechanism?  
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Does the network support multilevel security?  How many levels or security domains does the 
network technology support?  Is network configuration data protected and secured during 
deployment and during load? 
 
10.  EVALUATION PROCESS. 

As one or more candidate system architectures for aircraft-level functions are proposed, 
candidate data networks must be evaluated.  These evaluations feed PSSA, system and 
subsystem fault trees, and revisitation of the common cause and zonal analysis, as appropriate.  
When a final (relatively speaking) design emerges, then a bottom-up FMEA or a FMECA should 
be performed.  Data network technology services may appear in any level of the system design 
and are required to be analyzed from both the bottom up (FMEA/FMECA) and top down 
(FTA/PSSA). 
 
To perform the data network evaluations, the guidance of AC 20-156 and the narrative parts of 
this Handbook should be read and understood.  From this understanding and sufficient 
knowledge of the data network technologies and component implementations, an evaluation can 
be made that will provide the required data for the above processes.  In numerous places 
throughout this Handbook, there are exhortations to consider the worst case.  This does not mean 
that the worst case should be considered for only the one particular criteria that is stated.  All the 
worst cases of criteria must be considered simultaneously for each criterion, unless there is a 
demonstrable reason why multiple worst cases cannot occur simultaneously.  Evidence must be 
made available for regulatory review for each criterion that requires supporting evidence. 
 
11.  SUMMARY. 

This Data Network Evaluation Criteria Handbook builds on previous work.  It was created to 
facilitate the overall certification process for aircraft or aircraft engines that employ digital 
electronics systems containing data networks by providing evaluation criteria to be used in the 
development, selection, modification, adaptation, or approval of data network technologies and 
components to be deployed in safety-critical aviation systems.  This Handbook adds to previous 
work-specific and detailed criteria for evaluating a wide range of data network technologies and 
components with respect to the possible adverse impacts on certification due to their use.  
Particular attention was given to issues that are generally overlooked or underappreciated in the 
industry. 
 
The characteristics of data networks are so varied that it is impossible to create a single set of 
detailed and specific criteria to which all the criteria are applicable to all data network 
technologies and components in all possible applications.  The combination of extremely wide 
variation and detail leads to a set of criteria that can be overwhelming.  However, for safety-
critical systems, the details are very important.  Therefore, this Handbook tries to include as 
much breadth and depth of criteria as possible.  To partially mitigate the problem of having an 
overwhelming set of criteria, this Handbook presents the criteria on two levels.  The higher level 
is presented in the body of the Handbook with much more detailed discussions included in 
appendix A.  This still leaves someone applying these criteria with the task of determining what 
criteria are applicable to what data network.  Because the number of data network technologies 
and component implementations that can be created is unbounded, making a definitive mapping 
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to the applicable set of criteria is impossible.  Creating such a mapping just for existing data 
network technologies and component implementations is beyond the capabilities of just one 
Handbook. 
 
This Handbook is a good companion to AC 20-156.  The Advisory Circular provides a means for 
manufacturers and designers to gain FAA approval of an aviation data network by showing that 
the data network, as designed, will perform its intended function and satisfies the applicable 
airworthiness requirements when installed on an aircraft or aircraft engine.  It tells manufacturers 
and designers what they must do, but does not include detailed explanation of how, nor does it 
provide any warnings about pitfalls that may be encountered by designers who are not data 
network experts.  There is a mismatch in this companionship; the document and criteria structure 
is different between them.  The Handbook was designed to follow the typical protocol stack 
structure rather than to match AC 20-156.  Only time will tell if the structure of either of these 
documents and their criteria are easier to follow by most readers or if one document should be 
changed  to  match  the  other.  It  is  not  recommended  to  merge these documents or have one 
subsume the other.   They each have a purpose.   AC 20-156  was  designed to provide 
assurance goals and issues.  This Handbook was designed to provide a detailed technical 
framework for aid in providing technical data to support the assurance goals and address the 
issues published in AC 20-156.  However, the Handbook was not intended to provide an 
acceptable means of compliance. 
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13.  GLOSSARY OF TERMS. 

Databus and network technologies’ terminology can vary considerably.  For this reason, a 
standard set of definitions for all terminology, with respect to aviation digital electronics 
networks, does not exist.  For example, the term “slot” can be used to refer to either a physical 
address in a cabinet or a transmitting node’s temporal position within a table-driven sequence.  
This glossary is provided to resolve ambiguity and to keep this Handbook consistent. 
 
Anisochronous (also Aperiodic):  The essential characteristic of a time scale or signal such that 
the time intervals between consecutive significant instants do not necessarily have the same 
duration or durations that are integral multiples of the shortest duration. 
 
Asynchronous:  The essential characteristic of time scales or signals such that their 
corresponding significant instants do not necessarily occur at the same average rate.  This term 
often is misused to mean anisochronous. 
 
Babbler:  A node that has babbling transmissions. 
 
Babbling:  The act of transmitting a signal not in accordance with a network’s protocol.  
Typically, this means transmitting at times not allowed by the protocol. 
 
Backplane:  A card that connects together one or more cards or modules. 
 
Bit-dominant signaling:  A bit-dominant signaling method has at least two classes of signals, 
having the property of dominance.  Signals with this dominance property have a priority such 
that if two or more signals appear on the media the same time, only the (most) dominant signal is 
perceived by receivers. 
 
Box (also Cabinet or Rack):  A mechanical enclosure that contains one or more cards or modules 
that are typically connected together via a backplane. 
 
Bridge:  A client that conveys data through and between two or more networks. 
 
Byzantine Fault:  A fault presenting different symptoms to different observers. 
 
Byzantine Failure:  The loss of a system service due to a Byzantine fault in systems that require 
consensus. 
 
Card:  A thin rectangular supporting member that electronic components are mounted on.  These 
components could be mounted on one or both sides of the card. 
 
Client:  A function that uses one or more services of the network.  Note that this is a functional 
definition; whereas Card, Module, and Box are mechanical definitions; and Node, Device, and 
Drop are electrical definitions.  There may be clients that have a need for, or are only capable of, 
using a subset of the services provided by the network.  Roles of the client are Master, 
Contender, Slave, Peer, Bridge, or Monitor.  A client that is capable of performing one of these 
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roles, whether or not it is currently performing such a role, is called role-capable.  For example, a 
client that can be a Master (even if it is not the current Master) is called Master-capable. 
 
Criteria (see Evaluation Criteria) 
 
Databus (see Data Network)  
 
Data Network:  The communication connection among electronic components.  The term bus 
and databus many times are used in a sense that is synonymous with network.  However, the 
strict definition of bus is a particular network topology.  Other topologies include mesh, ring, and 
star.  The term network is preferred to avoid ambiguity.  The term bus is used in this document 
only to denote a particular topology.  This is to avoid oxymorons like ring bus.  However, bus 
and databus are used in this document to mean network when referencing other documents that 
use these terms in the ambiguous sense. 
 
Device (see Node) 
 
Drop:  An electrical connection to a network.  A box or module may have none, one, or multiple 
connections to the network. 
 
End Node:  A node that is the ultimate producer or consumer of a data network’s service (e.g., 
the transmitter or receiver of a message). 
 
Evaluation Criteria:  A characteristic or feature of a data network that may have an impact on 
system safety.  One cannot definitively say that a particular characteristic or feature would have a 
safety impact for any particular system, because the system’s architecture in which the network 
is used may be insensitive (e.g., not needed) to the particular characteristic or feature, but 
sensitive architectures would be a problem.  For example, a network with a flawed retry 
mechanism could work just fine in a network that did not do any retries.  
 
Frame:  A term that has two distinct definitions in wide use by the aviation digital electronics 
communication and other communication fields.  In aviation digital electronics, the term usually 
means one repetition of a repeating sequence of scheduled message times.  In other 
communication fields, the term often is used as being synonymous with message or packet.  
Because of the wide use of both of these definitions, selecting one definition over the other 
would be foreign to a large number of the intended audience of this Handbook.  Compounding 
this problem is the fact that it is often difficult to distinguish between the two definitions purely 
by context.  Therefore, this Handbook will try to minimize the use of this term and ensure that 
the correct meaning is obvious whenever it is used. 
 
Guardian:  A device placed in the signal flow of a data network that is used to contain failures. 
 
Head-of-Line Blocking:  The characteristic of a first-in, first-out (FIFO) buffer that causes 
priority inversion when the head (next item to be output) of a FIFO queue is blocked from being 
outputted because it has a low priority, while items behind it have a high enough priority that 
they could have been outputted from the FIFO if the head item was not blocked. 
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Host:  Client hardware. 
 
In-line Error Detection:  Any error detection scheme that does not compare or vote among 
redundant paths. 
 
Intermediate Stage:  A bridge, guardian, or other device through which data network signals 
must pass. 
 
Intrinsic Safety:  A design technique applied to electrical equipment and wiring for hazardous 
locations.  The technique is based on limiting electrical and thermal energy to a level below that 
required to ignite a specific hazardous atmospheric mixture. 
 
Isochronous:  The essential characteristic of a time scale or a signal such that the time intervals 
between consecutive significant instants either have the same duration or durations that are 
integral multiples of the shortest duration. 
 
Masquerade Failure:  A failure that causes one node to pretend to be another. 
 
Master:  A client that has control of the assets (or a subset of the assets) of a network.  Generally, 
there is, at most, one master at any time.  However, there may be networks that use an oligarchy, 
where several masters jointly and concurrently control a set of assets.  In the cases where an 
oligarchy is used, the term Master shall mean every member of the oligarchy that can 
concurrently affect control of its assets.  There are some sophisticated networks that allow a 
Master to control just a subset of its assets.  In this case, there may be multiple Masters, as long 
as the assets they each control are not also under the control of another Master.  These asset 
subsets may be of different services, e.g., there may be a data transfer Master and an interrupt 
Master; or the assets of a service may be partitionable, e.g., the individual links of media in a 
mesh topology. 
 
Master/Shadow:  A fault-tolerant scheme in which one redundant device (the Master) is in 
control until it fails.  Upon the Master’s failure, another redundant device (the Slave) takes over.  
This scheme may have multiple Slaves in a priority chain in which a Slave takes over whenever 
all higher-priority, redundant devices have failed. 
 
Message:  One continuous transmission on the network. 
 
Module:  A unit of electronics that consists of one or more cards mechanically bound such that 
they are inserted and removed from a backplane as a single unit. 
 
Monitor:  A client that nonintrusively observes the actions of the network without being a 
Master, Peer, or Slave. 
 
Network (see Data Network) 
 
Node or Device:  The electronics connected to a network via a single drop. 
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Partitioning (see Robust Partitioning) 
 
Peer:  A client that has equal authority over the assets of a data network. 
 
Robust Partitioning:  A mechanism for assuring the intended isolation of independent aircraft 
operational functions residing in shared computing resources in all circumstances, including 
hardware and programming errors.  This mechanism was developed for the ARINC 650 family 
of characteristics.  Support for this mechanism is provided particularly by ARINC 653 and 659. 
 
SERDES:  A portmanteau for “serializer deserializer.”  An electronic component that converts 
parallel data to serial, and serial to parallel.  This component usually includes a method for 
encoding the serial data such that a clock can be reconstructed when the data is converted from 
serial to parallel.  This encoding may also be designed to provide for their desirable features such 
as direct current balance. 
 
Signal:  A variation of a physical quantity used to convey data. 
 
Slave:  A client that is responding to the control of a Master. 
 
Slot:  A predefined interval of time in which a node (or subset of a system’s nodes) has exclusive 
access to network resources.  In minislotting, the minislot interval of time defines when the node 
may claim access to resources and then the excess is held beyond the end of a minislot time 
interval. 
 
Source coverage:  Fault tolerance mechanisms that contain the effects of a fault to remain within 
the fault’s source or provide means to make all the source’s faults easily detectable. 
 
Symbol:  A signal state within a defined time interval that is recognized as distinct from other 
symbols. 
 
Synchronous:  The essential characteristic of time scales or signals such that their corresponding 
significant instants occur at precisely the same average rate.  Note:  The timing relationship 
between corresponding significant instants usually varies between specified limits. 



 

APPENDIX A—DATA NETWORK TECHNOLOGY AND ISSUES 

A.1  PHYSICAL LAYER. 

The lowest level (Layer 1) of most data communication reference model stacks, such as the 
International Standard Organization Open System Interconnect, Society of Automotive 
Engineering (SAE) International, or Department of Defense, is the physical layer.  The function 
of the physical layer is to send and receive communication symbols via network media.  Layer 1 
defines mechanical characteristics (such as connector configuration), characteristics of the 
media, and characteristics of the signal.  The physical layer is responsible for transferring 
individual bits through the communication media.  This level is concerned with the following: 
 
• Connector geometry, gender, and pin assignments 
• Physical connections to the media and their characteristics 
• Media topology 
• Media characteristics (attenuation, delay distortion, impedance, noise, etc.) 
• Full-duplex or half-duplex transmission  
• Signal speed 
• Definition of symbols with respect to signal characteristics (e.g., in amplitude and time) 
• Physical service data units; serial bits or multiple bits in parallel 
• Handshaking 
• Notification of physical fault conditions 
 
The laws of physics impose limits on the frequency and quality of a signal that can be 
transmitted through a given media, as described by the works of Nyquist [A-1] and Shannon 
[A-2].  Designers of each data network try to create a physical layer that maximizes data rate and 
quality for a given cost. 
 
Given the physics and cost constraints, some compromises and trade-offs must be made.  Users 
of data networks in safety-critical applications must be aware of how these design choices for the 
physical layer can impact system safety via the quality of data transmission provided by the data 
network. 
 
A.1.1  ENVIRONMENT. 

Data network components must meet the requirements of an aviation digital electronics 
environment, as described in RTCA DO-160.  This means that the data network components not 
only must survive this environment but must also simultaneously satisfy all requirements placed 
on the data network while residing in this environment. 
 
A.1.2  PROBABILITY OF BIT ERRORS. 

Because the physical layer is the foundation upon which all other protocol layers depend, any 
failure in this layer will adversely affect all the layers above it unless adequately mitigated.  An 
obvious question that must be answered is:  What is the probability of failure in the physical 
layer? 
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Physical layer specifications often state a bit error rate (BER), which gives the probability of 
error for each bit.  This number is typically in the 10-6 to 10-15 range.  The purported source of 
these errors is the signal-to-noise ratio (SNR).  Formulas relating SNR to BER have a form 
similar to: 
 

BER = ½(1−erf)(Eb/No)1 /2 

 
where erf is the error function, Eb is the energy in one bit, and No is the noise power spectral 
density (noise power in a 1-Hz bandwidth).  The ratio Eb/No is a form of SNR.  The energy per 
bit, Eb, can be determined by dividing the carrier power by the bit rate.  As an energy measure, 
Eb is measured in joules.  No is in power (joules per second) per Hz (seconds), so Eb/No is a 
dimensionless term, or simply, a numerical ratio. 
 
It is important to note that the exact formulas for BER depend on the modulation and encoding 
schemes used, because these schemes, coupled with the physical properties of the media, are 
important for establishing the so-called “eye pattern.”  This pattern encloses the space bounded 
by the minimum upper value, maximum lower value, and the minimum spacing between 
transitions of a signal.  Figure A-1 shows a typical eye pattern created by the superposition of 
many symbols and the effects of additional signal noise.  The two dashed horizontal lines in the 
figure represent the minimum and maximum value of the receiver’s input threshold that the 
receiver uses to determine whether an incoming signal is high or low.  The two vertical dashed 
lines represent the variation in the time that the receiver samples the input.  A receiver’s decision 
about the data value of an incoming signal takes place within the area enclosed by these dashed 
lines, which is highlighted by the gray box in the figure.  The distance between this box and the 
incoming signal’s eye pattern determines the noise margin of the receiver.  It is clear that the 
smaller the area enclosed by the eye pattern, the higher the probability that an error will occur.  
The size of the eye pattern is determined by the modulation and encoding schemes plus signal 
noise.  Thus, claims of a specific BER without reference to the modulation and encoding 
schemes and assumed noise amplitudes are worthless for predicting the probability of bit errors.  
When establishing the actual value for BER, the test patterns used in an evaluation must be those 
that are actually used by the network, not just the linear feedback shift register-generated pseudo-
random bit sequences used by most BER test equipment.  The BER test must also be run in the 
same noise environment as the actual system will experience. 
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Figure A-1.  Eye Pattern 

The designs of data network error handling and data network reliability analyses are often based 
on the misconception that bits traversing a data network are independent of other bits on the 
same network medium.  However, designers of data network physical layers are familiar with a 
phenomenon called intersymbol interference (ISI).  The definition of ISI from the Federal 
Standard 1037C [A-3] is: 
 

“1.  In a digital transmission system, distortion of the received signal, which distortion 
is manifested in the temporal spreading and consequent overlap of individual pulses to 
the degree that the receiver cannot reliably distinguish between changes of state, i.e., 
between individual signal elements.  Note 1:  At a certain threshold, intersymbol 
interference will compromise the integrity of the received data.  Note 2:  Intersymbol 
interference attributable to the statistical nature of quantum mechanisms sets the 
fundamental limit to receiver sensitivity.  Note 3:  Intersymbol interference may be 
measured by eye patterns. 
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2.  Extraneous energy from the signal in one or more keying intervals that interferes 
with the reception of the signal in another keying interval. 
 
3.  The disturbance caused by extraneous energy from the signal in one or more keying 
intervals that interferes with the reception of the signal in another keying interval.” 
 

ISI can be caused by timing jitter from adjacent bits, “baseline wander,” or reflections due to 
impedance mismatches. 
 
It is clear that the transitions that form the sides of an eye pattern are affected by the adjacent 
bits.  Bits much further away also can impact an eye pattern via baseline wander caused by 
accumulated effects of direct current (dc) imbalance that charge the capacitors and inductors in 
the communication path.  These capacitors and inductors include the components that a signal 
must go through (such as transformers) and the intrinsic characteristics of the media and any 
other components that touch the media (e.g., each receiver and each transmitter adds parasitic 
capacitance to the media).  This baseline wander raises or lowers the eye pattern for every bit, 
shifting it with respect to the receivers’ input threshold.  This shift affects the probability that the 
receiver sees an input as one value or another as long as the baseline has wandered away from 
nominal.  During its development, opponents of the 100BaseTX Ethernet design touted the fact 
that there existed “killer packets.”  These are packets containing particular data patterns that 
produce baseline wander bad enough to induce bit errors on their own.  Most Ethernet PHY 
chips have active compensation for some amount of baseline wander.  When using 100BaseTX, 
care should be taken to provide a means to prevent killer packets from appearing on the network 
or to use only those PHY devices that can compensate for killer packet levels of baseline wander. 
 
Another adverse effect that can cause correlated bit errors is reflections due to impedance 
mismatches.  Impedance mismatches can occur whenever the media or the electrical properties 
surrounding it changes.  This happens whenever the media is split (e.g., for stubs or drops), when 
the signal passes through a connector, at receivers and transmitters, or by having inadequately 
shielded media pass near materials of different electrical characteristics.  Note that these 
impedance concerns are true for both electrical and optical data communication. 
 
Another phenomena with some characteristics similar to that of impedance mismatch reflections 
is the problem of the “Wired-Or” glitch (which can be viewed as “Wired-And” with the 
application of DeMorgan’s theorem).  Data networks that are susceptible to this problem are 
those that exploit a bit-dominant signaling method on the media to perform some logic function.  
One such function is bit-dominant bitwise priority arbitration.  Examples of networks that use 
bit-dominant bitwise priority arbitration include the Controller Area Network (CAN), which is 
commonly used in automotive applications, and the SAE AS4710 PI-bus, which is the military 
avionics standard backplane bus.  The Wired-Or glitch occurs when two or more transmitters 
drive a dominant signal onto the medium and a proper subset of these transmitters stops driving 
the dominant signal.  When this happens, the medium state near these transmitters changes to the 
recessive state for a time equal to the round-trip delay between them and the nearest 
transmitter(s) still driving the medium to the dominant state.  To keep a receiver from 
erroneously interpreting these glitches as valid changes of signal state, the receivers must be 
designed to tolerate these glitches, or design rules must be followed that limit the duration of the 
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glitches (usually by limiting the length of the medium as a function of the bit width) to a duration 
that can be tolerated. 
 
BER tests must be done using the worst-case modulation and encoding scheme symbol patterns, 
the worst-case signal path (including the effects of all inductors and capacitors), and the worst-
case reflections due to impedance mismatch.  Design, installation, and repair rules must be 
established so that situations worse than those used in this test do not occur. 
 
BER is only the beginning, the lower bound, of the probability for erroneous bits.  There are a 
number of other sources that can cause erroneous bits.  These sources include:  external noise 
sources (including crosstalk), clock jitter and drift within transmitters and receivers, metastability 
within receivers, and other hardware failures. 
 
Trying to tolerate failures caused by external noise sources is difficult because the external noise 
sources (such as crosstalk, lightning, and high-intensity radio frequency (HIRF)) can cause 
arbitrary error patterns with unknown probabilities.  The best, and most widely used, way of 
dealing with external noise sources is to try to make the bits immune to upset.  This immunity 
can be produced by shielding the media from external noise sources, making the signaling 
scheme robust (e.g., differential drivers with large margins), and adding components to filter out 
noise.  A number of recent developments have eroded these protections.  Composite skin aircraft 
provide less protection against noise sources outside the aircraft.  Newer, higher-speed data 
networks use signaling levels with smaller margins.  The wider bandwidths of the higher-speed 
data networks make it more difficult to filter out noise.  One way to counter the erosion caused 
by the last two trends is to minimize the speed and bandwidth required to meet the system’s data 
throughput needs; that is, to use a network that is as efficient as possible.  No matter how much 
effort is put into trying to make a data network immune to external noise, there can always be 
some noise source with a large enough magnitude to overcome these efforts.  When a data 
network is overwhelmed by large-amplitude external noise, it is important for the network to 
recover as soon as possible. 
 
Some designers are now suggesting the use of wireless data networks within an aircraft.  There 
have even been suggestions that these wireless data networks be used for safety-critical 
functions.  However, this appears to be a daunting design challenge given that the external noise 
sources (such as lightning and HIRF) can cause arbitrary error patterns with unknown 
probabilities. 
 
It is hard to reconcile an existing electromagnetic-interference requirement for a wired data 
network to survive 200 volts per meter of noise versus a wireless receiver’s input being almost a 
million times more sensitive. 
 
A.1.3  PROBABILITY OF ELECTRICAL COMPONENT FAILURES. 

The avionics industry has a long history of evaluating the dependability of a system, at least for 
benign faults (i.e., faults that are inherently self-containing or can obviously be detected and 
contained).  However, the fact that complex integrated circuits can have arbitrarily bad behavior 
is too often ignored.  Even extremely simple analog devices can have surprising failure modes.  
For example, a simple Military Standard (MIL-STD)-1553 databus transmitter was observed that 
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produced a perfect Manchester waveform output when the component had no signal input.  A 
similar problem has been observed with a fault-free RS-485 driver transmitting a rectangular 
waveform when its inputs were “stuck high.”  When applying the evaluation criteria described in 
this report, one must remember that electronic circuitry can fail in a way that produces arbitrarily 
bad behavior, limited only by the energy provided to it (which can be considerable when stored, 
e.g., capacitors). 
 
With the advent of higher-speed networks, smaller impairments to a signal can cause problems.  
This creates a concern for the quality (including aging effects) of connectors, media, and drivers. 
 
As data network speeds increase, not only does the SNR decrease on the network media, it also 
decreases within the electronics.  This reduction in SNR makes electronics more susceptible to 
single-event upset (SEU) and metastability.  The evaluation of SEU susceptibility should be done 
as part of the environmental evaluation.  
 
Metastability is an electronic circuit design issue rather than an environmental issue.  As clock 
speeds increase to create higher-performance electronics, the amount of circuitry that can be 
driven by a single clock zone decreases.  This creates more clock zones and the need for a larger 
number of synchronizers at the boundaries between the different clock zones.  Each synchronizer 
has some probability of metastability failure.  The metastability failure rate for a synchronizer is 
given by the formula 
 

α*fdata*fclock*e−βt 
 
where α and β are constants unique to each synchronizer implementation, fdata is the frequency 
of the data, fclock is the frequency of the clock, and t is the time that the synchronizer waits for 
its first-stage flip-flop to settle to a valid value.  As data network speed increases, fdata and 
fclock tend to increase proportionately and t is the inverse of fclock (in the design of most 
synchronizers, t is one clock period).  This means that synchronizer transient failure rates 
increase with system speed (S) proportional to S2eS.  This already very steep function is 
exacerbated by the fact that higher clock speeds require more synchronizers.  Luckily, the very 
characteristics that allow increased speed also tend to improve the values of α and β.  However, 
the only way to determine accurate values of α and β is to test for them.  
 
Synchronizer metastability error rate is tested by giving the synchronizer data that is 
asynchronous (and statistically independent) to the synchronizer’s clock while sweeping the 
value of t.  The resulting number of errors for each t is fitted to a semi-log line versus t.  The 
intercept of this line is α and the slope is β.  It is important to note that this test must be done on 
an actual implementation of each synchronizer design.  A very widely held misconception is that 
α and β depend only on the design of the first-stage flip-flop in the synchronizer.  While the 
characteristics of this flip-flop have a large influence on α and β, it is not the only influence.  As 
electronic component geometries shrink, the electrical characteristics of interconnect actually 
become more important than that of transistors.  This increases the importance of characterizing 
the interconnect between the first-stage flip-flop and the second-stage flip-flop in each 
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synchronizer design.  Electrical characteristics of the second-stage flip-flop (such as input 
thresholds) are also important.  The difference in results from testing the actual synchronizer 
design versus testing just the first-stage flip-flop may not be significant for applications that do 
not have stringent safety requirements.  But, for systems that have dependability requirements in 
the neighborhood of 10-9, this difference could consume the entire dependability budget.  Thus, 
for a synchronizer metastability error rate test to be valid, the test must be performed on the 
actual synchronizer design. 
 
One factor that affects BER is jitter on the input-sampling clock in the receivers.  Higher data 
rates are more sensitive to this jitter.  Often, the receivers use phase-locked loops (PLL) to create 
these clocks.  The PLLs are driven from an external clock source.  The tighter jitter requirements 
for higher-speed data networks often require higher-quality external clocks that drive the PLLs.  
These clock quality requirements often include restrictions on short-term and long-term jitter.  
The same clock quality issues affect transmitters.  In this case, jitter on a transmitter clock causes 
jitter in the data.  The sum of the transmitted data jitter and received clock jitter affect the error 
rate of the received data. 
 
A design factor related to the input-sampling clock jitter in receivers is the ratio of the clock’s 
period to the smallest interval between input signal transitions.  This has a large impact on the 
gray box in figure A-1.  A higher-frequency sample clock simultaneously makes the box smaller 
horizontally and allows the box to be placed more precisely in the center of the eye.  A sample 
clock that is too slow can place the box too close to the edge of the eye pattern.  This can be a 
source of bit errors in the receiver and be a source of asymmetric or so-called Byzantine faults. 
 
Jitter and frequency offsets between a transmitter’s clock and a receiver’s clock also can cause 
buffer overruns and underruns in elasticity buffers and can be the source of asymmetric and 
Byzantine faults. 
 
A.1.4  ELECTRICAL ISOLATION PROPERTIES. 

The causes of total system failure can be segregated into three main classes:  exhaustion of 
redundancy, single point of failure, and lack of fault containment.  Of these, the one that is most 
often seen as part of real-world total system failures is the lack of fault containment.  One 
important aspect of fault containment is the electrical isolation between redundancies.  In 
examining a system design for possible electrical fault propagations, one can use the following 
mental process, which imagines that: 
 
• Each redundant power supply is painted a unique color 
• Each electron leaving a power supply is painted the same color as that supply 
• Each component or conductor that an electron enters is painted that electron’s color 
• If there is a color conflict, a possible galvanic fault propagation path has been found 
 
To prevent the data network from becoming a galvanic fault propagation path, these paths are 
usually interrupted with attenuators and resistors, fiber optic cables, optical isolators, or 
transformers.  Some of these isolation methods impose requirements on the physical layer 
signaling.  For example, transformers needed dc-balanced signaling, such as Manchester or 
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8b/10b.  Some of these isolation methods may preclude the use of collision detection or the use 
of mixing dominant and recessive signals on the media to perform some logic function. 
 
Some networks, such as universal serial bus, power over Ethernet, and Institute of Electrical and 
Electronic Engineers (IEEE 1394), transmit power on some of the conductors in their cables.  
Requiring use of this power creates a significant problem for galvanic isolation. 
 
Many fault-tolerant architectures include the concept of receive-only nodes.  The required 
characteristic of these nodes is that they can receive information that is transferred across the 
media, but are prevented from having any effect on any shared media.  In these architectures, it is 
essential to provide assurances that these receive-only nodes cannot affect the data network. 
 
A.1.5  PHYSICAL COMPOSABILITY. 

As the size of a network grows in the number of nodes, number of links, number of 
taps/splices/wyes, link distances, etc., performance or signal quality can suffer.  Some of the 
physical layer characteristics that can be adversely affected include a decrease in signal margins, 
added latency or propagation delays, an increase in reflections due to impedance mismatches, 
and an increase in the probability of reflections constructively adding together to create higher-
amplitude problems.  A well-designed data network anticipates the effects of network growth 
and can work correctly with any size network up to explicitly stated limits.  The description of a 
data network may include design rules that must be followed for the data network to maintain 
sufficient physical layer quality margin as the size of the network changes.  These rules can 
include such things as topology restrictions (e.g., nodes on a bus cannot be connected any closer 
than a certain interval), limitations of signaling speed versus distance, or setting certain 
parameters within the data network’s components that affect its performance (e.g., setting 
intermessage gap sizes or contention resolution times based on the maximum round-trip delay 
over a given topology installation). 
 
A.2  DATA LINK LAYER. 

The data link layer is the layer immediately above the physical layer in most data communication 
reference model stacks.  It provides the functions, procedures, and protocols needed to establish, 
maintain, and release data link connections between the nodes of a network.  A conceptual level 
of data processing or control logic in the hierarchical structure of a node is responsible for 
maintaining control of the data link.  The data link layer’s functions include bit injection into the 
transmitter and bit extraction at the receiver; address and control field interpretation; command 
and response generation, transmission, and interpretation; synchronization; error control; and 
flow control. 
 
The data link layer is divided into two sublayers:  the media access control (MAC) sublayer and 
the logical link control (LLC) sublayer.  The MAC sublayer controls how a node on the network 
gains permission to transmit on it.  MAC sublayer protocols often try to provide prioritization or 
fairness in granting access to the media.  MAC sublayer protocols also try to maximize the use of 
the media and minimize the probability of starvation (not granting access to requesters).  The 
LLC sublayer controls frame synchronization, flow control, and error checking.  Conceptually, 
the LLC sublayer sits on top of the MAC sublayer. 
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A.2.1  The MAC. 

The MAC sublayer is a particularly important part of a data network’s protocol when the 
network is used for real-time systems.  Simple problems in the MAC sublayer can cause 
catastrophic loss of the services that the real-time system needs from the data network.  These 
problems include no access (starvation), not enough access, or wrong time access.  One source of 
these problems is the design of the protocol itself, coupled with access demands and timing of 
clients, including faulty clients that fail to follow the behaviors expected or required by the data 
network specification. 
 
Other problems can be caused by failures (including permanent and transient failures) in the 
hardware that directly controls or accesses the network media.  These failures may be introduced 
by any of the sources described in section A.1.  Of particular concern is the possible brittleness 
(lack of robustness) of the MAC sublayer protocol.  That is, does the MAC sublayer protocol 
amplify the effect of small failures and errors such that they become large problems?  For 
example, does the MAC sublayer protocol allow transient failures and errors to have an effect 
that persists longer than current transmissions? 
 
The following six sections describe problems unique to each type of MAC. 
 
A.2.1.1  Master and Slave. 
 
The simplest MAC mechanism is to designate a single node as the master controller.  This single 
node will have sole authority to grant access to data network’s media.  The most common 
example of this kind of MAC in avionics is the MIL-STD-1553.  A centralized media access 
controller has several weaknesses; the most obvious is that it is a single point of failure.  That is, 
if the controller fails to function or functions incorrectly, the entire communication system will 
fail.  This problem can be mitigated by adding fault tolerance, either within the controller or by 
having multiple controllers.  However, designing such fault tolerance is difficult, and no known 
data networks that are now used or proposed for aviation digital electronics employ such a 
scheme. 
 
A.2.1.2  Bit-Dominant Arbitration. 
 
Bit-dominant bitwise arbitration, sometimes called the Lanning protocol, is a very old MAC 
mechanism.  It was used in telegraphy about a century ago.  This mechanism uses two (or more) 
classes of signal that have a dominance characteristic such that if more than one signal appears 
on the media simultaneously, only the (most) dominant signal is perceived by receivers.  Each 
message begins with a sequence of bits representing the message’s priority, most significant bit 
first.  As each bit is transmitted, each transmitting node checks the value on the media.  If the 
value transmitted by a node is recessive, but the value on the media is dominant, the node 
recognizes that it has a lower priority than some other node that is currently transmitting.  As 
soon as a node recognizes that it has lower priority, it stops transmitting its message.  The lower-
priority node(s) may again try to transmit after the current message transmission completes. 
 
This arbitration method has a number of physical layer issues.  Another issue is the constraint 
that each bit must have a duration that is longer than the worst-case, round-trip delay on the 
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media.  To this constraint, one must add the effects of local clock jitter, sampling granularity 
error, and the signal jitter caused by the dc component of these relatively large bits. 
 
This type of arbitration has no fairness.  It is possible for one node to use all the network 
bandwidth and cause starvation in all other nodes.  The system designer must add fairness on top 
of these protocols. 

 
A.2.1.3  Carrier Sense Multiple Access/Collision Detect. 

 
Carrier sense multiple access/collision detect is the MAC used for IEEE 802.3 (Ethernet).  A 
node that wants to transmit first, listens to the media.  If the media is busy, the node waits.  If the 
media is not busy, the node attempts to transmit.  If more than one node tries to transmit at the 
same time, a collision is detected.  When a collision is detected, the transmitting nodes stop 
transmitting and try again later. 
 
Well-known problems with this arbitration scheme include the following. 
 
• It is nondeterministic, e.g., miniscule changes in timing can cause changes in message 

order, and there is the small (but unknown) probability that collisions among transmitters 
can recur until they abort and then recur again so no messages ever get delivered). 

 
• It has no fairness guarantees. 
 
• It turns simple deaf nodes into babblers. 
 
• How is the message schedule determined or agreed upon? 
 
• How are system clocks synchronized to ensure that all nodes have the correct notion of 

system time? 
 
• Corrupted tokens—which means the next node that should have gained access to the 

media will not know that it should have done so and traffic will cease. 
 
• Swallowed tokens—where the current node holding the token dies before it can send the 

token on, again traffic will cease. 
 
• Counterfeit tokens—to solve the above problems, new tokens have to be minted, failures 

in this mechanism can cause duplicate tokens. 
 
A.2.1.4  Time Division Multiple Access. 
  
Time division multiple access (TDMA) and its variants use a preagreed order of transmission for 
the size of the message.  These types of MAC require some form of clock synchronization. 
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A.2.1.5  Token Passing. 
 
In a token-passing MAC, the node that currently has access to the media must hold a token.  For 
another node to gain access to the media, the current node must pass this token on to the other 
node. 
 
A.2.1.6  Minislotting. 
 
A node using a minislotting MAC measures time from the end of each transmission.  A node is 
allowed to transmit if the time it measures exceeds a threshold unique to that node and no other 
node has started to transmit.  ARINC 629 uses a variation of this MAC.  One problem with basic 
minislotting is that it has no fairness.  ARINC 629 attempts to solve this problem by adding 
another timer, which blocks a node from transmitting more than once in a period that is long 
enough to allow other nodes fair access to the media.  However, this scheme does not prevent a 
node (or multiple nodes) from transmitting for a length of time that will starve other nodes. 
 
A.2.2  MAC Replacements. 

Many dependable, real-time data network systems use the hardware from an existing data 
communication network that has an inadequate MAC and then apply a substitute MAC on top of 
the existing hardware.  This effectively removes the MAC and turns the existing data 
communication network node hardware into something that is little more than a simple 
serializer/deserializer (SERDES) that just converts parallel data to serial data and back again, but 
requires much more hardware (e.g., in the form of gate count) than would be needed to build just 
a SERDES.  Many such networks are based on IEEE 802.3 (Ethernet).  The system designer 
must consider whether the excess hardware can cause problems under unintended circumstances. 
 
A.2.3  LINE-LEVEL ENCODING. 

Line-level encoding is the way that logical data is physically represented on a network. 
 
BER is heavily influenced by the eye pattern that is created by a network’s line-level encoding 
scheme.  In addition to affecting the data network’s own signal quality, line-level encoding can 
also affect other equipment via radiated emissions.  Thus, it is important to determine whether 
the spectrum radiated from the line-level encoding has components in frequencies that can 
adversely affect other equipment. 
 
A.2.4  MESSAGE FORMATING (FRAMING). 

The message formatting or framing part of the LLC sublayer handles groups of bits sent over a 
link as discrete units.  A message (also known as the frame or a packet) may contain control and 
addressing information, as well as error detection, for example, cyclic redundancy code (CRC) 
information or forward error correction information.  The size and composition of the frame 
varies according to the protocol.  Depending on the protocol, components of a message may 
include preamble, start delimiter, source address, destination address, routing information, length 
field, flow control information, MAC information, error detection or correction information, or 
end delimiter. 
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In evaluating the dependability of a message format, one must examine the consequences of any 
part of that format having an error. 
 
Preambles need to be of sufficient size to restore dc levels to the nominal value, facilitate 
synchronization of the bit-sampling clock to the incoming data stream, etc.  Because dc levels 
may not have nominal values during the receipt of a preamble, there is a good probability that 
receiving nodes will see errors in the preamble.  Some poor receiver designs assume these errors 
will always be at the beginning of the preamble and, thus, only tolerate errors there.  A more 
robust design would tolerate any number of failures in the preamble except for errors that make 
the preamble look like the next part of the message, typically a start delimiter.  This is possible 
because preambles typically are highly redundant with no unique information residing in any one 
bit. 
 
Are there parts of a message where an error could cause the loss of more than one message?  
This question includes not only bit errors that occur while the message transits drivers, media, 
and receivers, but also erroneous values that may be created by the source node or intermediate 
stages.  An example is the corruption or counterfeiting of a token bit pattern in a token-passing 
MAC. 
 
Other than redundancy bits (e.g., error detection or correction fields), is the message format 
efficient?  Note that inefficiency leads to more bits, which leads to a greater possibility of an 
error.  Related to this concept is the observation that some information that is transmitted in a 
message in one protocol (where it is vulnerable to errors) may not be transmitted in another 
protocol.  For example, there are table-driven protocols in which all addressing, length 
information, etc., are held in a memory protected from errors rather than being transmitted on the 
network.  There also are protocols that use redundant signal lines for error detection and 
correction (EDAC) instead of adding check bits to the message.  Combining these two ideas, one 
could have a data network (such as SAFEbus) where messages have absolutely no overhead; 
every message bit is a data bit. 
 
A.2.5  ERROR DETECTION. 

Network criteria that have significant influence on the overall safety are the error detection 
capabilities of the link layer, because efficient error detection directly affects the integrity of the 
data.  The key to the underlying effectiveness of the error detection mechanism is the assumed 
failure model of links.  It is often assumed that link failures are primarily bit flips, and the 
vulnerability of the link layer error detection mechanisms to undetected errors in data is 
evaluated in the context of BER.  Yet, the BER effectiveness evaluation is only one criterion to 
be evaluated.  Error detection criteria should stretch to include effects, such as wire crosstalk, 
and correlated errors, such as HIRF events, unless mitigated with other means (such as 
shielding). 
 
This section discusses error detection of the link layer.  Link layer errors can occur in the 
communication media, in its drivers and receivers, or in intermediate nodes (such as repeaters).  
Section 5 addresses some error detection mechanisms that may reside in the equipment at the 
ends of the network or at intermediate stages within the network. 
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A.2.5.1  Protocol Violation Error Detection. 
 
Detection of errors on the link layer should include a strength evaluation of a network protocol 
state machine to detect errors that are semantically incorrect.  For example, message format 
fields may exhaustively use all combinations of possible values.  Implementation of the protocol 
and protocol state machine should be able to detect violations caused by values that are not valid.  
Otherwise, erroneous messages may be interpreted in a nonintended way, resulting in safety 
implications.  
 
A.2.5.2  Parity and Frame Check Sequences. 
 
Parity and frame check sequence evaluation criteria that do not include the adequate description 
and validation of error pattern may result in the use of mechanisms that do not have adequate 
error detection capabilities.  Typically, the validated BER can be used for adequate error 
detection coverage assessment.  There are many different error detection mechanisms and 
encodings, such as CRC, Fletcher, Adler, AND, XOR, etc., with different characteristics; 
however, this document only focuses on the characteristics of a few representative mechanisms.  
 
CRCs are commonly used to detect link errors.  In general, CRCs have been found to be 
extremely strong in detection of bit flips.  Yet, the number of bit flips a certain CRC polynomial 
can detect depends on the length of the covered data and the generator polynomial used in the 
check-data computation.  The metric most commonly used for determining the quality of error 
detection is hamming distance (HD), i.e., the minimum number of independent bit flips that can 
result in an undetected error.  Given the HD and BER for the medium, the designer can compute 
the probability of an undetected error.  This probability should be sufficiently small for the 
reliability requirements of the data network. 
 
Another error detection metric is the ability to detect error bursts.  An error burst of a particular 
length, n, is defined as sequence of n bits, the first and last of which are erroneous.  The CRC can 
detect all error bursts of length k (where k is the degree of the generator polynomial) or smaller.  
While CRCs can also detect some error bursts longer than k bits, some error patterns are 
guaranteed to be undetectable, so the CRC should not be relied upon to detect error bursts greater 
than k bits in length.  
 
High error rates and correlated error probabilities may especially be encountered in wireless 
networks, where there is basically no shielding from external effects.  The worst-case analysis 
may become a real challenge for such networks in the aviation digital electronics domain.  
Architectural means, such as voting of triple-redundant data channels as mitigation to in-line 
error detection techniques, can only detect errors on the link if the channels are truly 
independent.  Wireless network connections may be extremely vulnerable to common-mode 
effects on different channels due to unavailability of shielding protection. 
 
In-line error detection may not only affect integrity (namely the probability of undetected errors), 
but also availability.  While BER can be a useful figure to describe environmental effects and the 
integrity mechanisms can be very effective in detecting errors, the detection of an error again has 
implications on the availability of data at the end node.  Any detected erroneous message cannot 
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be used by the application, resulting in decreased availability.  The longer a message gets, the 
more likely a message may not be available due to an error.  Unavailability of data can have 
similar safety effects as incorrect data. 
 
A.2.5.3 Interactions Between Line-Level Encoding and Error Detection. 
 
When assessing the system safety, one must not overlook the potential impact of line encoding 
on the error detection capabilities.  Such interactions should be examined for the worst case.  As 
the CRC (or similar in-line, error-encoding mechanism) is computed over the data, which is then 
transformed to a representation that is sent over the physical layer, the properties of the error 
detection change.  Properties change because the encoder and decoder transform the 
representation.  As a consequence, a single bit flip can result in multiple bit flips for the data at 
the link layer where the CRC is calculated.  Similarly, the perceived error burst length that a 
CRC can tolerate may be shorter than expected due to the encoding.  Figure A-2 depicts a 
scenario of data with a frame check sequence (FCS) that is encoded using 8b/10b as transmission 
format.  The actual error burst is smaller than the maximum error burst tolerated by the CRC.  
Yet, due to the decoding of the physical data, the perceived error burst as seen at the receiver is 
longer than the tolerated value.  If not considered, such interactions between encoding and error 
detection can invalidate error detection analysis. 
 

At receiver: At sender: 
Transmission 

 

Figure A-2.  Error Burst Length Extension Due to Encoding 

A similar effect between the coding and physical layers is the multibit error vulnerability of 
protocols that employ bit stuffing to guarantee a minimum number of transitions at the line level.  
To properly encode and decode the bit-stuffed data, the entire message, including any CRC or 
other error detection field, must be bit-stuffed.  However, a small number of bit-flips in a bit-
stuffed message can result in a cascade error where data bits are interpreted as stuff bits and vice 
versa.  In this case, the number of actual bit flips (as few as two can cause the cascade error) can 
result in a much larger number of bit flips in the decoded message that can exceed the error 
detecting capabilities of the CRC 
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When evaluating the overall error detection coverage, one must include the error detection 
probability of the FCS, the error detection probability (if any) available from the coding scheme, 
and the possible interactions between the two. 
 
Active intermediate stages (such as network relay stations containing active logic, i.e., silicon 
devices) may defeat any in-line error detection mechanisms (such as CRCs), because the 
potential failure mode of such devices may be arbitrary.  The assumption of a uniform error 
model may not hold for such scenarios, because silicon failures may transform in-line error 
detection codes in a way that the frame check sequence is unable to signal an error in the worst 
case. 
 
A.3  NETWORK LAYER, TRANSPORT LAYER, AND NETWORK MANAGEMENT. 

In the OSI model, the network layer provides switching and routing technologies, creating 
logical paths, known as virtual circuits, for transmitting data from node to node.  Routing and 
forwarding are functions of this layer, as well as addressing, inter-networking, error handling, 
congestion control, and packet sequencing.  Above the network layer, the transport layer 
provides transparent transfer of data between end systems, or hosts, and is responsible for end-to-
end error recovery and flow control.  It ensures complete data transfer.  In embedded systems, 
the functionality of these layers is often merged into a single layer of functionality.  This section 
discusses the issues related to the functions of both layers together.  In addition, in some newer 
protocols, (for example, Time Trigger Protocol/SAE Class C (TTP/C) and FlexRay) a network 
management layer is emerging to describe hardware or software services that facilitate message 
agreement, network diagnosis, and synchronization.  Issues relating to these issues are also 
discussed. 
 
A.3.1  NETWORK VULNERABILITY TO ADDRESSING INFORMATION FAILURE. 

If the network technology encompasses message-labeling or node-addressing identification 
information, then the failure modes of the addressing or labeling mechanisms need to be 
evaluated; as such, mechanisms may be vulnerable to component failures or transport corruption.  
An example failure mode is the masquerade failure, where one network node can impersonate 
another node of the system.  Failures of addressing or message-labeling information is especially 
important in integrated modular aviation digital electronics systems comprising numerous 
aircraft functions, because failure of these mechanism can lead to unbounded data flow failures, 
which makes functional failure isolation almost impossible at the application layer. 
 
The data network vulnerabilities to technology shortcomings may differ, depending on the 
network implementation.  If the network packet format includes addressing or other information 
that indicates message content (e.g., a message or label identification), then the network is 
obviously vulnerable to corruptions of these fields during transmission.  For the network to be 
dependable, there must be mechanisms to handle any such corruptions.  These mechanisms must 
be evaluated to establish their coverage (their ability to handle these corruptions).  Note that 
network integrity mechanisms (e.g., frame-check sequence) may detect transmission errors; 
however, these mechanisms have limited coverage, as described in section 4.4 of reference A-4.  
Any fault-handling mechanism must have provable coverage against all the possible failure 
modes of the communication channel.  Message routing and blocking enforcement of 
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intermediate stages (e.g., guardians, etc.) based on addresses or labels need also to be evaluated 
to ensure they provide adequate coverage, as described in section 7.2 of reference A-4. 
 
The influence of software on network-addressing information is also an issue, as discussed in 
section 5.8 of reference A-4.  Such software-directed access may leave a network vulnerable to 
failures that corrupt the addressing information. 
 
In addition to the vulnerability from dynamic errors incurred during transmission, many network 
technologies require configuration tables to assist the network-routing and -addressing logic that 
may be vulnerable to static errors.  The mechanisms to ensure the design correctness and run-
time integrity of these configuration tables must also be evaluated and justified.  These issues are 
discussed in sections 5.3 and 8 of reference A-4. 
 
In some network technologies, routing information and logical topologies may be built at run 
time.  An example is the tree-building discovery protocol of IEEE 1394.  These mechanisms 
must obviously be evaluated in relation to their vulnerability to component failures or data 
corruption, unless failure modes or error detection can be suitably justified.  The vulnerabilities 
that may cause the erroneous invocation of mechanisms that recreate routing information and 
logical topologies must also be understood and analyzed, since such invocation may seriously 
degrade (if not prevent) network operation.  These issues are further discussed in section 5.5 of 
reference A-4. 
 
Similarly, network error-handling logic (that may be invoked by erroneous addressing 
information or that may impact protocol flow) needs to be analyzed to establish a bound on the 
influence of the invocation of the error-handling logic and its impact (i.e., degradation) on 
network performance.  The behavior of any such logic and its associated vulnerability needs to 
be analyzed and justifiably bounded.  This is especially true for centralized intermediate stages, 
as discussed in section 5.3 of reference A-4. 
 
A.3.2  NETWORK VULNERABILITY TO FLOW FAILURE. 

As with network-addressing failures, the network technology’s flow regulation logic also needs 
to be evaluated.  Issues relating to acknowledgement and retry logic are discussed in section 5.9 
of reference A-4.  Issues relating to host interface load balancing and buffering are discussed in 
section 6.1 of reference A-4.  Issues relating to intermediate stages are discussed in section 5.3 of 
reference A-4. 
 
A.3.3  IMPACT OF INTERMEDIATE STAGES. 

If a network encompasses intermediate buffering or relay stages, then the behavior, 
implementation, and impact of the intermediate stages needs to be established and evaluated with 
the network behavior.  The behavior of these intermediate stages can vary considerably with 
network implementation.  In simple form, they may be solely relaying stages.  In more elaborate 
schemes, they can comprise store-and-forward and routing logic.  Finally, in critical networks, it 
is common for such intermediate stages to incorporate error detection or fault containment 
mechanisms.  This section discusses some of the issues and network attributes related to such 
intermediate-buffering schemes that need to be considered and evaluated. 
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A.3.3.1  Vulnerability to Intermediate-Stage Failure. 
 
In networks that deploy intermediate stages, the influence of the intermediate-stage components 
may be significant.  For example, in networks using stars or hubs, the intermediate-stage 
component impacts all the data flowing through it.  The availability of the intermediate-stage 
component must, therefore, be analyzed and justified to be adequate to fulfill the network 
availability requirements.  If multiple intermediate stages are deployed, then the independence of 
intermediate-stage failure should be analyzed and suitably justified.  If intermediate-stage-to-
intermediate-stage signaling is required, then this signaling and logic needs to be analyzed for 
failure vulnerabilities and possible fault propagation.  Similarly, any protocol common-mode 
influence on the intermediate-stage availability must also be understood. 
 
Integrity implications of intermediate-stage mechanisms must be carefully analyzed and 
evaluated.  One of the difficulties of such an analysis is bounding the failure modes of the 
intermediate-stage component.  Since the intermediate stage influences every bit that it is 
relaying, the effects of a faulty intermediate-stage component can be significant.  The integrity 
implications of a failing intermediate stage are very much dependent on network implementation 
and architecture.  For example, in the ROBUS network elements of the SPIDER architecture 
(which votes data from three independent channels), the failure of a single intermediate-stage 
component can be easily detected and is effectively masked from the receiving node.  
 
Alternatively, if a network intermediate stage is developed to have full coverage (for example, 
using self-checking or monitoring schemes), then the failure modes of the intermediate-stage 
component may be suitably justified as benign (e.g., fail-stop).  It is imperative, however, that 
the coverage of the self-checking or monitoring scheme is suitably justified, as discussed in 
section 7.4 of reference A-4. 
 
It is common for networks to rely on in-line integrity mechanisms, for example, CRCs 
checksums, parity, etc.  In such cases, the failure modes of the intermediate-stage component 
become more significant, since the network integrity is dependent on the coverage of these 
codes.  With complex intermediate-stage logic, it is difficult to bound failure modes of the 
intermediate devices, and relatively simple failure modes may have significant impact on in-line 
coverage techniques.  To illustrate the impact of a relatively simple failure mechanism, consider 
the scenario of an intermediate-stage elasticity buffer erroneously underrunning or overrunning.  
If the result of such an overrun or underrun is the insertion or deletion of a single cell from a 
relayed Manchester stream, the resultant relayed stream may suffer a cell shift that causes data 
corruption for the remainder of the transmission.  If such a failure is not detected by the encoding 
or framing scheme, this shifted data stream may easily defeat CRC coverage (as discussed in 
section 4.4 of reference A-4).  In such cases, the data integrity claims of the network are, 
therefore, limited to the failure rate of the relaying component.  This scenario is important as it 
illustrates the interdependencies of the error detection logic (i.e., the framing and encoding layer) 
strength and the CRC coverage.  Strict enforcement and error detection mechanisms may 
strengthen the data integrity claims; and with that said, quantifying such behavior may be 
difficult.  It is also important to understand where the error detection is performed.  For example, 
if the error detection is only performed at receivers, and intermediate stages do not perform such 
action, the reshaping or retiming behavior of the intermediate stage may degrade the end-to-end 
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effectiveness of such detection (i.e., the scenario of erroneous signals at the intermediate-stage 
input getting cleaned up and reshaped by the intermediate-stage action that produces a relayed 
output stream with no encoding errors).  The impact of reshaping and re-encoding layers of 
intermediate-stage logic needs also be considered in this regard.  
 
In addition to hard or transient logic errors, intermediate stages may also be vulnerable to out-of-
specification behavior.  For example, clock drift may lead to similar overrun scenarios, as 
described above.  The network vulnerability to such errors, together with the potential 
contributors to such out-of-specification behavior, need to be understood as the network is 
evaluated.  It should be noted that there may be both systematic contributions, such as long-term 
drift of oscillators and their performance under aging and temperature variations, etc.  They may 
also be due to local transients; for example, acceleration or gravity forces on crystals or PLL 
modulations resulting from power supply instability or fluctuation.  It is obviously important that 
the intermediate-stage elasticity buffers are sized to accommodate such variations.  In addition, 
the intermediate-stage reaction and response to out-of-specification errors is another attribute 
that warrants careful consideration.  
 
For intermediate stages that encompass store-and-forward behavior, the situation is complicated 
further since the behavior of the intermediate-stage component is more complex.  The 
vulnerability of the intermediate buffer memory to transient upsets (such as SEUs) needs to be 
established.  It is preferable if some form of protection is in place.  If only error detection is in 
place (for example, parity mechanisms), then intermediate-stage response to such errors needs to 
be analyzed and understood.  For example, if a parity error causes a reset or machine-check 
exception, then the availability of the intermediate stage would be impacted as the reset 
procedure is initiated.  The vulnerability of the intermediate stage to SEUs and the subsequent 
reinitialization time will then need to be considered when justifying network channel availability.  
It should be noted that a similar analysis is also required for software-implemented switching 
schemes that use random access memory (RAM)-based data with parity-type schemes. 
 
If the intermediate buffer memory is not protected via parity or EDAC schemes, then the impact 
of such upsets on end-to-end integrity claims needs to be understood.  Obviously, should the 
intermediate stage perform recalculation of integrity checksums (such as CRCs), then the impact 
to buffer memory upset is limited by the SEU vulnerability of the intermediate buffer RAM. 
 
In addition to buffer memory errors, faults of the intermediate-stage configuration and routing 
tables also need to be analyzed in a similar manner.  If these are not protected, then the impact of 
erroneous control flow, routing information, etc., needs to be carefully analyzed.  The responses 
to detected errors also need to be understood in relation to their impact on intermediate-stage 
availability, as discussed above. 
 
Permanent faults of the intermediate-stage control and buffering logic need to be considered.  As 
with the simple relaying logic, these may impact data integrity claims.  In addition, when 
buffering action is present, the vulnerabilities to erroneous message forwarding need to be 
analyzed and understood.  Network mechanisms to detect old or out-of-order packet forwarding 
must, therefore, be analyzed and evaluated with the network performance, unless suitable benign 
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failure modes of the intermediate stage can be justified via coverage techniques (self checking, 
monitoring, etc.). 
 
For protocols that incorporate control flow information in the transmission, for example, the 
reset-sequence indicator proposed by ARINC 664 part 7,  the erroneous behavior of a single 
network channel needs to be considered in the redundancy management of networks.  
Mechanisms for redundancy management can be potential logical fault propagation paths and, 
thus, need to be considered when justifying the network availability.  For example, consider the 
scenario of an ARINC 664 P7 babbling switch that only sends frames with sequence number of 
0.  Such a failure could be due to a stuck address line in a switch, resulting in continuous sending 
of the same frame, which might happen to be a frame announcing a reset.  The receipt of such a 
frame on either channel (of the dual-network paths) causes the receiving node to reset its frame 
sequence for a virtual link once (if the redundancy mechanism of ARINC 664 part 7 is used).  
Hence, the erroneous channel may upset the sequencing and data flow of the independent, good 
channel at least once.  The reset-sequence indicator will only be considered once due to the 
integrity mechanism in ARINC 664.  Thus, the influence of a stuck frame is bounded.  Failure 
modes with more complicated failure behavior that could defeat the integrity check of ARINC 
664 end systems may have to be considered if it cannot be argued that their probability of 
occurrence is low enough. 
 
Note that due to the centralized position of the intermediate stage, failure effects, such as those 
described in the previous sections, may touch many parts of the system.  Hence, the common-
mode influence of such intermediate-stage behavior needs to be carefully evaluated and 
understood. 
 
In addition, the intermediate-stage buffering mechanisms and protocol interactions need to be 
understood to mitigate issues relating to head-of-line blocking.  This same problem can occur in 
application services, as discussed in section 6.1.1 of reference A-4. 
 
A.3.3.2  Vulnerability of Intermediate Stage to Fault Propagation. 
 
The vulnerability of the network intermediate stages to faults propagating from erroneous end 
nodes should be established.  Such vulnerabilities may be related to erroneous control data or 
erroneous temporal behavior.  For example, consider a central guardian reintegrating onto a 
TDMA scheme; if the TDMA position is resolved by listening to TDMA sequence index 
indicators included in the TDMA traffic stream and if the integration logic of the intermediate 
stage is not tolerant to erroneous information, a faulty node may be able to delay or prevent the 
intermediate stage recovery. 
 
Similarly, incorrect flow management may impact the intermediate stage or switch performance.  
For example, babbling end nodes or other babbling intermediate stages and switches (sending 
syntactically continuous frames) may impact available buffer space and cause overruns unless 
suitable enforcement and error containment policies are in place.  The buffer management 
policies, associated buffer sizing, etc., need to be carefully analyzed, as network performance 
under normal and erroneous node behavior is justified. 
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Finally, any error-handling logic that may be invoked in response to erroneous end-node traffic 
and behavior should also be analyzed so that any associated intermediate stage or switch 
performance degradation or other propagated erroneous behavior can be suitably bounded. 
 
A.3.4  NETWORK CONFIGURATION DATA. 

Many network technologies require configuration and routing tables to be programmed to assist 
network operation.  Therefore, design correctness of these tables is obviously important to 
correct network operation.  Design assurance issues relating to network table correctness is 
discussed in section 8 of reference A-4.  The run-time integrity of the tables is also important.  
Therefore, the storage, operation, and load integrity mechanisms of the configuration data need 
to be evaluated with the network technology.  This examination should also address run-time 
table placement, for example, RAM protection schemes such as parity and EDAC.  Similar 
considerations, as to those discussed in section 5.3.1 of reference A-4, in relation to buffer 
protection and recovery actions should be considered in relation to run-time configuration table 
placement. 
 
In networked systems, the consistency between the copies of run-time tables in different nodes is 
also an important issue.  Hence, protocol mechanisms to ensure table consistency should be 
evaluated.  However, as discussed in section 5.5 of reference A-4, the availability impact of such 
consistency enforcement mechanisms needs to be considered.  In systems where the network 
tables and system or application software are tightly coupled, mechanisms to ensure 
software/network compatibility are needed.  This is especially true if the network tables are 
configured separately from the application software images. 
 
The mechanisms to load the configuration and routing tables are also important.  First, the 
integrity of the loading mechanism needs to be established so that the configuration data does not 
get corrupted during the load process.  Second, if the table load mechanism uses the same data 
path as the normal network data flow, the partitioning properties of the network path have to be 
established.  For example, some network technologies use dedicated load protocols to facilitate 
the loading process.  The interlock mechanisms and mode selection logic used for these load 
protocols need to be analyzed to ensure that the erroneous invocation of the protocols does not 
degrade network availability.  In addition, network tables may need to be updated in a “live 
operational mode,” for example, when a network is running minimal network traffic to support 
the “hotel functions” of operating doors, lights, and basic power distribution.  In the live 
operational mode, the mechanisms to coordinate mode change and table switching need to be 
carefully evaluated.  
 
Similarly, network maintenance and query protocols are sometimes used on top of the network 
infrastructure, such as in the Simple Network Management Protocol.  These network 
maintenance protocols also can introduce safety implications.  The network vulnerability to the 
actions performed with these protocols needs to be analyzed and considered.  For example, if it is 
possible to invoke software exceptions via these maintenance interfaces, the impact of the 
exception processing on the normal application functionality needs to be bounded. 
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A.3.5  START-UP AND RECOVERY. 

Network start-up and recovery mechanism are important since, in critical environments, start-up 
and recovery time of the system is often a key attribute of the system performance.  The behavior 
of network start-up performance is, therefore, another attribute that requires careful evaluation. 
 
During start-up, the network is usually more vulnerable to faults.  Unless the start-up algorithms 
have been designed to be fault tolerant, or the network hardware has been designed with 
adequate fault containment, it may not be possible to guarantee a correct or timely network start.  
In such cases, the availability of the network channel will need to be re-evaluated to consider the 
impact of potential contributors to erroneous start-up action.  To illustrate such a scenario, 
consider a TDMA protocol where the initial frame of the protocol contains a table version 
identifier.  This may be sent explicitly or implicitly, i.e., buried within the CRC calculation of the 
network frame.  If the first node to send at start-up sends an incorrect table identifier and the 
response of the other good nodes receiving such a frame is to back off for a defined period of 
time, the erroneous node can hold off network start-up.  If that node continues to send, then 
network start-up action may be delayed indefinitely.  This is an interesting example, because it 
illustrates the interaction between availability and integrity mechanisms, which often occurs 
when integrity patches are implemented on top of networks that have been designed with a 
availability mindset, which is very common in commercial off-the-shelf (COTS) protocols. 
 
Another interesting issue relating to start-up is the constraint the network implementation may 
place on external aircraft systems, for example, power sequencing.  The network may assume 
that network components are powered-on within certain intervals or in a specified sequence.  
Such is the case when central guardian action is assumed, as described in the section 7.2 of 
reference A-4.  In time-driven networks, the alignment of start-up behavior may significantly 
impact network start-up.  Such issues are further discussed in section 5.8 of reference A-4.  It is, 
therefore, desirable to note such constraints while the network is being evaluated.  If the network 
is required to be safety critical, the assurance of the network-assumed behavior may drive 
considerable complexity and cost into these other systems.  However, without such assumptions, 
the network justification and associated availability claims may be incomplete. 
  
In some network technologies, for example IEEE 1394, network-addressing and routing 
information is built when new nodes are added to the network.  Such behavior should be 
carefully analyzed for its impact on network start-up time, which will essentially be limited by 
the slowest node.  A faulty node, for example, a node undergoing continuous restart behavior, 
may also need to be considered (depending on the fault containment and coverage of the nodes 
implementation).  If sufficient coverage cannot be justified, a faulty node may disrupt network 
availability by continuously initiating network restarts.  In such a scenario, all components that 
may contribute to such a failure need to be analyzed while network availability is being justified.  
In addition, the fault tolerance of “discovery routing protocols” should be established and 
analyzed to bound the influence of faulty logical behavior. 
 
Authentication is another issue that is often worth considering during start-up.  This is especially 
true in TDMA networks that may use the temporal order of messages to assist as an 
authentication mechanism when the network is running.  At start-up, when there is not an 
established time base, this authentication technique is not available.  Hence, the network may be 
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more vulnerable to authentication failure.  This is particularly interesting for dual-channel 
networks, because the lack of suitable authentication may enable a faulty node to impact multiple 
transmissions as it appears differently on each of the channels.  If the algorithms of the 
associated network are only tolerant to a single failure, then such a dual-error manifestation may 
break the protocol assumptions and prevent correct network operation.  This may even be true if 
guardian schemes are in place (because the guardians may lack suitable authentication 
capability).  The strength of guardian enforcement is another attribute that requires careful 
consideration.  This is discussed in section 7.2 of reference A-4. 
 
In general, it is important that the network technology protocol mechanism and algorithmic 
claims are carefully evaluated for their performance during start-up.  For example, a clock-
synchronization algorithm may tolerate a Byzantine error when the data network is fully up and 
running, but may require a certain minimum number of correct nodes to be up before the fault 
tolerance mechanism can operate correctly.  The impact of the algorithmic behavior when fewer 
clocks than the minimum are available should be understood.  For example, what is the impact of 
having only two clocks available for an algorithm that requires four clocks to be Byzantine fault 
tolerant? Bounding such effects is required as the network performance and safety case is 
evaluated.  In addition to the analysis of the network’s start-up mechanisms, network technology 
reintegration mechanisms also need to be analyzed to establish their tolerance or vulnerability to 
erroneous protocol control flow information that may delay or prevent a node’s timely 
integration. 
 
Many algorithms and mechanisms are designed to work correctly only if some minimum 
amounts of good resources are available.  However, just prior to start-up, it can appear that 
everything has failed.  A good design for start-up must be able to get past this “everything has 
failed” phase and be able to bootstrap itself up to full operation.  However, all too often, network 
designs assume that the network was “born running” and cannot tolerate failures during start-up. 
 
A.3.6  GLOBAL SYNCHRONIZATION. 

Data networks may have a need for synchronization of clocks within nodes for coordinated 
network access or as an application-level service.  The following paragraphs focus on clock 
synchronization, but a subset of the aspects to be considered for clock synchronization are 
equally applicable to synchronization of logical clocks (counters) used for redundancy 
management. 
 
A.3.6.1  Algorithm Mechanism. 
 
Clock-synchronization algorithms consist of several steps during synchronous operation.  The 
first step is the initial clock acquisition, in which synchronizing nodes acquire the current clock 
values or counter values from one or more different nodes.  This can be done via messages 
prescheduled according to a table or can be triggered upon request.  After a node has acquired 
synchronization with the data network, it must maintain that synchronization.  It does so by 
periodically acquiring clock-difference information from the other nodes.  This also can be done 
via messages prescheduled according to a table or can be triggered upon request.  Another 
method is to time the arrival of normal data messages (i.e., expected arrival time of a message 
versus the actual arrival time) and infer the current state of the transmitter clock of that message 
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versus local clock state.  After preprocessing of the clock-difference information (such as for the 
elimination of propagation delay influences), the second step at each node is the calculation of 
the correction value for the local clock based on the (preprocessed) clock values.  This step is 
sometimes called the convergence function, because it should ensure convergence of the 
distributed node clocks towards a common clock.  The next step is applying the correction value 
to the clock so that all nodes have clock times that are more closely synchronized to each other 
than before the synchronization step was taken. 
 
Several properties and influences, if not mitigated, may lead to an unstable or failing clock 
synchronization algorithm, which can lead to potentially unsafe system state. 
 
The clock-synchronization algorithms depend on the propagation delays through the network.  
Different propagation delay between different nodes or different data acquisition delays at nodes 
may lead to inconsistent or inaccurate views of the actual propagation delay, which is used to 
judge the clock difference between different nodes.  Such differences may have effects on the 
stability of the algorithms.  The most often cited challenge in clock synchronization is 
synchronization in the presence of Byzantine failures.  Byzantine in this context means that 
different nodes have different views of the clock values from another node.  It seems hard to 
quantify the possibility of Byzantine scenarios in the clock synchronization at first.  Considering 
that clock-synchronization algorithms often measure the difference between expected arrival of a 
message and the actual arrival, any arrival time differences of sync data in the context of 
different or slightly varying propagation delays lead to scenarios similar to Byzantine fault 
scenarios.  If the system does not compensate for propagation delay differences, the views of the 
clock values can be significantly different.  Compensation of propagation delays decreases the 
difference but does not remove them.  Such scenarios of different views of clock values at 
different nodes, if not considered in a stability analysis, may pose a safety threat.  The stability 
analysis is normally captured in an analytical bound of a precision value. 
 
The clock data values may also contain some faulty values either due to failures during 
propagation or due to end-node failures.  Considering source coverage, the correction value 
calculation may have to tolerate certain failure modes to achieve a bounded precision value.  One 
issue in clock synchronization is the combination of clock values from different communication 
paths that stem from the same source.  In case of triplex redundant channels, the clock values 
arriving on different communication channels can be voted.  For dual replication, voting is not 
possible.  In certain topologies, an intermediate active component may have effects on all values 
from different clock sources that travel through it; e.g., a single short-circuited central star 
component in TTP/C or FlexRay may have influence on all clock values from different sources.  
If the star topology is only dual (which is the case for most well-known data networks aimed at 
embedded real-time systems, such as TTP/C, FlexRay, and Avionics Full-Duplex Switched 
Ethernet), these failures of the stars can cause failures in the end systems that need to be 
considered by the end systems themselves, due to the fact that the duel inputs from the data 
network cannot be voted.  The selection process between the different replicated communication 
paths determines the amount of influence a failure in one of the communications can have on the 
overall precision values.  This effect, unless restricted, may have dependability implications. 
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The algorithm calculating or selecting the correction amount for the local clock should consider 
the assumed failure conditions and the number of faulty nodes it may have to tolerate in the 
context of the systems source coverage mechanisms to ensure a bounded precision.  An analysis 
of the precision should consider the effects of potential masquerade failures.  For example, in 
FlexRay, the correction value calculation function can tolerate several incorrect clock values 
stemming from different nodes, but may be unable to tolerate a single faulty node, if the node 
fails such that it masquerades as other nodes when transmitting synchronization frames.  
 
In the case of master and slave synchronization schemes, the switchover time from one master to 
another master used for synchronization may need to contain the time to diagnose a faulty 
master.  During such a diagnosis time, slave nodes may still synchronize to their (faulty) master 
node or not synchronize at all.  Both scenarios can affect the precision. 
 
When a node applies the correction of the clocks to its local clock, any task dependent on the 
local node clock may have to consider potential influences of this correction on its execution 
time.  For example, the correction of clocks may have implications on the period available for 
the execution of tasks.  Effectively, the execution time available to a node may be shortened by 
the precision due to correction and coordination with other nodes.  This influence may have 
impact on the execution time available to tasks.  
 
The clock-synchronization algorithm needs to be careful in what information it uses to do clock 
corrections.  For example, if the correction function of the clock-synchronization algorithm uses 
the same collected time values twice for calculation of the correction values, the algorithm can 
become unstable.  Such a scenario may happen during start-up of the system.  Such instability 
has been observed.  Any tool verifying the stability properties of clock synchronization or person 
analyzing the properties should consider such effects and different configurations.  Also, the 
compatibility and consistency of the clock-synchronization configurations at different times 
should be checked. 
 
Start-up of clock synchronization may have availability implications if it is dependent on the 
fault coverage of a single node.  Similarly, during start-up, clocks may drift for a much longer 
time than during normal operation, because less or insufficient clock value sources are available.  
Such longer drift times should be included in the stability analysis and consequently the 
precision values. 
 
A.3.7  FAULT DIAGNOSIS. 

Some network technologies include fault diagnosis services to identify and isolate faulty member 
nodes.  The services may run autonomously in the network hardware or comprise software 
application services that run on top of the network, which diagnosis information provided by the 
network layer.  Such services are strongly related to group membership and interactive 
consistency services, which may use fault diagnosis services to manage network state-dependent 
application decisions and guaranteed consistent delivery of messages.   
 
A group membership service delivers the operational status of some or all nodes of a data 
network to other nodes.  Group membership service, or variants thereof, is a subset of an 
interactive consistency service.  Group membership indicates the operational state of nodes 
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(ideally consistent), while interactive consistency provides consistent agreement of nodes on any 
(sent) value.   
 
Group membership information indicates the health state of a node.  It can be concluded from 
this information that the node is operating correctly.  Yet, the information that a node sends out 
may not reflect the current state of a message; e.g., the operation of a node as indicated by group 
membership does not ensure that the message is correct (integrity violation) unless sufficient 
error detection coverage for the node and the communication path is assured.  
 
Group membership is usually derived from the correct or incorrect reception of a message from a 
node.  If these messages are correct, group membership infers that the node is correct.  On the 
other hand, if the reception of a frame is not correct, group membership mechanisms can 
attribute this to a transient or permanent fault on the communication path.  In aviation digital 
electronics systems where transient upsets may be experienced in relation to power drop outs or 
massive upsets from HIRF or lightning events, the ability of the diagnosis schemes to distinguish 
transient external upsets and permanent node errors should also be carefully analyzed to ensure 
that the diagnosis algorithm meets the real-world expectations.  The persistence of any 
indictment action that may result from the invocation of such diagnosis also needs to be 
understood to ensure that the loss of network availability resulting from such indictments is 
suitably bounded. 
 
Requirements of group membership being consistent and the effects, such as inconsistent 
reception status of messages at different receiving nodes and potential consequences, are 
discussed in detail below.  In general, it should be said that any diagnosis service will not be 
perfect, e.g., due to transients having local effects or due to failure modes of the sending nodes 
(Byzantine failure modes).  
 
A.3.7.1  Application Use of Diagnosis Information. 
 
Diagnosis information can be used by the network to build additional services for management 
of redundancy sets or simply as acknowledgement.  In this context, the use of the diagnosis 
information needs to be in alignment with the expectations of the applications.  These services 
are (1) group membership, from an application perspective, intends to use the membership 
information for the selection of the correct data, and (2) interactive consistency intends to 
provide the data consistently at all nodes.  
 
Group membership is often based on the reception of messages from nodes and will have some 
temporal lag until state changes are updated.  Effects of time lag should be considered in the 
evaluation process.  
 
It has been proven that group membership in arbitrary fault scenarios (without source coverage) 
cannot guarantee correctness and consistency at the same time, whereas correctness means that 
all correct nodes are regarded as nonfaulty by all other correct nodes (but faulty nodes may also 
be viewed as correct), and consistency means that all correct nodes are consistently seen as 
correct at all correct nodes.  An implementation of group membership with insufficient coverage 
or insufficient communication rounds required (and theoretically proven) to tolerate certain 
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failure modes may either sacrifice availability or integrity; e.g., enforcing consistency in a single 
string implementation can lead to availability loss.   
 
In CAN, any acknowledgement algorithm claiming consistency (atomic broadcast) despite an 
arbitrary failure mode should be analyzed in a similar manner.  This is discussed in section 5.9 of 
reference A-4. 
 
Applications that use networks that provide group membership services should analyze 
 
• the underlying assumptions, 
• the consistency and correctness guarantees of group membership, and  
• their effects on the application level.   
 
Such analysis and effects on the application should also include temporal aspects, because 
diagnosis information and membership lag in time. 
 
During reintegration and start-up of the data network, the group membership information 
provided by a newly integrated or started node may include information about the system’s state, 
which the network may not have observed itself or obtained from other nodes.  In detail, 
integrating nodes may observe the network’s operational state over a period of time or may 
integrate quickly by accepting other nodes’ views of the operational state of the network.  In the 
latter case, the use of the information provided by other nodes needs to be in alignment with 
application-level assumptions of the membership information; e.g., if an integrating node adopts 
the group membership state from other nodes and the application assumes that the membership 
state information includes agreement on, or availability of, application state information, it may 
also have to acquire the application state information that is associated with the semantics of a 
group membership bit.  
 
A.3.8  CLIENT EFFECT ON NETWORK OPERATIONS. 

A data network is often the glue that holds together a dependable system.  A system data network 
tends to become either the main fault containment mechanism in itself or is a major component 
of the main fault containment mechanism(s).  As such, it is important for a system data network 
to not be adversely affected by the clients it serves, no matter how badly the clients misbehave. 
 
Many data networks allow their clients to adversely affect their operation in several ways. 
 
The first adverse interaction occurs immediately upon start-up.  Many data networks allow their 
clients to influence the timing of network start-up by affecting the timing of their nodes.  
Variations in node start-up times can be caused by different host power-up sequences, different  
self-test mechanisms, etc., coupled with the requirement for the client to enable its node to 
participate in the network, e.g., in FlexRay and TTP/C, the host needs to switch on the controller.  
Different start-up times of node components should not be allowed to cause starvation of 
components (retry exhaustion).  For example, after some retries of an insufficient response, a 
FlexRay network chip starts over again and the software needs to interact; if software is too 
slow, then there is no availability.  It is possible for data network protocols to take an 
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inordinately long time to start, or it may not start at all, if the timing behavior of its nodes follow 
some pathological pattern during start-up.  When such networks are used, the performance of 
higher-protocol layers (such as those implemented in software) should be analyzed to ensure 
proper start-up time and to avoid problem scenarios like those described here. 
 
During data network operation, some protocols allow clients to adversely affect their behavior if 
the clients can control addressing, routing, priorities, etc.  Some systems require applications of 
different safety-criticality levels to share the network.  When this is the case, the network must 
be robustly partitioned so applications and clients of low criticality cannot adversely affect the 
use of the network by high-criticality application or clients. 
 
Another possible avenue for a client to adversely affect a system data network is via unprotected 
test or network management paths. 
 
A.3.9  ACKNOWLEDGEMENT. 

For network protocols that employ acknowledgement schemes, the behaviors of this logic need 
to be carefully analyzed, especially with respect to inconsistent message reception (some nodes 
receive a message or an acknowledgement and some do not).  It cannot be assumed that any 
acknowledgement mechanism provides, by itself, consistent message reception also called 
atomic broadcast).  Also, the sender of the message may fail before resending the message; e.g., 
mechanisms with negative acknowledgement schemes need a way to signal such negative 
acknowledgement.  If signaling is not possible, inconsistencies may arise.  An example of 
acknowledgement causing inconsistent message reception is the negative acknowledgement 
algorithm (sending of error flag) in CAN.  If an inconsistent bit reception in the next-to-last bit 
occurs, some nodes will accept the message and others will not.  In such a scenario, a 
retransmission will occur, leading to multiple message copies at some receivers and a single 
message copy at others.  As a consequence, the delivery semantics have gone from “exactly 
once” to “at least once.”  Receiving nodes may not be able to distinguish the duplicate message 
from a legitimate second message, and message delivery to different nodes may occur at 
different times.  In case the sender suffers a failure and it is not able to resend the message, 
permanent inconsistencies in message reception will arise.  The implications of inconsistent 
message delivery, different message delivery times to the application, and multiple deliveries 
should be analyzed with respect to the overall system and its safety. 
  
Similarly, in a network where acknowledgement vectors or bits are used, an inconsistent 
reception may cause system-level effects.  Generally, if acknowledgement is only based on an 
action of a subset of nodes, inconsistencies may occur as a consequence of the design (e.g., the 
recessive or dominant physical layer acknowledgement, in which one receiver is sufficient to 
signal a dominant state, is an action of only a subset of the receivers; or the acknowledgement-
signaling mechanism relying on the reception status of a subset of receivers, such as the 
reception status of the next one or two receivers, may be vulnerable to inconsistent reception). 
 
Message retry mechanisms, due to negative acknowledgement or missing positive 
acknowledgement, may have implications on the network performance and maximum loading.  
To bound network loading, retry mechanisms should be analyzed for the number of retries to 
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make sure they are bounded, or they should be analyzed whether retries are forced to be bounded 
via counters for retransmissions or bounded via timeouts. 
 
Acknowledgement errors can affect application-level error handling or exception mechanisms, 
such as invocation of error routines leading to additional overhead for processors.  Any safety 
implications of increased workload should be analyzed. 
 
A.4  APPLICATION SERVICES. 

Current data network technologies comprise a number of application services that may or may 
not be used by an application.  All services need to be analyzed in the context of a safety 
assessment.  In its simplest form, any buffer management mechanism has associated properties 
that need to concur with the application assumptions.  Newer generations of networks also 
supply voting schemes or redundancy management mechanisms.  An example of such buses is 
the ARINC 664.  In this section, the criteria for data network services used by applications are 
examined. 
 
A.4.1  HOST INTERFACE MANAGEMENT. 

Buffer management should be concerned about the message access order to the network, 
partitioning requirements, and performance aspects of the network interface buffer, as well as 
implications to the host. 
 
A.4.1.1  Client Buffer Queue Management. 
 
Buffer management of systems may have system-level implications.  One example of system-
level impact may occur if messages are associated with priority.  In certain combinations of 
buffers and accesses, priority inversion on the system level may occur; e.g., certain 
implementations of CAN can have a priority inversion of messages.  
 
These CAN implementations have a priority message queue that holds a large number of 
messages and an intermediate buffer that intends to contain only the two highest-priority CAN 
messages.  The buffer with the highest-priority messages is used for network arbitration and for 
serializing and sending on the network out of this buffer.  This is called the sending buffer.  One 
message position in the sending buffer, which is normally a dual-port memory, is intended for 
sending, while another position is intended for “refilling” from the larger message buffer with 
the next higher-priority message, while the message on the other position is sent on the network.  
If a higher-priority message (priority 3) arrives at the large message buffer, the lowest priority 
that is currently in the sending buffer (priority 4) needs to be replaced by this new message.  If 
this replacement action coincides with arbitration on the network, another message with lower 
priority (priority 5) may win the arbitration, because one position of the sending buffer has just 
been sent and is empty and the other message (priority 4) is being replaced by a message with a 
priority 3 message.  This is an example where a lower-priority message has won arbitration over 
a higher one.  While this situation can be improved (i.e., not suffering from priority inversion) by 
supplying a sending buffer with space for three messages, similar situations may exist, and the 
system-level and safety implications should be checked due to such scenarios. 
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Similar phenomena can occur due to local buffer management.  One example is a priority 
arbitration scheme where only a single first-in, first-out transmit buffer is used.  If only the head-
of-line message contends for the communication resource, the performance drop due to head-of-
line blocking can be significant.  In the worst case, a node may not get any access to the network 
and will not be able to send. 
 
When evaluating networking technology for the deployment in systems, client buffer queue 
management mechanisms should consider effects on the access to the network, such as fairness 
and implications to the network and the host. 
 
A.4.1.2  Buffer Management Partitioning. 
 
In a robustly partitioned system, software partitions running on a node have a strict execution 
budget and should adhere to it.  On nodes where the data from a data network is managed by a 
direct memory access (DMA) controller, the DMA controller may repeatedly stall the execution 
time of running partitions, potentially having significant effect on the execution time of software 
tasks.  Unless such effects of “cycle stealing” are accounted for in the execution budget of 
software tasks or the overall node architecture, software may miss execution deadlines. 
 
Partitioning violations, due to addressing and masquerading nodes, were discussed in section 5.1 
of reference A-4.  Partitioning violations may also occur due to buffer management.  In systems 
having applications of differing safety criticalities running on one node (processor) and each 
having common access to the communication buffer, any wrong access to the common 
communication system buffer can result in several undesired phenomena. 
 
Unless the access to the common buffer is restricted or controlled for each partition, software 
partitions may overwrite messages of other partitions or use network resources from other 
partitions.  A partition may even be able to send data masqueraded as another partition, unless 
protected.  A simple, but potentially unsafe, example may be a common address area where all 
partitions have access, but each partition is assigned a source address on the network based on its 
assigned range within the buffer.  Any faulty access to another partition’s memory area can result 
in faulty addressing on the network, masquerading effects, and data overwrite, just to name a few 
potential safety hazards. 
 
Another area of control to the buffer is the coordination between the network and the software 
(or host processor) sides of access to the buffer.  The buffer management should be analyzed to 
ensure the mutual exclusion of buffer access (or access to certain areas).  Unless the access is 
controlled for both the data area and potential control areas (interaction between status area 
potentially updated by the network, while at the same time, the software side tries to change or 
read the control information), interactions may result in unwanted effects.  One example is the 
atomic write for messages sent on the network (transmit buffers).  A message should not be sent 
until it has been completely written into intermediate buffers.  If the contents of a transmit buffer 
are sent out onto the data network’s media while software is still writing to that buffer, the 
resulting transmitted message could contain contents that are a mix of old contents and new 
contents.  While such coordination may occur automatically for different processes due to 
scheduling of process execution on processors that is tied to a communication schedule for the 
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data network, the dual-port memories often used for buffer management may be much more 
likely to be affected by such coordination errors. 
 
The host needs access to the receive-buffer areas common to the networks, and the host needs to 
be restricted or otherwise carefully controlled during the reception of incoming traffic from the 
data network.  If not coordinated or controlled, data inconsistency in applications may arise.  If 
blocked from either side, blocking effects should be considered.  Blocking of message reception 
while the host reads the buffer (if such blocking is possible) may have system-level impacts, 
such as requiring the re-sending of messages or queuing at sender side.  Blocking the host-side 
access while the data network is updating a receive buffer may increase the execution time of 
software.  In cases where dual buffers are used to allow an incoming data network message to be 
written to one buffer while the host software is reading from another buffer (ping-pong buffers), 
potential delays in the availability of data and the switchover logic after message reception needs 
to be considered.  
 
Well-designed data network interfaces that have solved these receive buffer access problems for 
all corner cases on a single node may still have problems for architectures that use broadcast 
messages.  It is possible that the receive buffer mutual exclusion mechanism on each of the 
receivers works correctly (the host never receives messages from the data network that have 
inconsistent contents due to buffer timing and access issues), but could cause the atomic property 
of the broadcast to be lost.  That is, timing differences among the receivers may cause different 
receivers to see their buffers in different states, even if they all receive exactly the same sequence 
of messages from the data network.  In the cases where atomic broadcast must be supported, the 
data network may also be required to support receive buffer consistency. 
 
Similarly, network errors that can trigger host software exception loops also need to be 
considered.  This is to ensure that such exception loops do not interfere with the time budgets 
and partitioning mechanisms of host software. 
 
A.4.1.3  Buffer Management Performance Considerations. 
 
The performance considerations of buffer management should be considered when selecting a 
network.  In the past, the low-speed aviation digital electronics networks (such as ARINC 429 
and 629) have put less emphasis on the performance of buffer management, because memory 
access times or memory bus access times were often an order of magnitude quicker than required 
for serving the data-copying and coordination activities.  With the advent of high-speed 
communication in avionic systems, the need for a balance on the buffer management side with 
respect to performance becomes more prevalent.  Performance evaluations should consider the 
required access needed from the network and the host sides, memory device and memory bus 
access times, and special support provided by the hardware, such as burst memory access.  
Interactions between performance enhancement schemes, such as burst memory access that 
reduces buffer access time, and interactions with access time and requirements (e.g., blocking of 
memory devices or memory bus may have implications to arbitration of the memory or the 
memory bus) should be considered in the evaluation. 
 
For network technologies that require software functions to assist the network data flow (for 
example, data unpacking, data copying, etc.), the software impact of changing the network tables 
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also needs to be considered and suitably bounded.  This is especially true of network tables that 
are configured and loaded independently of software application images.  Ideally, software 
execution margins can be suitably bounded and argued to meet the worst-case network data flow 
assumptions that can be run-time configured.  Network technologies that support the bounding of 
such interactions are preferable. 
 
A.4.2  SUPPORT FOR APPLICATION-LAYER REDUNDANCY. 

A.4.2.1  Support for Active Replication. 
 
Networks may signal the application of reception status, which may assist the application in 
voting or selecting a correct value.  Such mechanisms should be evaluated with respect to their 
correctness.  In case the indication status stems from the same source as the possible faulty value, 
the use of such status information might be limited.   
 
Application-layer membership is a mechanism to manage the redundancy sets at an application 
level.  Such application-layer membership algorithms should be evaluated with the same scrutiny 
as the node-level memberships described in section 5.7 of reference A-4.  One example that can 
be regarded as application-level membership information is the network management vector in 
FlexRay.  
 
Node-level and application-layer membership is often combined within some networks to 
incorporate message agreement and redundancy mechanisms.  Such services provide a 
foundation on which to build active replication strategies for applications.  For example, the 
National Aeronautics and Space Administration ROBUS protocol used in the SPIDER 
architecture presents voted message data to the network interfaces, containing the visibility and 
impact of erroneous data to within the network infrastructure.  In another example, one version 
of TTP implements enforced message agreement strategies, where nodes not in agreement with 
the majority of network nodes are forced to re-integrate.  While the membership mechanisms of 
these two networks can be equally effective in providing a consistent view of system-wide 
membership, there is a difference in the amount of system resources that are adversely affected 
while these mechanisms sort out errors.  For example, a Byzantine error in a SPIDER 
architecture is effectively masked with the network layer.  In one version of TTP, depending on 
the degree of Byzantine fault containment provided by the guardian in a particular fault scenario, 
the same error may force multiple nodes to re-integrate.  The side effects of these policies and 
their effect on applications should therefore be understood as the network technology is 
evaluated.  
 
In some networks, the network host interface incorporates a life-sign mechanism to support 
application membership and health diagnosis.  A life-sign mechanism requires an application to 
perform a specific action that is used to judge an application as correct.  Based on the correctness 
of the action, the application may be removed from the membership.  The life-sign action should 
be evaluated with respect to its effectiveness of detection of the failures.  Due to the minimal 
action in normal operation, the error detection coverage may be limited. 
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A.4.2.2  Support for Passive Replication. 
 
Some networks support mechanisms for passive-redundancy strategies, i.e., the ability of 
multiple network nodes to share network bandwidth.  These mechanisms are discussed in section 
7.7 of reference A-4.  The networks mechanisms to inform clients of the state of the passive-
redundancy scheme, i.e., what application is in control and how many “spares applications” are 
online, should also be considered.  Since such information may aid the detection of latent spares 
exhaustion, services to synchronize the state of spares should also be evaluated to ensure that 
such mechanisms do not introduce potential fault propagation paths. 
 
A.4.2.3 Support for Increased Integrity. 
 
Some network technologies implement host interface support for self-checking pair host 
configurations.  Self-checking pair data is compared, and if it agrees, it is delivered as correct.  
Self-checking pairs-based input data should be compared before computation; otherwise, the 
self-checking pair computation results are likely to diverge even though both halves of a pair are 
correct.  Self-checking pairs should also be evaluated with respect to their independence from 
power, common memory, vulnerability common design faults, etc.  
 
Self-checking host support is strongly influenced by the network-level, self-checking 
mechanisms discussed in section 7.4 of reference A-4.  
 
A.4.3  TIME SERVICE FOR TIME STAMPING AND TIME INTERRUPTS. 

Application time services that may be supplied by the data network include time stamping and 
time interrupt.  Synchronization aspects of time have been discussed in section 5.6 of reference 
A-4, including a discussion of the implications of time services to the applications.   
 
The quality of time services can be adversely affected by a data network time-service design that 
is not robust.  Time stamping of data allows an application to determine data freshness.  
Sometimes all that it is needed is ordinal freshness; that is, the application only needs to know 
what data set is newer.  In some instances, an application may use time stamps to determine the 
interval between two data samples, which could effect calculations that use delta time.  Some 
applications may use data network supplied time interrupts as a replacement for a local real-time 
clock to do task scheduling.  This has the benefits of a time source that is independent of the 
effects of possible faulty software and allows for the synchronization of task scheduling among 
multiple processors.  If these services from the data network are faulty, either from network 
internal faults or by propagating faults from clients, a time stamp service could cause wrong time 
values to be used as inputs to calculations or, when coupled to a host’s tasking clock, could cause 
tasks to not have enough time to execute. 
 
A.5  FAULT TOLERANCE MECHANISMS. 

Some network technologies incorporate fault tolerance mechanisms to mitigate the failure of 
network components, such as guardians and monitoring schemes.  Such mechanisms may be 
particularly advantageous in aviation digital electronics environments where high-network 
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availability and integrity is required.  These mechanisms and associated evaluation criteria are 
discussed in the following sections. 
 
A.5.1  TOPOLOGICAL FAULT TOLERANCE. 

The network topology may have a significant impact on the network tolerance to zonal or spatial 
proximity faults, for example, physical damage that affects a certain area of the vehicle. 
 
If the network uses a bus topology, then any failure along the bus path may destroy network 
availability.  Similarly, faults in network termination may lead to loss of availability and may 
also introduce other Byzantine vulnerabilities, as discussed in section 7.8 of reference A-4.  The 
bus zonal vulnerability is particularly important if multiple redundant buses are assumed to 
increase network availability.  If all units are connected to all buses, then all buses are required to 
be in physical proximity at the point of their interface to the different nodes.  A failure at this 
point of interface may therefore damage all of the independent bus channels.  Similarly, a 
chronic failure of a node, (for example, fire) may also damage all buses that are close to the 
node.  Therefore, when evaluating the suitability of bus-related network technology, care should 
be taken to ensure that the technology or network architecture has suitably mitigated such zonal 
vulnerabilities, either by separating bus and or by isolating network interfaces.  The secondary 
effects of incorporating isolation schemes should also be considered in relation to their impact on 
the physical layer performance and the potential to Byzantine failure, as discussed in section 7.8 
of reference A-4 and section A.5.8 herein. 
 
Networks using intermediate stages may perform better in relation to zonal fault tolerance, as the 
point-to-point relaying action of such technologies alleviates the impact of physical layer 
damage.  However the placement and data path planning of such intermediate-stage schemes 
should also be considered, as the network technology is mapped to a vehicle architecture; i.e., 
there is little benefit in placing two redundant central intermediate stages in the same location. 
 
A.5.2  GUARDIAN SCHEMES. 

Some network technologies incorporate covering functions or guardian mechanisms to contain 
node faults.  Such guardians may be argued to increase network availability.  However, the 
implementation and performance of the guardian function needs to be carefully evaluated to 
verify that suitable coverage and independence is provided. 
 
There are several variants of guardian implementations; they may be locally (i.e., one node) 
implemented on-chip or placed with independent guardian chips.  Alternatively, the guardian 
action may be supplied by network intermediate stages, for example, in centralized guardians or 
peer-based ring schemes.  The first attribute that needs to be considered in relation to the 
guardian action is the amount of coverage that the guardian provides:  i.e., what failure modes of 
the node does the guardian contain.  Often due to the cost optimizations, the coverage of the 
guardian may be focused to cover only a subset of a node’s failures.  For example, in low-cost 
TDMA networks (e.g., FlexRay and TTP/C), local guardian schemes are often limited to time-
window enforcement.  The extent of the protection provided is also limited to specific network 
modes; for example, network start-up is often left uncovered.  Time-window enforcement does 
not protect against logical protocol errors, for example, erroneous protocol signaling.  Such faults 
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must therefore be mitigated with additional guardian behavior or fault-tolerant protocol logic, as 
described in section 7.3 of reference A-4. 
 
Irrespective of the coverage provided by the guardian scheme, the independence of the guardian 
enforcement is another attribute that requires careful consideration.  Often in network technology 
targeted for low-cost domains, the guardian function may be implemented on the same die 
(silicon integrated circuit (IC)) as the communications controller.  The justification of 
independence may therefore be more difficult; as such, schemes may be vulnerable to common-
mode failures that disable or degrade the guardian actions.  The use of independent clocks and 
partitioned dies may assist here, although detailed analysis of failure modes will be needed to 
support independent failure claims.  Another common dependence may be the power source.  
Network technology with truly independent physical guardian action will require less analysis 
and may be preferred as it presents less certification risk. 
 
In addition to the physical independence, logical guardian dependencies should also be 
considered.  For example, if the guardian is dependent on its host controller for global time or 
protocol state synchronization, the coverage of the guardian may be compromised.  For example, 
consider a TDMA time enforcement guardian that relies on its host for schedule synchronization.  
If the host is “deaf,” i.e., simply unable to hear network traffic, it may continuously try to start.  
If it performs in accordance with the correct start-up activity, then—from the guardian’s 
perspective—the faulty host may appear to operate correctly.  In reality, it will be continuously 
disturbing protocol traffic.  Such dependencies should be considered when network and guardian 
technology is evaluated. 
 
To mitigate the shortcomings of simple local guardian schemes, several network technologies 
have evolved to incorporate intelligent central guardian schemes.  The degree of intelligence in 
the central guardian is dependent on the network technology, varying from simple time 
enforcement and slightly-out-of-specification (SOS) fault containment, to full protocol-level 
policing functions; e.g., protocol semantic-state enforcement or similar message policing.  
Centralizing these protection mechanisms allows for more intelligent guardians to be 
implemented at lower costs.  However, implementations of the guardian schemes should also be 
evaluated to ensure that they provide adequate levels of independence and fault coverage.  
Protocol and node failures not covered by the guardian will need to be addressed by other means, 
either by fault-tolerant protocol logic (discussed in section 7.3 of reference A-4) or additional 
fault detection implemented on the client nodes, such as self-checking, as described in section 
7.4 of reference A-4.  
 
The use of intermediate-stage guardians introduces additional constraints on the target system.  
Consider for example, a dual-star (central guardian) network configuration.  If the 
implementation of the central guardians lacks sufficient fault detection coverage, then it is 
difficult to bound the failure modes of the guardians.  The influence of a faulty guardian on 
protocol action must be established.  For example, is it possible for the guardian to cause 
nonrecoverable protocol flow errors in the establishment of disjoint TDMA cliques if the other 
(good) guardian is not available?  If this is the case, then a system-level power sequence may be 
required to ensure at least one good guardian before the end nodes commence communication.  
In addition, the vulnerability of the guardian implementation to transient errors (SEUs, etc.) will 
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need to be bounded, as such events may take the good guardian off line long enough for a faulty 
guardian to force irrecoverable error scenarios. 
 
As discussed in section 5.3.2 of reference A-4, the implementation of central- and intermediate-
stage guardian integration and start-up logic schemes should also be evaluated to ensure it is 
suitably fault tolerant to erroneous end-node faults.  If guardians from different network 
availability channels share signals or protocol state information, then the vulnerability of such 
mechanisms to failures of the other channel guardian failure should also be evaluated.  Similarly, 
the self-test and scrubbing of intelligent guardian actions may be challenging.  
 
Irrespective of any guardian implementation, it is imperative that suitable tolerances for guardian 
enforcement action are established to provide suitable design margin.  As with other critical 
protocol parameters, these tolerances should accommodate for worst-case aging and expected 
life-time degradations of all components related to the guardian.  The criteria for establishing 
suitable guardian parameterization would ideally be formalized and verified.  
 
Latent failure of guardian schemes is another consideration, as discussed in section A.5.6. 
 
A.5.3  PROTOCOL LOGIC FAULT TOLERANCE. 

Networking technology may also incorporate protocol flow and algorithmic fault tolerance 
strategies, i.e., voting on protocol-state information or required protocol actions.  Such voting 
may effectively contain protocol-state faults propagating from an erroneous node or other 
network device.  The fault-tolerant global clock synchronization action discussed in section 5.6 
of reference A-4 is an example of such action.  Similar strategies may be applied to other 
protocol actions, such as start-up, reintegration, and mode change.  The strength of such protocol 
mechanisms should be evaluated in the context of the coverage provided by the network 
implementation.  For example, if all nodes are self-checking, then little protocol-state fault 
tolerance is required, as all protocol errors are contained at the source and justified to be benign.  
Similarly, if the guardian mechanisms contain protocol flow errors, then less protocol state fault 
tolerance is required.  However, if suitable fault containment or coverage cannot be established, 
the protocol layer’s vulnerabilities to erroneous state and addressing information should be 
evaluated. 
 
If protocol logic fault tolerance is implemented, the impact of its protocol algorithms will also 
need to be evaluated.  This means that any protocol-level mechanism needs to ensure the 
required agreement on protocol state for integrity and the required replication for availability.  
Often in two-channel systems, there is a conflicting goal between availability and integrity.  
Hence, mechanisms to improve protocol integrity may reduce protocol availability; for example, 
logic to contain errors during start-up may render the protocol unable to start. 
 
A.5.4  LOCAL TRANSMISSION-MONITORING AND SELF-CHECKING SCHEMES. 

Network technologies may also implement monitoring or self-checking services to improve fault 
detection and fault tolerance.  As with the guardian action, the effectiveness of such schemes 
depends on the amount of independence and coverage that can be claimed by the 
implementation.  For example, CAN incorporates an error-checking mechanism that will switch 
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the network to a passive state if the transmissions of the controller are not suitably 
acknowledged.  Since this is implemented within the same IC as the communications 
component, the action may be degraded by common-mode failures.  In addition, such schemes 
may introduce potential fault propagation vulnerabilities, as it is possible for a node to transition 
to the passive state in response to the erroneous negative acknowledgements generated from a 
faulty node.  Such vulnerabilities should be analyzed as the network is evaluated. 
 
Other networks may employ local wrap-back schemes where a node monitors its own 
transmission via local receivers.  Such schemes should be analyzed for vulnerability to Byzantine 
faults, as a local monitoring circuit may perceive the local wrapped-back signals as good, but 
receivers at the end of a loaded transmission line may see a degraded or erroneous signal.  
Hence, the wrap-back signal state may not be representative of the network observed state.  
Byzantine faults and fault tolerance strategies are discussed in more detail in section 7.8 of 
reference A-4. 
 
Some networks and protocols implement support for self-checking configurations, allowing 
multiple network interface circuits to be tightly synchronized and to cross-check each other.  An 
example of such a network is ARINC-659.  When evaluating the coverage provided by such 
schemes, care should be taken to examine where the cross-checking and error-containment 
voting is performed.  In ARINC-659, checking and voting is performed at each receiver, hence 
full coverage of the entire transmission path is assured.  Local checking in ARINC-659 is 
performed solely to increase network availability, with each network IC enabling and monitoring 
the transmissions of its other half.  As with guardian functions, such cross-enabling schemes 
should be analyzed to ensure that there is sufficient margin for the enabling and disabling action 
to ensure transmissions are not truncated to produce potentially Byzantine signals.  Similarly, 
self-checking errors that rely on loop-back monitors may be vulnerable to Byzantine faults as 
discussed above. 
 
A.5.5  RECONFIGURATION AND DEGRADED OPERATION. 

Network technologies may also incorporate mechanisms to implement reconfiguration or 
continued operation in a degraded mode.  For example, some physical layers may incorporate a 
degraded mode of operation that allows communication to continue even if one-half of a 
differential communications channel is faulted.  If such degraded modes are to be leveraged, then 
the performance (e.g., BER) of the degraded operation needs to be evaluated to ensure that 
adequate performance is maintained.  The protocol mechanism for the detection and 
announcement of such degraded operation should also be evaluated to verify that timely and 
correct diagnosis is provided. 
 
Other protocols, such as IEEE 1394, may reroute the network path to mitigate physical or node 
paths.  If such protocol action is to be leveraged by a system, then mechanisms used to 
implement such actions will need to be evaluated to ensure that the reconfiguration time is 
suitably bounded.  The issues surrounding the erroneous invocation of such logic must also be 
considered.  The recovery mechanisms for such logic should also be investigated to ensure nodes 
are not permanently isolated in response to local transient errors. 
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A.5.6  LATENT FAILURE DETECTION. 
 
Fault detection, isolation, and recovery functions used within aviation digital electronics systems 
are often required to be periodically tested to ensure that the detection and recovery actions 
remain active.  Such covering functions are usually transparent to normal mode operations, 
hence, without test, it is possible that such functions may fail passively and the protection will be 
lost.  Network fault detection and covering functions are no different; therefore, network 
mechanisms to assist the latent fault detection should be considered as the network technology is 
evaluated.  To illustrate common network vulnerabilities to latent failure, consider the following 
scenarios:  the short-circuit of intermediate-stage guardian function and if the network traffic can 
propagate through the shorted guardian without error then the passive state of the guardian 
enforcement action may pass unnoticed, leaving the system vulnerable to a second uncontained 
failure of another network component.  Similarly, consider a network component with a “stuck at 
good” CRC calculation circuit; i.e., all data received results in a good CRC, unless such 
functions are tested.  It will be difficult to detect such a state in normal protocol operation since 
all CRCs are nominally good.  
 
Network mechanisms that incorporate modes and mechanisms to assist the latent fault detection 
of network components may be preferred.  However, such mechanisms should be analyzed to 
ensure that they do not introduce failure vulnerabilities, because testing for latent failure may 
disrupt nominal network performance.  Interlocks and protection mechanisms should also be 
evaluated to ensure that such testing occurs only in safe system states.  The coverage of the 
network test procedures should also be evaluated to verify that all key network mechanisms are 
suitably verified.  For complex error detection and enforcement schemes (for example, protocol 
semantic correctness enforcement), the ability to achieve adequate coverage via the self-test 
mechanism may be challenging, since such coverage will require all decisions causal to the 
enforcement actions to be suitably exercised. 
 
A.5.7  VOTING, SELECTION, OR AGREEMENT SERVICES AND REDUNDANCY 
MANAGEMENT. 

Networks may also incorporate redundancy management and voting mechanisms to simplify 
application-level fault tolerance.  The self-checking configuration, discussed in section 7.4 of 
reference A-4, is an example of such a scheme where increased network component redundancy 
is leveraged to achieve increased network integrity and availability.  In self-checking 
configuration, a pair works and sends out messages in coordination (that is, at the same point in 
time).  Depending on the required availability targets, self-checking may need two or more self-
checking pairs. 
 
Another form of network redundancy is active replication in a triple modular redundancy (TMR) 
voting scheme.  In contrast to self-checking configurations where messages are sent at the same 
point in time for a pair, nodes always send out the data at different points in time in a TMR 
scheme.  Thus, TMR implements a type of temporal redundancy.  In TMR schemes, end nodes 
need to correlate messages sent at different times before being able to vote, while in self-
checking pair configurations, nodes can take the first valid message with integrity (messages that 
agree and stem from two halves of pair). 
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Network selection should consider what active replication scheme fits its needs best.  Self-
checking pair schemes may require special hardware support for synchronized sending of 
messages, but simplify voting schemes to become a “pick-first valid” message.  On the other 
side, TMR-based systems may not require additional hardware but require, message management 
(storing) for the messages received at different times from different hosts before voting as well 
as a voting function implemented at each end node. 
 
Dual replication can either be targeted at ensuring availability or integrity.  That is, the 
replication ensures continuous service despite a (single) failure.  The integrity of the value 
provided is equal to the source integrity of the node and, of course, the communication integrity.  
On the other side, if replication targets integrity, the end node would perform a comparison of 
two values.  If they agree, the integrity of the data is ensured; if they do not agree, this is a signal 
to the application, and the integrity is not lost.  Yet, the availability achieved is similar to the 
availability of either component and, of course, the availability of the communication path.  Such 
voting algorithms supplied by the network should be compared with the assumption of the 
application to avoid unsafe operation; e.g., in ARINC 664, the redundancy management layer 
chooses the first syntactically correct frame and is targeting availability, assuming that any 
failure on the communication path is detected by in-line integrity mechanisms (like CRCs).  The 
first syntactically correct frame is of the integrity of the communication source.  Any fault 
defeating the integrity mechanism leading to an undetected error in a dual-replicated, pick-first 
valid scheme may impact integrity of the data.  Masquerading faults are faults where a faulty 
node pretends to be another node.  Masquerading faults can defeat any redundancy management, 
because multiple inputs to any voting or selection functions may stem from the same fault zone.  
Network implementations and mechanism should be analyzed with respect to masquerading fault 
vulnerabilities.  
 
The network technology may also support mechanisms to implement passive replication 
strategies, for example, the capability of redundant or replicated nodes to share the same network 
transmission slot.  The replicated or redundant nodes take over when the first replica ceases 
control.  In such active and shadow schemes, consideration should be given to the time it takes to 
detect the failure of the components; e.g., in the case of a failure during sending of a message 
monitor by another component, the coverage scheme may only detect the failure after it has 
already been (partially) sent.  Thus, the receiving node may have to wait for the next message 
that can be sent.  In addition, the network Master-shadow mechanism should be evaluated for its 
ability to hand over control in a fault scenario.  The effectiveness of release of control mostly 
depends on guardians or coverage schemes deployed. 
 
A.5.8  BYZANTINE FAULT TOLERANCE. 

The Byzantine failure scenario or Byzantine generals’ problem (BGP) was first presented nearly 
20 years ago.  Since its introduction, it has become the subject of a great many papers and 
scrutiny by the fault tolerance community.  Numerous Byzantine-tolerant algorithms and 
architectures have been presented in the subsequent two decades.  With the ever-increasing 
dependency on electronic hardware and software to perform safety-critical control functions and 
the emerging trend to implement control with distributed multiprocessor systems, where 
consensus may be a prerequisite, the practical issues relating to Byzantine behavior need to be 
understood.  For these types of systems, existence of Byzantine fault tolerance is a litmus test for 
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dependable systems design.  However, the wide-scale industrial acceptance of the problem is yet 
to find maturity.  Only recently has SOS faults, a subset of the Byzantine fault class, received 
some widespread attention.  Today, there are still many misconceptions relating to Byzantine 
failure, both with respect to what makes a system vulnerable, and the very nature and reality of 
Byzantine faults.  This handbook revisits the Byzantine problem from a practitioner’s 
perspective.  It is the intention to provide the reader with a working appreciation of the 
Byzantine failure, from a practical, as well as a theoretical perspective.  A discussion of typical 
circuit-centric failures and the difficulties in preventing the associated failure propagation is 
presented.  These will be illustrated with real-world Byzantine failure observations.  Finally, 
various solutions to the Byzantine problem are presented and discussed within a context of the 
viability of their industrial deployment. 
 
A Byzantine fault is any fault that produces different symptoms for different observers.  This can 
happen at any point where a signal splits; i.e., one source goes to more than one destination.  
Byzantine faults are a lot like metastability in that there is no way to prevent them; you can only 
treat the symptoms so the faults do not become system failures. 
 
Byzantine faults can happen in the amplitude domain.  For example, assume that a digital driver 
gets stuck at 1/2.  Because of manufacturing tolerances, other digital circuits using this value 
may assume it is a 0 or may assume a 1.  The most common fault of all (an open) into a 
complementary metal-oxide semiconductor input looks like a 1/2.  Byzantine faults can happen 
in the time domain.  For example, in a synchronous redundant system, no matter how tightly you 
synchronized the redundant channels, there will always be some (infinitesimally small) time 
skew between the channels.  An input that goes to multiple channels can arrive at a clock tick 
and within the skew so some channels will see the input arriving before the clock tick and some 
see it arriving after the clock tick.  If the redundant channels vote on the input’s value at the 
clock tick, some will use the old value and some will use the new value.  Note that the voters will 
say some of the channels are faulty even though no hardware fault occurred.  This is a design-
induced Byzantine fault. 
 
A BGP is a system failure caused by a Byzantine fault.  If the multiple observers do not require 
any mutual coordination, a BGP cannot occur.  But, if the observers have to coordinate in some 
way, or if their actions are compared (by voting or some other means) for fault tolerance, then a 
BGP is possible. 
 
Byzantine-fault propagation escapes most of the classical fault containment techniques.  
Solutions to the BGP are well known, but do require a large amount of communication 
bandwidth.  It has been proven that to tolerate F Byzantine faults, you need 3F+1 fault 
containment zones.  From this, one can deduce the surprising result that a simple triple-channel 
system cannot tolerate even one Byzantine fault, no matter how cleverly it is designed.  The next 
surprising result is that to be fully tolerant to two faults, you need seven fault containment zones. 
 
To further illustrate the Byzantine propagation capability, one can envision a “Schrödinger’s 
CRC,” similar to the Copenhagen misinterpretation of “Schrödinger’s Cat,” where the CRC is 
simultaneously correct for any interpretation of Byzantine data.  The behavior of a 1/2 bit on a 
CCITT-8 CRC circuit is shown in figure A-3.  This figure shows 8 data bits followed by the 8 
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CCITT-8 CRC bits with one of the data bits to be transmitted stuck at 1/2.  Because the 
transmitter’s CRC is a linear (XOR) combination of its data bits, each CRC bit affect by the 1/2 
data bit can also be 1/2.  The switching threshold voltages are shown for two receivers (a and b).  
The resulting data received by a and b are different, but each copy has a correct CRC for its data.  
Thus, CRCs can provide no guarantee of protection against Byzantine fault propagation. 
 

 

Figure A-3.  A Schrödinger’s CRC 

Interactive consistency of messages is a service provided by a data network to ensure consistent 
message reception in the presence of Byzantine failures.  Byzantine failures manifest as different 
nodes having a different view of the messages communicated (either no message at all or even 
different values).  It is not possible to diagnose Byzantine faulty nodes unless source coverage 
(aiming at fault containment) is provided.   
 
Any voting mechanism at end nodes may have a different input set (due to one Byzantine fault, 
resulting in one different value, or due to a node-local transient fault, resulting in possible faulty 
but normally detected value).  Any voting scheme (e.g., TMR or any selection logic) may select 
or vote and result in a different value (but possibly a value stemming from a correct node).  Such 
effects may need to be considered by applications for evaluation. 
 
Even if source coverage (e.g., self-checking sources) is used, any voting or selection scheme may 
still result in a different selection outcome.  Similarly, master and shadow implementations at a 
network level may send out a frame that is corrupted either by a faulty node or transient faults.  
Switchover from master to shadow may be problematic in arbitrary fault scenarios, because some 
nodes may correctly receive the master’s frame and some may not.  If the shadow node correctly 
receives the master’s frame, it may never be able to take over control.  Such scenarios should be 
evaluated.  
 
Coding techniques (such as the use of CRCs or cryptographic signatures) are sometimes 
proposed as a solution to the Byzantine problem.  These solutions assume that certain fault 
behaviors cannot occur.  But, they offer no supportable rationale or enforcement mechanisms to 
ensure that these fault behaviors do not occur.  Until such supportable rationale or enforcement 
mechanisms are made available, these solutions have no value. 
 
Networks requiring Byzantine tolerance need to mitigate Byzantine failures by incorporating 
Byzantine-filtering actions.  The Byzantine filter transforms Byzantine input signals to consistent 
erroneous or correct signals.  In such systems, the coverage of the Byzantine filter action is a 
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critical network parameter.  In addition, networks are required to incorporate classical Byzantine 
agreement protocols.  
 
Network evaluations should consider the need for topological support or fault containment 
mechanism to achieve consistent message delivery. 
 
A.6  DESIGN ASSURANCE. 

A.6.1  DEVELOPMENT PROCESSES. 

Often network technology forms the backbone of the system architecture.  The design 
correctness of the network implementation is, therefore, of utmost importance, as the network 
provides a significant common-mode failure vulnerability.  With the increasing complexity of 
network technology, the design correctness problem is increasing with every generation of 
silicon.  Although multiple independent lanes of redundancy may be suitable to mitigate random 
component failure, if common network technology is used across all lanes, then the system is 
vulnerable to generic design defects of the network technology implementation.  Dissimilar 
network redundancy schemes may be deployed to mitigate such issues; however, such 
architectural strategies are beyond this evaluation.  Therefore, it is preferable if the network 
technology was designed with best-practice design procedures.  Within the aviation digital 
electronics domain, this would correspond to RTCA DO-178B for software-related network 
components and DO-254 for hardware components.  Network technologies that have such formal 
design assurance artifacts will pose less certification risk than other technologies and may be 
preferred for that reason.  Technologies without formal design assurance processes will need to 
be considered on a case-by-case basis.  The complexity and degree of commercial use of the 
networking technology will then need to be considered.  The COTS provisions within DO-254 
were designed to handle hardware technologies that have been used in many systems that have 
accumulated a huge service experience basis.  This use experience may be leveraged to assist the 
design assurance case.  This treatment is commonly applied to microprocessors.  The 
applicability of such techniques to networking-related hardware will need to be considered as the 
network is evaluated. 
 
A.6.2  AVAILABILITY OF STANDARDS AND CONFORMANCE EVIDENCE. 

A.6.2.1  Open Specification and Standardization. 
 
The use of open specifications and standardization might assist a certification authority in 
establishing the acceptability of a network.  Irrespective of the formality of the design artifacts, 
the quality of the network technology specification is a key attribute of the network technology.  
It is preferable if the technology is open with a standardized and published specification, as this 
will enable the protocol mechanisms to be analyzed and discussed within the academic and 
industrial community, including the application for formal verification studies.  The 
standardization process itself is beneficial, as the committee activity usually associated with the 
open standardization process may also lead to an open, detailed examination of the network 
behaviors.  However, care is required for network technology that is not designed specifically for 
use in a safety-relevant environment.  The completeness of the specification will need to be 
carefully reviewed.  Often, such standards may specify the normal mode of operation only, the 
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protocol actions-to-erroneous behavior and the associated degraded modes of operation may not 
be sufficiently treated in the standard document.  The evaluation of the network specification 
should include such completeness analysis. 
 
Another area where specification completeness may be lacking for COTS protocols is in the area 
of implementation choices that have been made below the protocol specification.  COTS 
solutions may not be not fully described because of the need to maintain competitive advantages 
between vendors.  Hence, many key implementation choices may not be visible and this may 
impact assurance process where a detailed understanding and analysis of the interactions of all 
technology layers is required.  The availability of suitable design information should be 
considered as the network technology is evaluated. 
 
A.6.2.2  Conformance and Interoperability Testing. 
 
As with the specification, the availability of standard conformance test campaigns and 
specifications may also be advantageous.  This is especially important for network technology 
that is sourced from multiple vendors, since it may assist in identifying interoperability glitches.  
The issues raised above, in relation to specification completeness, also arise in relation to the 
completeness of the conformance test campaigns; i.e., Are all operating modes covered, and are 
exception and error reactions sufficiently traveled? 
 
A.6.2.3  Protocol Design Correctness. 
 
In addition to completeness, the correctness of the specification is obviously important.  The use 
of formal methods and development of formal proof arguments for protocol algorithms show 
much promise here, as they can exhaustively verify the algorithmic behavior.  However, when 
reviewing such formal verifications, the assumptions that underpin the formal proofs need to be 
fully understood and evaluated against the real-world failure expectations and behavior.  
Similarly, the composability of the formal verifications needs to be understood to ensure 
interactions between different protocol algorithms (for example, membership services and clock 
synchronization).  In some protocols, for example TTP/C, interdependencies exist that may need 
to be evaluated with the formal arguments.  That said, formal verification of protocol algorithms 
can increase design-correctness confidence and, therefore, network technology that has such 
verification evidence may be more attractive. 
 
Informal validations (for example, random fault injections campaigns) may also increase 
confidence in the network architecture.  However, the conclusions that can be drawn from the 
fault-injection campaign need to be carefully scrutinized with a detailed understanding of the 
effects of the fault injection in relation to the technology implementation.  For example, consider 
a heavy-ion fault injection on a communications controller with and without parity on its 
microsequencer memory.  Without parity, this technique may provide useful insight into the 
performance of the system architecture.  This was demonstrated during the TTP/C FIT research 
program that illustrated the architectural vulnerabilities to Byzantine errors (in this instance 
caused by bit flips in the instruction memory that resulted in slight deviations of transmission 
time).  However, the same campaign performed on a controller incorporating parity for all 
onboard random access memory locations may not have been so revealing, as the parity 
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detection mechanism may swamp the observations with parity-induced fail-stops that cover up 
the other design weaknesses.  This type of study would be less relevant in finding these other 
architecture and design weaknesses.  The issues relating to the design and implementation 
visibility of COTS technologies are reiterated here, as this visibility may be required to draw any 
architectural inference from these studies. 
 
A.6.3  DESIGN MARGIN. 

The issues discussed in sections A.1 and A.2 also require some design assurances so adequate 
design and safety margins are established for the selected network technology.  Such a design 
needs to be established and justified to be valid over the whole system lifetime, addressing 
parasitic and parametric shifts due to temperature effects, etc.  This safety margin evaluation 
needs to be established in several domains, such as the time and value domains of signals under 
worst-case design parameters and network loading. 
 
For physical layer attributes, this means that influencing factors need to be analyzed with respect 
to their margin and contribution to the safety margin.  Such physical layer attributes may include 
an oversampling margin that should include the transceiver skew over the lifetime of the product, 
assuming worst-case loading, aging of components (e.g., clock stability overtime), temperature 
range of environment, etc. 
 
A.6.4  CONFIGURATION TABLE CORRECTNESS AND PERFORMANCE 
JUSTIFICATION. 

In addition to the design correctness of the network implementation, the design correctness of 
network configuration parameters and tables is also required.  This is especially important if the 
table parameterization impacts protocol algorithmic-level behavior, for example, clock 
synchronization timing and propagation delay parameterization.  In such instances, the 
parameters may severely impact protocol performance.  The incorrect configuration of such 
parameters may, therefore, invalidate any formal proofs of algorithmic correctness.  Similarly, 
tools may be used to establish parameters for network-policing policies, for example, message 
transmission rate limiting and maximum message jitter.  In such cases, the correctness of these 
parameters may severely impact network performance assumptions.  Therefore, when evaluating 
a network for suitability, consideration should be given to the rigor applied to ensuring correct 
network configuration parameters.  Ideally, all parameters critical to network operation will have 
explicit formal requirements and invariants that are traceable to network functional behavior, 
assumptions, and requirements.  Such traceability may assist the completeness checking of the 
guidance presented.  Ideally, the guidance supplied will be suitably assured for correctness and 
completeness. 
 
The network technology may also provide tooling to assist network configuration and its 
associated verification.  Such tools are often required to handle the size and complexity of 
modern networking technologies and to assist with the generation of nonhuman readable binary 
configuration tables.  If tooling is used for configuration data generation or verification, then the 
development pedigree of the tooling may also need to be examined as the network technology 
suitability is evaluated.  If the tooling is in-line, i.e.,  the tooling generates protocol configuration 
parameters that are not verified by subsequent process checks, then the generation tooling should 
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be qualified in accordance with the DO-178B guidelines for development tools.  Alternatively, if 
the tooling is simply used to verify the network configuration parameters, then they are less 
stringent and DO-178B verification tool guidance should be adopted.  The data flow path of in-
line generation and verification tooling need to be evaluated to ensure that adequate 
independence exists within the tool chain to prevent a common tooling failure.  In the ideal, the 
configuration inspection tools will be driven from reviewed network-related functional data flow 
requirements and the formal network parameter constraints and invariants. 
 
For some modern asynchronous networks, for example ARINC 664, the size and scale of the 
configuration problem is very large and end-to-end performance (e.g., data flow latency and 
jitter) is difficult to analyze and bound.  The sheer complexity of the network level interactions 
between end-node behavior, switch implementation, and the chosen network policing policies 
(e.g., message rate limiting) may greatly complicate network performance justification.  
However, procedures or tooling to analytically bound and justify the worst-case behavior of such 
networks is required to meet certification requirements.  Therefore, the capability and maturity of 
available analysis tooling should be given careful consideration, as such networks are evaluated.  
Similarly, network technologies that incorporate complicated MAC interactions may also 
complicate end-to-end performance calculations.  Such interactions and any associated network 
logic (e.g., retry logic and queuing mechanisms) need also to be considered by performance 
calculations and associated tooling.  Similarly, erroneous node behavior and associated diagnosis 
latencies should also be considered to bound the influence of the faulty node behavior on 
network performance.  Networks that bound such influences may therefore be preferable, as they 
may greatly simplify performance justification calculations 
 
For highly integrated multivendor systems network technologies that incorporate tooling to assist 
the incremental change of the network tables, allowing new functions and their associated data 
paths to be added to the network with minimal impact on previously analyzed functions may also 
be attractive, since such tooling may ease incremental certification effort. 
 
A.6.5  NETWORK MONITORING AND TEST EQUIPMENT. 

With complexity of modern network technology, the ability to monitor and observe network 
behavior is very important to support design validation.  Similarly, the ability to insert faults into 
the different network layers may be required to test the network redundancy management 
mechanisms, or the fault response behavior of applications operating on top of the network 
infrastructure.  Therefore, the availability and capability of the test equipment that exists for the 
network technology may also be a very important consideration.  In the ideal situation, such test 
equipment is able to observe all behavior of all network nodes, including network start-up and 
recovery actions.  The portability of the test equipment should also be considered, as such 
equipment is often required to support flight-testing. 
 
The no-interference guarantees of the test equipment may also need to be evaluated if it is to be 
deployed in a flight test scenario.  The ability to monitor the entire network behavior from 
limited test inspection access points should also be considered.  In some modern switched 
technologies, such access is more difficult than in simpler buses.  Hence, work in some newer 
switched technologies is being performed to develop the network-wide controllability and 
observability needed to test the maintenance of these new or more complicated networks, while



 

at the same time, trying to minimize the invasiveness and logistics complexity of connecting test 
equipment to these networks. 
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