
DOT/FAA/AR-09/24

Air Traffic Organization
NextGen & Operations Planning
Office of Research and
Technology Development
Washington, DC 20591

Data Network Evaluation
Criteria Handbook

June 2009

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. This
document does not constitute FAA certification policy. Consult your local
FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.act.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page
1. Report No.

DOT/FAA/AR-09/24

2. Government Accession No. 3. Recipient's Catalog No.

 4. Title and Subtitle

DATA NETWORK EVALUATION CRITERIA HANDBOOK

5. Report Date

June 2009

 6. Performing Organization Code

7. Author(s)

Kevin Driscoll, Brendan Hall, Phil Koopman, Justin Ray, and Mike DeWalt

8. Performing Organization Report No.

9. Performing Organization Name and Address

Honeywell International, Inc.

10. Work Unit No. (TRAIS)

3660 Technology Drive
Minneapolis, MN 55418

11. Contract or Grant No.

DTFACT-05-C-00002

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Air Traffic Organization NextGen & Operations Planning
Office of Research and Technology Development

13. Type of Report and Period Covered

Washington, DC 20591 14. Sponsoring Agency Code
 AIR-120

15. Supplementary Notes

The Federal Aviation Administration Airport and Aircraft Safety R&D Division COTR was Charles Kilgore.
16. Abstract

The purpose of this Handbook is to provide evaluation criteria to be used in the development, selection, modification, adaptation,
or approval of data network technologies and components to be deployed in safety-critical aviation systems. The expected
readership for this Handbook primarily includes designers of digital electronics systems that may use data networks and those
who are concerned with the certification of aircraft or aircraft engines containing such systems.

This Handbook’s objective for providing these evaluation criteria is to facilitate the process by which data networks are employed
in aviation digital electronics systems that may ultimately be certified as part of an overall aircraft or aircraft engine certification
process. It focuses on identifying aspects of the technologies and component implementations that ultimately may have an
adverse impact on the approval within the certification of an aircraft. Particular attention is given to issues that are generally
overlooked or underappreciated in the industry.

This Handbook does not constitute Federal Aviation Administration certification policy or guidance, but may be used as input to
future policy and guidance.

17. Key Words

Databus, Network, Certification, Criteria, COTS

18. Distribution Statement

This document is available to the U.S. public through the
National Technical Information Service (NTIS), Springfield,
Virginia 22161.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 103

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ix

1. INTRODUCTION 1

1.1 Organization 1
1.2 Background 2

1.2.1 Data Network Evaluation Relative to a System Safety Process 3
1.2.2 The CAST-16 Position Paper 5
1.2.3 Ethernet Handbook 5
1.2.4 Advisory Circular 20-156 Aviation Databus Assurance 6

1.3 Purpose 6
1.4 Scope 7

1.4.1 System Network Role 7
1.4.2 Protocol Stack 8
1.4.3 Developmental Time Horizon 9

2. DATA NETWORK CERTIFICATION ISSUES IN CONTEXT 10

2.1 Supported Application Requirements 10
2.2 Multiple-Requirement Engineering Trades 10
2.3 System Architecture and Design 11

2.3.1 Determinism 12
2.3.2 Robust Partitioning 13

3. PHYSICAL LAYER 13

3.1 Environment 13
3.2 Probability of Bit Errors 14
3.3 Probability of Electrical Component Failures 15
3.4 Electrical Isolation Properties 15
3.5 Physical Composability 16

4. DATA LINK LAYER 16

4.1 The MAC 17
4.2 Line-Level Encoding 18
4.3 Message Formating (Framing) 18
4.4 Error Detection 19

 iii

4.4.1 Protocol Violation Error Detection 19
4.4.2 Parity and Frame Check Sequences 19
4.4.3 Interactions Between Line-Level Encoding and Error Detection 19

5. NETWORK LAYER, TRANSPORT LAYER, AND NETWORK MANAGEMENT 20

5.1 Network Vulnerability to Addressing Information Failure 20
5.2 Network Vulnerability to Flow Failure 21
5.3 Impact of Intermediate Stages 21

5.3.1 Vulnerability to Intermediate-Stage Failure 22
5.3.2 Vulnerability of Intermediate Stage to Fault Propagation 22

5.4 Network Configuration Data 23
5.5 Start-Up and Recovery 23
5.6 Global Synchronization 24
5.7 Fault Diagnosis 25
5.8 Client Effect on Network Operations 26
5.9 Acknowledgement 27

6. APPLICATION SERVICES 27

6.1 Host Interface Management 28

6.1.1 Client Buffer Queue Management 28
6.1.2 Buffer Management Partitioning 28
6.1.3 Buffer Management Performance Considerations 28

6.2 Support for Application Layer Redundancy 29

6.2.1 Support for Active Replication 29
6.2.2 Support for Passive Replication 30
6.2.3 Support for Increased Integrity 30
6.2.4 Support for Robust Partitioning 31

6.3 Time Service for Time Stamping and Time Interrupts 31

7. FAULT TOLERANCE MECHANISMS 32

7.1 Topological Fault Tolerance 32
7.2 Guardian Schemes 32
7.3 Protocol Logic Fault Tolerance 33
7.4 Local Transmission-Monitoring and Self-Checking Schemes 34
7.5 Reconfiguration and Degraded Operation 34
7.6 Latent Failure Detection 35
7.7 Voting, Selection, or Agreement Services and Redundancy Management 35

 iv

7.8 Byzantine Fault Tolerance 36

8. DESIGN ASSURANCE 37

8.1 Development Processes 37
8.2 Availability of Standards and Conformance Evidence 37

8.2.1 Open Specification and Standardization 37
8.2.2 Conformance and Interoperability Testing 38
8.2.3 Protocol Design Correctness 38

8.3 Design Margin 39
8.4 Configuration Table Correctness and Performance Justification 39
8.5 Network Monitoring and Test Equipment 41

9. SECURITY 42

10. EVALUATION PROCESS 43

11. SUMMARY 43

12. REFERENCES 44

13. GLOSSARY OF TERMS 45

APPENDIX A—DATA NETWORK TECHNOLOGY AND ISSUES

 v

 vi

LIST OF TABLES

Table Page

1 Seven-Layer ISO OSI Model 8

LIST OF ABBREVIATIONS AND ACRONYMS

AC Advisory Circular
ARINC Aeronautical Radio, Incorporated
BER Bit error rate
BGP Byzantine generals’ problem
CAN Controller area network
CAST Certification Authorities Software Team
CCA Common cause analysis
CFR Code of Federal Regulations
COTS Commercial off-the-shelf
CRC Cyclic redundancy code
CSMA/CD Carrier Sense Multiple Access/Collision Detect
dc direct current
DMA Direct memory access
EDAC Error detection and correction
FAA Federal Aviation Administration
FCS Frame check sequence
FIFO First-in, first-out
FMEA Failure modes and effects analysis
FMECA Failure modes, effects, and criticality analysis
FTA Fault tree analysis
HD Hamming distance
HIRF High-intensity radio frequency
IC Integrated circuit
IEEE Institute of Electrical and Electronic Engineers
ISI Intersymbol interference
ISO International Standards Organization
LLC Logical link control
MAC Media access control
MIL-STD Military Standard
NACK Negative acknowledgements
OSI Open Systems Interconnect
PLL Phase-locked loop
PSSA Preliminary system safety analysis
RAM Random access memory
RF Radio frequency
SAE Society of Automotive Engineering
SERDES Serializer/deserializer
SEU Single-event upset
SNR Signal-to-noise ratio
SOS Slightly-out-of-specification
TCP/IP Transmission Control Protocol/Internet Protocol
TDMA Time division multiple access
TMR Triple modular redundancy
TTP/C Time Trigger Protocol/SAE Class C

 vii/viii

EXECUTIVE SUMMARY

Databus and data network technology continues to play an ever-increasing role in aviation digital
electronics architectures throughout the range of aviation markets. The evolution of integrated
modular aviation digital electronics architectures comprising multiple subsystems integrated into
single and redundant data networks is increasing the influence of data networking. The
criticality of data networks has previously led avionics manufacturers and aircraft original
equipment manufacturers to design specific aerospace solutions to meet their requirements. In
recent years, cost challenges have led to the adoption of commercial off-the-shelf (COTS)
communication solutions in avionics. Although attractive from a cost perspective, the adoption
of COTS presents certification issues, particularly as the complexity and increased leverage of
technology continues to evolve. Subtleties may escape the system designer and leave
dependability holes. An example is the interference of the Controller Area Network bit-error
stuffing mechanism with message cyclic redundancy code coverage. COTS can be adopted as-
is, or with fixes added so it is a better fit for dependable avionics requirements, i.e., the
adaptation of Ethernet to Aeronautical Radio, Incorporated (ARINC®) Part 7. Helping this trend
is the arrival of “safety-critical COTS” in the marketplace, particularly in automobile and
process-control areas. However, even with designed-for-purpose technology, it is necessary to
ensure that the technology has dependability consistent with real-world requirements and
redundancy management schemes.

Development and evaluation of aviation digital electronics data networks that are suitable for
safety-critical aviation digital electronics is a complex subject area. It requires detailed
knowledge of communications systems, aviation communication and application requirements,
mechanisms for creating dependable architectures, certification expectations, and assurance
strategies. It is also important to note that, with correct architectural mitigation, almost any data
network may be used in a certified system. For example, a layer of fault tolerance can be placed
above the network to fix any of its shortcomings.

The objective of this Handbook is to provide criteria for evaluating data network technology for
use in safety-critical applications. However, this should not be taken to mean that these criteria
can be used to rank data networks in a scale of absolute goodness, independent of the avionics
systems in which they are employed. Because the operation of a data network is so entangled
with the avionics system it supports, it is not possible to make an evaluation of a data network on
its own. The goal is to create a sufficient breadth of criteria that can be used to evaluate the
widest range of data networks with respect to the avionics systems in which they may be
employed.

This Handbook builds on previous documents in this area, particularly the Certification
Authorities Software Team (CAST-16) position paper, “Databus Evaluation Criteria,”
“Handbook for Ethernet-Based Aviation Databuses: Certification and Design Considerations,”
and Advisory Circular 20-156, “Aviation Databus Assurance.”

This Handbook includes a structured list of issues and criteria related to evaluating data network
technologies for digital electronics applications. Many of these issues and criteria are
overlooked or are underappreciated by many of today’s digital electronics designers.

 ix

The material contained in this Handbook is part of the work done for the Databus Evaluation
Criteria research project. This project was carried out in collaboration with Honeywell
Laboratories, Minneapolis, MN; Carnegie Mellon University, Pittsburgh, PA; and Certification
Services Inc., Eastsound, WA. The funding was provided by the Federal Aviation
Administration.

 x

1. INTRODUCTION.

The goal of this Handbook was to document objective evaluation criteria for data networks to be
used in aviation products. Of particular interest are digital electronics applications that are safety
critical. The evaluation of databus and networking technology is not a simple matter. It requires
a detailed review and analysis of the lowest-level implementation characteristics of the selected
technology together with the ability to map significant behaviors and failures to their
architectural relevance. Avionics data networks are becoming more complex. They are evolving
from half-duplex links Aeronautical Radio, Incorporated (ARINC®) 429 to full-duplex buses
with multiple transmitters. Single master buses (ARINC 429, Military Standard (MIL-STD)
1553) are becoming networks with multiple masters or peer-based networks where effectively all
nodes are masters (ARINC 664). These data networks are increasing their complexity by
offering more features than in the past, for example, multiple classes of service. In the drive to
reduce cost and weight, more integrated networks are shouldering a larger responsibility for
correct system operation and avionics system fault containment.

For the purposes of this Handbook, the term “evaluation criteria” means the standards on which a
judgment can be made regarding the suitability of a data network for use in digital electronics
systems, given the characteristics or features of the data network that may have an impact on
system safety. One cannot definitively say that a particular characteristic or feature would have a
safety impact, because the architecture in which the network is used may be insensitive to (e.g.,
may not need) the particular characteristic or feature that would be a problem for other
architectures. Thus, this Handbook will describe all the evaluation criteria that need to be
considered, regardless of any particular architecture. The system designer and evaluators then
must determine whether a particular evaluation criterion is applicable to the data network being
evaluated and the system being designed.

This Handbook is not intended to provide a “go/no-go” checklist for justifying any particular
data network technology since such a decision is very dependent on how a particular technology
is used within an application. Therefore, if the evaluation of a network’s suitability for a
particular avionics system is unsure or unsatisfactory, the system designer has three options (only
the first of which could be considered a go/no-go type of decision):

• Select a different data network
• Alter the data network design or implementation to overcome shortcomings
• Change the system design to accommodate the shortcoming(s)

Instead of a simple checklist, this Handbook provides a set of criteria with ancillary questions
that form a framework for a data network technology, e.g., examination of conscience, that can
be used to bridge the gaps between a data network technology’s behaviors and the system-safety
assumptions that underpin the top-level safety case. This is in contrast to a simplistic go/no-go
judgment of the data network technology evaluated outside of any context of a digital electronics
architecture in which it may be used.

1.1 ORGANIZATION.

Section 1 gives an introduction that provides a rationale for creating this Handbook.

 1

Section 2 describes some aspects of the environment surrounding the evaluation of a data
network.

Sections 3 through 9 of this Handbook present a discussion of data network technology attributes
that must be considered when evaluating the technology within aviation digital electronics
systems. This information is organized in relation to the hierarchies of communication stack
models (e.g., the International Standards Organization (ISO) Open Systems Interconnect (OSI)
model) for evaluation criteria that fit well with these models (sections 3 through 6) and by
themes of special interest that require attention in the system design and deployment (sections 7
through 9).

Organizing the criteria along a communication stack model should make them easier to find and
to correlate against communication network description documents, which are often organized in
this way. However, a pure communication stack model approach misses essential attributes of
data network design. Therefore, it is these areas of special interest (sections 7 through 9) that are
most likely to be missed.

Sections 3 through 9 include criteria paragraphs that are numbered sequentially according to
their relation to the protocol stack hierarchy. These paragraphs are inserted at the end of sections
where the introduction of the criteria is appropriate. Each criterion is formatted in bold font
beginning with a criterion number followed by a short title, and the main criterion question or
statement. An optional paragraph of ancillary questions may immediately follow a criteria
paragraph. These questions are intended to help the reader evaluate the criterion by calling
attention to various aspects of the network design.

Note that criterion 2 is an exception to the standard for numbering criteria paragraphs
sequentially. While the criterion 2 is numbered appropriately for its relationship to the protocol
stack hierarchy, for the purpose of this document, it is placed where it will be best understood
(section 4.2) after line-level encoding, has been explained.

Section 10 suggests an evaluation process using this Handbook.

Section 11 provides a summary.

Section 12 lists the references.

Section 13 provides a list of the technical terms used throughout this Handbook.

Appendix A provides additional information on data network technology and its issues.

1.2 BACKGROUND.

From a list of data network technology behaviors and beginning with the Certification
Authorities Software Team (CAST-16) position paper, “Databus Evaluation Criteria” [1];
“Handbook for Ethernet-Based Aviation Databuses: Certification and Design Considerations”
[2]; and Advisory Circular (AC) 20-156, “Aviation Databus Assurance” [3] as departure points,
an examination was made of how communications primitives and services can be leveraged at

 2

the application level, and what impacts the behaviors may introduce with respect to certification.
The “Data Network Evaluation Criteria Report” [4] also serves as a source for this Handbook.

1.2.1 Data Network Evaluation Relative to a System Safety Process.

The sheer variety of network and databus technology makes it difficult to characterize generic
attributes that can be used for a set of all-encompassing evaluation criteria. The details of the
implementation of these networks determine their characteristics; they may be serial, parallel,
synchronous, asynchronous, external, internal, intersystem or intrasystem wired, or wireless, etc.
In addition, the potential failure behavior of the databus or network technology may be mitigated
at the system architecture level, for example, by employing multiple independent data paths,
design dissimilarity, or enhanced end-to-end integrity mechanisms above the core network
behavior. For these reasons, a bottom-up go/no-go checklist is very difficult to elicit at the
network level. Instead, a holistic view of the entire system is required to ensure that the use of
the network technology is sufficient to meet the system-level functional responsibility and safety
assumptions. Therefore, databus and network technology have traditionally been evaluated on a
case-by-case basis against federal aviation regulation Title 14 Code of Federal Regulations
(14 CFR) (Aeronautics and Space, Airworthiness Standards) XX.1309 (the safety-related
regulations) and 14 CFR XX.1301 (the intended function-related regulations) with a detailed
review of the implementation mechanisms. Pertinent regulations related to this research, and
adopted and enforced by the Federal Aviation Administration (FAA) are contained in 14 CFR
Chapter I Parts 1-199, FAA, Department of Transportation) Part XX (identified below), Subpart
F (Equipment), Section XX.1301 (Function and Installation) and Section XX.1309 (Equipment,
systems, and installations), and are identified as follows:

• Part 23—Small Airplanes (Normal, Utility, Acrobatic, and Commuter Category

Airplanes)

• Part 25—Transport Category Airplanes

• Part 27—Small Helicopters (Normal Category Rotorcraft)

• Part 29—Large Helicopters (Transport Category Rotorcraft)

• Part 33—Aircraft Engines

In addition, 14 CFR 33.28 (Aircraft Engines, Electrical and Electronic Engine Control Systems)
also applies. This process is initially top-down, focusing on functions at the aircraft level that are
enumerated in a function list.

The hazards associated with the functional failure conditions are determined for each function at
the aircraft level. Note that at the initial stages of the process, designers and evaluators may not
know how these functions will be allocated to subsystems. While it can be the common cause
for failures in multiple functions, the bus or network has not traditionally been viewed as an
airplane-level function, rather, it is a tier design choice for how the functions are provided, so at
this point, there is no impact. One or more candidate system architectures for aircraft-level

 3

functions are proposed. The system could be a single processing module (analog or digital) with
a number of inputs or outputs fed directly to the box, or a single box for each function (analog or
digital), or any of a number of alternative architectures. This architecture then forms the basis
for an aircraft-level fault tree that demonstrates how failure conditions will flow through the
architecture.

At this stage, it is not uncommon to start looking at common cause analysis (CCA). CCA
consists of three components: (1) particular risk analysis (e.g., lightning), (2) common-mode
analysis (e.g., all boxes receive cooling from a single source or data from a shared network), and
(3) zonal analysis (e.g., a fire in the wheel well damages wires that pass through the area but are
not related to any equipment in the wheel well), at the architecture level (for example, consider
the implications of the two mentioned architectures). As the architecture is refined, an airplane-
level network may be derived; this will need to be considered as part of the system fault tree
analysis (FTA). This process continues iteratively until a detailed component (i.e., line
replaceable unit) level design emerges. This iterative top-down process is captured by a
preliminary system safety analysis (PSSA), system and subsystem fault trees, and revisitation of
the common cause and zonal analysis as appropriate. The lower levels of the fault tree will
contain a number of different faults that can be traced to aircraft-level failure conditions. As the
architecture is continuously refined, the use of databuses and network technology can appear at
any level and feed into the continuously evolving PSSA. When a preliminary complete design
emerges, then a bottom-up approach, called a failure modes and effects analysis (FMEA) or a
failure modes, effects, and criticality analysis (FMECA), is instituted on the actual design
looking at specific failures of components or group of components and their contribution to the
aircraft hazards. A failure condition would be phrased as “loss of all braking” due to a hardware
failure (unspecified), and analysis would be conducted to determine all possible failures that
could cause the failure condition. The FMEA would start with something like the failure of a
power supply and trace it to a system effect. Ideally, the top level of an FMEA or FMECA can
be identified with the faults from one or more fault trees. Databuses and network technology
services may, therefore, appear in any level of the system design and are required to be analyzed
from both the bottom-up (FMEA/FMECA) and top-down (FTA/PSSA, as well as the CCA).
When the iterative process is finished, the safety results are documented in the system-safety
analysis, including the summaries of the FMEA/FMECAs and the CCA.

For this process to work effectively, it is paramount that the impact of the behavior and potential
failure of the databus and network technology is adequately captured and represented in the
FTA. For low-complexity network and databus technology, the process above is relatively
straightforward. In such cases, the network services assumed by the upper levels of the system
behavior are simple and restricted to point-to-point communication primitives only (for example,
those concerned with the loss, delay, or corruption of information restricted to a few nodes).
However, as silicon integration increases (enabled by continually decreasing process
geometries), the failure modes of integrated devices are getting considerably more difficult to
bound. Hence, even in the case of simple communication services, great care is required to
ensure that the failure mechanisms and assumptions are suitably captured. In addition, as
networking technology has advanced, a number of additional services have been implemented at
the network level (for example, acknowledgement, message agreement, global time
synchronization, system mode change distribution, fault diagnosis, power distribution, etc.). The

 4

system-level impact of such services may be significant, and in many cases, the databus or
network may form the intelligence backbone of the system or entire aircraft. In these cases, a
more detailed analysis of network behavior and system logic and assumptions is required. For
example, if message agreement or interactive consistency is leveraged by applications operating
above the network infrastructure to implement active replication strategies (for example, replica
determinism for triple-modular replication), the justification of the application-level behavior
needs to address implications of network failures or transient upsets that may affect the coverage
of such strategies in the event of a fault or external system upset.

1.2.2 The CAST-16 Position Paper.

The CAST-16 position paper, “Databus Evaluation Criteria,” [1] was published in February 2003
with the stated purpose of documenting “criteria that should be considered by databus
manufacturers, aircraft applicants, and certification authorities when developing, selecting,
integrating, or approving a databus technology in the context of an aircraft project”.1 A CAST
position paper expresses regulatory concern about technical and safety issues. These concerns
have been captured in the August 2006 publication of AC 20-156, Aviation Databus Assurance,
which is described in section 1.2.4.

1.2.3 Ethernet Handbook.

In September 2004, the “Handbook for Ethernet-Based Aviation Databuses: Certification and
Design Considerations” [2] was published. Its purpose was “to provide the network designer and
developer with some guidelines to develop an Ethernet-based databus framework deployable in
certifiable avionics systems.”

This Ethernet Handbook builds on the CAST-16 position paper and adds guidelines specific for
Ethernet-based data networks. These guidelines were not developed solely for the Institute of
Electrical and Electronic Engineers (IEEE) 802.3 standards, but also for aviation digital
electronics-specific Ethernet derivatives.

The IEEE 802.3 standards constitute a wide variety of data networks. Speeds range from the
1990 version that operated at a maximum of ten megabits per second to ten gigabits per second
at the time of this Handbook’s publication. It can be expected that even higher-speed versions
will be created in the future. The physical line symbol coding includes Manchester, 4b/5b,
8b/10b, and several lesser used encoding schemes. The topologies include buses and stars.
There are a number of Ethernet variants, with the simplest using a total of two wires, and the
most complex using eight wires per node. Fiber-optic versions of Ethernet use two fibers for
each node. The media access control (MAC) mechanisms include Carrier Sense Multiple
Access/Collision Detect (CSMA/CD), which is primarily used for buses and in switch-based
mechanisms used for stars.

1 It is important to note that all CAST papers include the following disclaimer: “This position paper has been

coordinated among the software specialists of certification authorities from the United States, Europe, and
Canada. However, it does not constitute official policy or guidance from any of the authorities. This document is
provided for educational and informational purposes only and should be discussed with the appropriate
certification authority when considering for actual projects.”

 5

Adding to this wide variation of IEEE standard, Ethernets are Ethernet derivatives designed
specifically for aviation digital electronics. These include ARINC 646 Ethernet Local Area
Network, ARINC 664 Aircraft Data Network, and the Avionics Standard Communications Bus,
Version D. These derivatives range from simple adaptations to the aviation digital electronics
rugged environment to whole-scale usurping of the MAC protocols with protocols that provide
varying degrees of increased media access determinism. (See section 2.3.1 for a detailed
discussion of determinism.)

While the Ethernet Handbook covers a wide variety of Ethernet derivatives with guidelines that
are more detailed than the CAST-16 position paper, it covers only a small fraction of the possible
data networks that can be used for aviation digital electronics.

1.2.4 Advisory Circular 20-156 Aviation Databus Assurance.

AC 20-156 was published in August 2006, which follows very closely to the CAST-16 position
paper. Thus, it does not include specific and detailed criteria. AC 20-156 describes a means to
gain FAA approval of an aviation data network; wherein the means show that the data network
design performs its intended function and satisfies the applicable airworthiness requirements
when installed on an aircraft or aircraft engine. This AC is not mandatory and does not
constitute a regulation. It describes an acceptable means, but is not the only means, by which a
data network can be successfully included in a certified aircraft or aircraft engine.

AC 20-156 calls out eight criteria categories based largely on those created by the CAST-16
paper. Within each category, specific criteria were enumerated. The eight categories and
number of criteria in each are:

• Safety—7 criteria
• Data Integrity—10 criteria
• Databus Performance—12 criteria
• Software and Hardware Assurance—3 criteria
• Electromagnetic Compatibility—4 criteria
• Verification and Validation—10 criteria
• Configuration Management—7 criteria
• Security Assurance—2 criteria

1.3 PURPOSE.

This Handbook is intended to facilitate the overall certification process for aircraft or aircraft
engines that employ digital electronics systems containing data networks. It builds on the
previous work described above, by providing specific and detailed criteria for evaluating a wide
range of data network technologies and components with respect to the possible adverse impacts
on certification due to their use.

The characteristics of data networks are so varied that it is impossible to create a single set of
detailed and specific criteria in which all the criteria are applicable to all data network

 6

technologies and components in all possible applications. Because of this extremely wide
variation, creating a concise set of specific and detailed criteria for data networks is much more
difficult than creating a similar set of criteria for microprocessors. The combination of
extremely wide variation and detail leads to a set of criteria that can be overwhelming.

However, for safety-critical systems, it is usually true that the accuracy of the details is essential.
Therefore, this Handbook tries to include as much breadth and depth of criteria as possible. To
partially mitigate the problem of having an overwhelming set of criteria, this Handbook presents
the criteria on two levels. The higher level is presented in the body of the Handbook with much
more detailed discussions included in appendix A. Someone still needs to determine what
criteria are applicable to what data network, a task which is too varied to be prescribed in the
confines of this Handbook.

Certifiability of a data network means that, if the data network is deployed in aviation digital
electronics and complies with all applicable regulations and guidance, one cannot introduce any
unacceptable risk to the aircraft as determined by the system safety analysis. Note that this is
different from the notion of the product adding quality to the system. An aviation digital
electronics component, such as the data network, may add quality. This Handbook does not deal
with added quality; rather, it focuses on identifying and preventing aspects of the product that
detract from the factors impacting certifiability. Particular attention is given to issues that are
generally overlooked or underappreciated in the industry.

This Handbook presents and describes criteria that should be considered by data network
manufacturers, aircraft applicants, and certification authorities when developing, selecting,
integrating, or approving a data network technology or components in the context of an aircraft
project.

1.4 SCOPE.

1.4.1 System Network Role.

The evaluation criteria described in this Handbook were selected to help in the creation or
selection of safety-critical aviation digital electronics data networks. The data networks that are
safety critical tend to be system data networks (i.e., data networks that connect together a number
of subsystems) or data networks that connect together the redundant elements of a safety-critical
subsystem. These data networks generally have been “box-to-box” rather than backplane
memory or peripheral extension buses, such as the peripheral component interconnect. The latter
are used to connect together cards within a box that implement a single function or form a single
fault containment zone within the redundancy set (i.e., one replicant).

A few networks, such as SAFEbus, are actually system buses implemented in a backplane. The
role of the network is what is important, not where or how it is implemented. Backplane system
networks can be differentiated from simple extension backplanes by the fact that they have a
higher level of safety criticality or that they may connect together multiple subsystems rather
than just the components of one subsystem.

 7

While development of these evaluation criteria were not intended to cover networks within a
single-function box, subsystem, or those that connect nodes together within a single fault
containment zone, these types of networks could have an impact on safety. For example, a
generic failure in a backplane bus used in each copy of a redundant, safety-critical system could
cause that system to fail.

If multiple cards and functions are connected by a single backplane network, then the common-
mode influence and failure of the backplane network needs to be considered when the
availability and integrity of these functions are justified. This is especially true if functions
connected by data network infrastructure (backplane or box-to-box) are assumed to fail
independently. In such cases, some of the evaluation criteria described by this Handbook may be
equally applied to these internal networks. However, the scope of these criteria is not intended to
entirely cover the case of internal subsystem networks or onboard networks, where all network
connections lie within a common fault zone.

1.4.2 Protocol Stack.

Data network protocols are often designed to comprise multiple layers of functionality organized
within a stack. Each layer is sufficiently independent of the layer above and below it so that the
layer can be reused in other stacks. Generic models for the stacks have been developed. The
most widely known model is the seven-layer ISO OSI model, as shown in table 1.

Table 1. Seven-Layer ISO OSI Model

No. Name Description
Layer 7 Application This is the layer at which communication partners are identified, quality of

service is identified, user authentication and privacy are considered, and any
constraints on data syntax are identified. This layer is not the application
itself, although some applications may perform application layer functions.

Layer 6 Presentation This is a layer, usually part of an operating system that converts incoming
and outgoing data from one presentation format to another.

Layer 5 Session This layer sets up, coordinates, and terminates conversations, exchanges,
and dialogs between the applications at each end. It deals with session and
connection coordination, authentication, and end-to-end encryption.

Layer 4 Transport This layer manages the end-to-end control (for example, determining
whether all packets have arrived) and error checking. It ensures complete
data transfer.

Layer 3 Network This layer handles the routing of the data (sending it to the right destination
on outgoing transmissions and receiving incoming transmissions at the
packet level). This layer routes and forwards the transmissions.

Layer 2 Data link This layer provides synchronization for the physical level. It furnishes
transmission protocol knowledge and management.

Layer 1 Physical This layer conveys the bit stream through the network at the media and
mechanical level. It provides the hardware the means to send and receive
data on a carrier.

 8

The widely used Department of Defense Advanced Research Projects Agency Network TCP/IP
suite does not have an official stack description document. But it is known to have four or five
layers, with the bottom three layers generally corresponding to the bottom three layers of the OSI
stack.

For the embedded real-time systems used in the vast majority of safety-critical aviation digital
electronics, models with a reduced number of layers have been used to provide lower
complexity, latency, and overhead.

The lower layers of the stacks deal with the communication media and the hardware connected
to it. The higher layers of the stacks represent functionality that is progressively abstracted
further away from the hardware. When developing selection criteria for data networks that will
be used in safety-critical systems, a question naturally arises as to which layers need to be
evaluated. This question is equivalent to asking: What layers can affect the dependability of the
overall communication system? This will depend on where the designers have implemented
mitigation means, the type of failures that can be realized at a given layer, and the effect on the
system safety analysis. In general, the highest layer, where communication dependability is
considered, is usually identified as the transport (or equivalent) layer. Some networks handle
dependability issues partly or entirely within layers below the transport layer, while others deal
with them at the application layer that interfaces with the transport layer. In many cases,
multiple layers will be needed to provide an acceptable dependability argument. Communication
network hardware typically implements stack layers below the transport layer, and many of the
networks proposed for aviation digital electronics systems only define these lower layers.
However, some of these hardware devices also provide special application services that support
system fault tolerance.

In general, the scope of the evaluation criteria described in this Handbook extends from the
lowest stack layer, up through the dependability features of the transport layer or to the highest
layer that is part of the network standard (or definition, if the network is not a standard), if that
network does not include functionality up to the dependability features of the transport layer.
Safety-critical embedded real-time systems often require services not included in generic
protocol stack models, such as a time synchronization service. These special services will be
included within the scope of these criteria.

1.4.3 Developmental Time Horizon.

The evaluation criteria were chosen so future data network communication technologies, as well
as current technologies, can be evaluated.

 9

2. DATA NETWORK CERTIFICATION ISSUES IN CONTEXT.

2.1 SUPPORTED APPLICATION REQUIREMENTS.

When evaluating a data network for a particular aviation digital electronics application, one must
begin by establishing the requirements for that data network. The requirements placed on a data
network are highly dependent on the aviation digital electronics architecture that will employ the
network.

To develop requirements for an avionics data network, the results from the following tasks
should be captured:

• Establish the most critical system failure condition for each data on the network.

Determine the failure states of the data that created that condition. Establish the
associated probability and assurance requirements.

• Define the network functions that are required by the system’s applications.

• For each data element on the network, examine network function failure on the following
classes of failure:

- Inability to provide data

- Failure to meet specified criteria (e.g., timing, lack of corruption, latency,

sequence, identification, etc.)

• Establish the fault containment and fault tolerance requirements from the system safety

analysis for data hosted by the network. This may require high-integrity message
integrity checks or redundant paths.

• Determine whether the system requires the data network to coordinate action or
consensus between different networked components (e.g., for synchronization, fault
diagnosis, or voting).

Such a top-down examination of network use is needed to establish a context for the detailed
analysis of the network lower-level properties and behaviors presented in the following sections.
Therefore, without this system context, the justification of databus and network suitability or
unsuitability is impossible to determine.

2.2 MULTIPLE-REQUIREMENT ENGINEERING TRADES.

As with any complex technology, the selection (or creation) of data network technologies
requires the evaluation of how well a particular technology alternative meets a large number of
requirements, many of which are contradictory. What is more important: size, weight, power,
cost, bandwidth, latency, availability, integrity,...? Technology trades must consider all
requirements simultaneously. Therefore, the relative importance or weighting of these
requirements must be established. After the relative importance rankings of the requirements

 10

have been established, ratings of how well a particular technology alternative meets each
requirement must be created. Then, the multiple requirement trade-off can be done.

These trades are most often done in a linear compensatory manner. That is, for each alternative,
its goodness value for a particular requirement is multiplied by the ranking or weight of that
requirement; then all of these products are summed to get the overall value of that alternative.
The best alternative is the one with the highest sum. This process can be represented by the
formula

1

n

a r
r

V w
=

= ∑ arv

where:

Va = Value of the a th technology alternative
wr = Weight or importance of the r th requirement
var = Value of the a th alternative with respect to the r th requirement

Some requirements may have a minimum acceptable level. That is, any alternative that fails to
achieve this minimum level will be rejected, regardless of how well it does against other
requirements. Above the minimums, how well an alternative meets one requirement can be
traded for another requirement. However, even the minimum acceptable levels may be
adjustable, because a data network is not solely responsible for any particular system
characteristic. For example, a data network by itself cannot guarantee system safety; it is only
one component of the system (although it may be the most important component). One can
trade-off the characteristics required for safety, e.g., data integrity, between the data network and
any architectural mitigation for that characteristic.

The criteria for accepting data network technologies and component implementations with
respect to a certification process constitute only a subset of the requirements typically considered
when doing a data network trade study. This can lead to a multidimensional trade-off. For
example, the inclusion of a certain level of data integrity in a network may force other
characteristics to fail their requirements (e.g., excessive size, weight, and power). However,
moving the responsibility for the integrity to some other part of the system design may not incur
the same level of problem.

2.3 SYSTEM ARCHITECTURE AND DESIGN.

It is not possible to evaluate data network technologies and components without regard for the
specific architecture and system design within which they will operate. Note that architecture as
used in this context is not synonymous with high-level system design. Here, architecture refers
to the set of rules for design, i.e., meta design or design for the design. Architectural rules can
apply in any level in a design hierarchy. For example, an architectural rule may be that triple-
modular redundancy will be used for fault tolerance. This rule could be applied at a high level,
where three boxes of electronics are voted on, or it could apply at a low level, where three
memory chips are voted on.

 11

A particular system design may not need certain features of a data network. Shortcomings in a
particular data network may be mitigated by architecture. Architectural mitigation could make
almost any data network technology work. However, this extreme mitigation may require the
use of a large number of replicated networks used in a manner completely outside the original
intent of the network. For example, each node in a network could be connected to all other
nodes in the system via one-way point-to-point Ethernet links. This would eliminate the
nondeterminism of Ethernet because each link would have only a single transmitter. However,
this would be very expensive; for N nodes it would require N2 Ethernets. The topology would
not be a standard Ethernet bus or star; it would be a fully connected mesh.

Architectural mitigation schemes should be carefully analyzed. This is especially true when a
number of local architectural mitigations may have been employed but not analyzed in terms of
the overall system safety requirements. The coverage of one or multiple layers of architectural
mitigation should be analyzed for the total effect of their coverage at the system level. Credit
should not be given for multiple layers of dubious mitigations.

2.3.1 Determinism.

Determinism is a widely discussed characteristic of digital electronic systems and, in particular,
data networks. Very often these discussions narrow the definition of determinism to be
applicable only to MAC (see section 4.1). While MAC is an important area to demonstrate
determinism, it is not the only area. Determinism has a much broader applicability. In general,
determinism means that the behavior of a system can be determined a priori. That is, given
knowledge about the system’s current state and a sequence of events that will effect the system,
one can predict how the system will behave. If one cannot predict the behavior of a system in
this way, one cannot claim that it has determinism as a property. In most cases within civil
aviation, the property of determinism is needed to contribute to claims in the system safety
analysis. Thus, determinism is an essential characteristic of a system that is used in safety-
critical applications.

An obvious question is: How accurately must the behavior be known? Most safety-critical
aviation applications are real-time systems. That is, for the system’s behavior to be correct, its
outputs must have correct values with correct timing. There are two types of timing
determinism, ordinal and cardinal. Ordinal-timing determinism means that the order of events
can be determined a priori. Cardinal-timing determinism means that the time between events can
be determined a priori. The degree of precision required for values and timing is specific to each
application.

Since all avionics data networks are digital, the behavior of which can be modeled as a finite
state machine, value determinism can be established in the absence of failure, including normal
failures such as those caused by intersymbol interference (ISI), metastability, or single-event
upset. An evaluation of a data network must first establish the requirements for ordinal-time
determinism and the required degree of cardinal-time determinism. Then, the evaluation must
consider if the data network can be proven to meet the required time determinism. Again, this
time determinism applies to more than just MAC. For example, the effect of nondeterminism in
the arbitration for local memory between a network interface and the processor it supports may

 12

make it difficult to prove the correct behavior of the processor or the network interface under all
possible timing conditions.

2.3.2 Robust Partitioning.

The concept of robust partitioning is such that a function that is robustly partitioned from other
functions cannot be adversely affected by those other functions. Partitioning analysis provides
assurance that one partitioned function’s behavior does not unacceptably affect the behavior of
another. With a common data network, there are many opportunities for partition violations to
occur. Every data network used in a partitioned environment should be rigorously analyzed with
regards to maintaining partitioning integrity. Because partitioning is a system property, it is
beyond the scope of this report to comprehensively detail the issues associated with it. However,
there are specific areas where the impact of some network feature is elaborated to illustrate the
potential effect on partitioning.

3. PHYSICAL LAYER.

The lowest level (layer 1) of most data communication reference model stacks is the physical
layer (see section 1.4.2). The function of the physical layer is to send and receive
communication symbols via network media. Layer 1 defines mechanical characteristics (such as
connector configuration) of the media and characteristics of the signal. The physical layer is
responsible for transferring individual bits through the communication media.

Because the physical layer is the foundation that all other protocol layers depend on, any failure
in this layer will adversely affect all the layers above it unless adequately mitigated. An obvious
question that must be answered is, What is the probability of failure in the physical layer?
Failures at the physical layer can be grouped into two main sources, bit errors and component
failures. The probability of faults in both of these sources depends on the environment.

3.1 ENVIRONMENT.

Data network components must meet the requirements of an aviation digital electronics
environment, as described in RTCA DO-160. This means that the data network components not
only must survive this environment, but also must simultaneously satisfy all requirements placed
on the data network while residing in this environment.

Criterion 1 Environment: Does the network specification(s) and available components
allow for the creation of a network that meets the applicable aerospace environment
requirements of the most recent version of DO-160 or other imposed environmental
requirements?

Was the components’ environment evaluations done in a configuration and with a behavior that
will be seen in the fielded system (e.g., the length and type of media segments, the size and rates
of various types of messages)?

 13

3.2 PROBABILITY OF BIT ERRORS.

Physical layer specifications often state a bit error rate (BER), which gives the probability of
error for each bit. However, these BER specifications are usually created from unknown or
irrelevant conditions. For a BER specification to be accurate for a particular implementation, the
tests and analyses used to establish the BER must use the same modulation and encoding
schemes, noise amplitudes, driver and receiver devices, communication path impedances, and
clock quality as to be expected in the worst-case implementation. The BER numbers claimed by
the manufacturers of data network components are almost always generated by BER test
equipment that use a linear feedback shift register-generated pseudo-random bit sequence that
bears no resemblance to the network’s actual traffic. Either these BER numbers must be
disregarded and tests with actual traffic done or some demonstrable arguments must be made for
the BER pattern being a worst-case bound on the actual traffic behavior.

The designs of data network error handling and data network reliability analyses are often based
on the misconception that bits traversing a data network are independent of other bits on the
same network medium. However, designers of data network physical layers are familiar with a
phenomenon called ISI that can cause some bits to affect other bits on a data network. A bit can
be adversely affected by other bits that are relatively near (due to level shifting) or by bits that
are relatively far away (due to distant reflections). With the phenomena of ISI and its causes
now well established, it is hard to argue that bits fail independently.

To summarize, the probability of bit error criterion is that the probability of bit errors has been
calculated correctly; the tests providing the inputs to these calculations have been done,
accounting for the issues described in this section; the calculated error rate was slow enough to
meet system requirements; and justification for the probability calculation was available for
regulatory review.

Note that there is a close relationship between the probability of bit errors described here and
Criterion 2 in section 4.2, Line-Level Encoding, and Criterion 8 in section 4.4.3, Interactions
Between Line-Level Encoding and Error Detection.

Criterion 3 Probability of Bit Errors: Was the BER (or symbol) determined under the
worst-case conditions expected to be encountered in the application environment?

Has an upper bound on anticipated BER (or symbol) been established by testing, using the worst-
case-anticipated signal path characteristics (e.g., impedances and impedance discontinuities),
environment (e.g., DO-160), local clock and clock recovery characteristics (e.g., drift and jitter),
sampling margin (worst-case eye pattern), encoding schemes, and data patterns? If the network
uses signal regeneration without elasticity buffers, the worst-case-accumulated jitter must be
included in this determination. If the data network exploits the mixing of dominant and recessive
signals on its media to perform some logic function, have the receivers been designed to tolerate
“Wired-Or” glitches or have suitable design rules been created that limit the glitch duration to
one that can be tolerated?

 14

3.3 PROBABILITY OF ELECTRICAL COMPONENT FAILURES.

While there are statistics available for determining the failure rate of electronic components,
there are insufficient statistics to address the probability of various types of behavior that can be
caused by these failures. Too often, analyses restricted to credible failures have been too narrow.
Failure modes that have been classified as incredible have actually occurred and must therefore
be considered when doing a safety probability analysis (e.g., fault tree, FMEA, etc.). Any such
analysis must not dismiss fault behaviors as incredible without a supportable basis for doing so.
In particular, integrated circuits must be considered capable of producing any arbitrary output,
within the limits of the power supplied to it. And more specifically to data network nodes, the
“babble” failure mode cannot be assumed to produce only incomprehensible noise. This noise
could be interpreted as a legitimate transmission. Of course, one would expect that the more
complex a device is, the more complex its faulty behavior can be. However, there is no way of
quantifying this expectation.

Criterion 4 Probability of Electrical Component Failures: Do the data network’s electronic
components have established hardware failure rates (permanent and transient) and
characteristics so that avionics designers can do the required FMEA and fault tree
calculations. Is the protocol defined well enough that one can determine the effects on the
protocol by any and all component faulty behaviors?

Are signal margins robust enough to handle aging effects on connectors, media, and drivers; i.e.,
Could aging cause a network to not meet the aerospace environment requirements of DO-160 or
other imposed environmental requirements at some point in the avionics system’s lifetime? Has
a valid synchronizer metastability error rate test been done for every synchronizer design in the
data network’s electronics and has an acceptable ceiling on the error rate been established?

3.4 ELECTRICAL ISOLATION PROPERTIES.

Most real-world, total system failures are due to a combination of factors. Very often one of
these factors is the lack of fault containment. One important aspect of fault containment is the
electrical isolation between redundancies so electrical failures, such as power supply
overvoltage, are not propagated across defined fault set boundaries.

Many fault-tolerant architectures include the concept of receive-only nodes. The required
characteristic of these nodes is that they can receive information that is transferred across the
media, but are prevented from having any effect on any shared media. In these architectures, it is
essential to provide assurances that these receive-only nodes truly cannot affect the data network.

The electrical isolation criterion is that the network must not provide a conduit for electrical fault
propagation through fault containment zone boundaries. In addition, network connections,
which by architecture design must be passive, such as receive only connections, must be shown
to have the required passive properties even in the event of failures.

 15

Criterion 5 Electrical Isolation Properties: Is there sufficient protection against electrical
fault propagation?

Does the data network’s physical layer allow for electrical (galvanic) isolation among
redundancies? If a fault in a node causes the highest voltage in that node to appear on one side
of this isolation barrier, can the isolation prevent damage on the other side of the barrier? If an
application of the network requires receive-only connections to the media to prevent fault
propagation, can it be shown (with sufficient assurance) that these receive-only connections
prevent fault propagation to the media?

3.5 PHYSICAL COMPOSABILITY.

As the size of a network grows in the number of nodes, links, taps/splices/wyes, link distances,
etc., performance or signal quality can suffer. A well-designed data network anticipates the
effects of growth and can work correctly with any size network up to explicitly stated limits.
Design rule effects and restrictions for the expansion of the data network must be included in the
criteria.

Criterion 6 Logical and Physical Composability: Does the data network have
characteristics or design rules that will guarantee that it will reliably work with any size
network, up to an explicitly given maximum size?

For a data network that has the freedom to assume a number of different topologies or topology
variations, does the network have characteristics or design rules that will guarantee that it will
reliably work with all possible variations that are not precluded by its design rules (including
sufficient design margin)? What is the certification affect of changing the size of the network
(e.g., number of members in a clock sync algorithm)? Do these design rules and characteristics
include the effects of hubs, repeaters, or other devices that extend network propagation delay or
electrical loading? For data networks in which bit rate is limited by network distance, are there
design rules to ensure that a particular network distance supports a given bit rate under worst-
case conditions?

4. DATA LINK LAYER.

The data link layer is the layer immediately above the physical layer in most data communication
reference model stacks. It provides the functions, procedures, and protocols needed to establish,
maintain, and release data link connections between the nodes of a network. A conceptual level
of data processing or control logic in the hierarchical structure of a node is responsible for
maintaining control of the data link. The data link layer’s functions include bit injection into the
transmitter and bit extraction at the receiver; address and control field interpretation;
command/response generation, transmission, and interpretation; synchronization; error control;
and flow control.

The data link layer is divided into two sublayers: the MAC and the logical link control (LLC).
The MAC sublayer controls how a node on the network gains permission to transmit on it. MAC
protocols often try to provide prioritization or fairness in granting access to the media. MAC
protocols also try to maximize the use of the media and minimize the probability of starvation

 16

(not granting access to requesters). The LLC sublayer controls frame synchronization, flow
control, and error checking. Conceptually, the LLC sublayer sits on top of the MAC sublayer.

4.1 THE MAC.

The MAC sublayer is a particularly important part of a data network’s protocol when the
network is used for real-time systems. Simple problems in the MAC can cause significant loss
of the services that the real-time system needs from the data network. These problems include:
no access (starvation), not enough access, or wrong time access. One source of these problems is
the design of the protocol coupled with access demands and timing of clients, including faulty
clients that fail to follow the behaviors expected or required by the data network specification.

Other problems can be introduced by failures (including permanent and transient failures) in the
hardware that directly controls or accesses the network media. These failures may be introduced
by any of the sources described in section 3, Physical Layer. The possible brittleness (lack of
robustness) of the MAC protocol is of particular concern. That is, does the MAC protocol
amplify the effect of small failures and errors such that they become large problems? For
example, Does the MAC protocol allow transient failures and errors to have an effect that
persists longer than current transmissions?

Problems unique to each type of MAC, such as master and slave, bit-dominant arbitration,
CSMA/CD, time division multiple access (TDMA), token passing, and minislotting, are
discussed in appendix A.

Many data networks used in dependable, real-time systems use the hardware from an existing
data communication network that has an inadequate MAC and apply a substitute MAC on top of
the existing hardware. This effectively disables the existing MAC without removing its
hardware. Many such networks are based on IEEE 802.3 (Ethernet). The system designer must
consider whether the unused hardware can cause problems under unintended circumstances.

Criterion 7 MAC: The MAC sublayer protocol must provide appropriately small bounds
on message delivery times regardless of likely faults.

Can the behavior of one or more network clients increase latency and jitter beyond the desired
bound for other network clients? If collision is used as a protocol element, are there bounds on
delays incurred? Can misbehavior of one network client disrupt more than one or two other
network clients? Does the MAC sublayer protocol amplify small failures and errors into loss of
MAC sublayer protocol services? In particular, does the MAC sublayer protocol allow transient
failures and errors to have an effect that persists longer than current transmissions? Does the
MAC sublayer protocol specify a single physical point of failure, such as a dedicated protocol
master node? Does the MAC sublayer protocol have a single logical point of failure, such as the
current token holder crashing in a token-based protocol, duplicated tokens, or a “babbling” node
asserting it has high-priority traffic to send? Does the MAC sublayer protocol have a bounded
worst-case bandwidth at maximum network loading? If a mixed or hybrid MAC is used (e.g.,
master and slave polling on top of Ethernet hardware), are there conflicting properties within the
portions of the hybrid MAC sublayer protocol that could cause vulnerabilities? Does the MAC
sublayer protocol affect message delivery ordering?

 17

4.2 LINE-LEVEL ENCODING.

Line-level encoding is the way that logical data is physically represented on a data network. As
discussed in section 3.2, bits on a network can affect each other via ISI. The characteristics of a
network’s line-level encoding can heavily influence ISI. In addition to affecting the data
network’s own signal quality, line-level encoding can also affect other equipment via radiated
emissions. It is important to determine whether the spectrum radiated from the line-level
encoding has components in frequencies that can adversely affect other equipment.

Criterion 2 Line-Level Encoding: Was the electromagnetic compatibility testing (e.g., DO-
160 Sections 19-22) done with the actual data line encoding (e.g., Manchester, 8b/10b),
worst-case network data, message sizes, bit rate, pulse widths, and message repetition
rate(s)?

4.3 MESSAGE FORMATING (FRAMING).

A message (also known as the frame or packet) may contain control and addressing information,
as well as error detection, for example, cyclic redundancy code (CRC) information or forward
error correction information. In evaluating the dependability of a message format, one must
examine the consequences of any part of that format having an error, including the possibility
that an error could cause the loss of many messages.

Some information that is transmitted in a message in one protocol (where it is vulnerable to
errors) may not be transmitted in another protocol. For example, there are table-driven protocols
in which all addressing, length information, etc., are held in a memory protected from errors
rather than being transmitted on the network. There also are protocols that use redundant signal
lines for error detection and correction instead of adding check bits to the message. Combining
these two ideas, one could have a data network (such as SAFEbus) where messages have
absolutely no overhead; every message bit is a data bit.

Criterion 8 Message Formatting (Framing): Message framing must ensure that only
complete, properly synchronized messages are accepted at clients, and that improper
synchronization is recovered from in bounded time.

Are there distinctive preamble or postamble bit patterns, including break characters, used to
delimit messages? Is there sufficient hamming distance (HD) and bit-slip tolerance present to
prevent an ordinary data pattern from being interpreted as a message preamble under expected
error conditions? Do receivers tolerate any preamble bit(s) being erroneous? Do receivers
tolerate any preamble bit(s) other than the one(s) that would make the preamble look like a start
delimiter? Is the HD between the start delimiter bit pattern and any shift of the preamble bit
pattern always greater than one? Is the data network’s framing structure brittle (i.e., do simple
errors cause a node to lose more than one message per error)? Are there parts of a message
where an error could cause the loss of more than one message? Are there two independent
checks on whether expected and actual frame length match (e.g., a length field and an
unambiguous end delimiter; distinctive start and end delimiters)? If this is an implicit token
protocol (reservation CSMA or minislot system) or time-sliced protocol (TDMA), is there

 18

sufficient information in the message to validate that the time position of the message is
interpreted correctly, avoiding incorrect interpretation of the message due to timing inaccuracies?

4.4 ERROR DETECTION.

Network criteria that have significant influence on the overall safety are the error detection
capabilities of the link layer. This section discusses error detection of the link layer. Link layer
errors can occur in the communication media, in its drivers and receivers, or in intermediate
nodes (such as repeaters). Section 5 addresses some error detection mechanisms that may reside
in the equipment at the ends of the network or at intermediate stages within the network.

4.4.1 Protocol Violation Error Detection.

Many protocols can detect errors by checking for protocol rules or format violations. The
probabilities of detecting errors via protocol violation checking should be combined with
message data error detection coverage to determine the probability of detecting erroneous
messages.

4.4.2 Parity and Frame Check Sequences.

There are many different error detection mechanisms and encodings, such as CRC, Fletcher,
Adler, AND, XOR, etc. with different characteristics; however, this document focuses only on
the characteristics of a few representative mechanisms.

CRCs are one of the most commonly used error detection schemes. The metric most commonly
used for determining the quality of CRC error detection is HD, i.e., the minimum number of
independent bit flips that can result in an undetected error. Given the HD and BER for the
medium, the designer can compute the probability of an undetected error. This probability
should be sufficiently small for the reliability requirements of the data network. However, this
coverage assumes that the bit errors are independent, an assumption that is known not to be true
with the existence of ISI. With interbit dependencies, the calculation for error detection
probability would have to be adjusted accordingly.

4.4.3 Interactions Between Line-Level Encoding and Error Detection.

In addition to the effects of ISI causing interbit dependencies on the medium, line encoding can
cause further dependencies among the bits due to the encoding and decoding processes. Typical
line-encoding transformations include symbol encoding (e.g., Manchester, 4b/5b, 8b/10b) that
produce symbols (each symbol consists of a block of bits), bit stuffing, and phase encoding. For
most of these commonly used line-encoding transformations, the corresponding decode
processes can cause error expansion. That is, even a fault-free decode process can create more
errors on its output than it has on its input. To accurately calculate the coverage of in-line, error
detection mechanisms, this error expansion must be taken into account. On the other hand, the
line encoding itself often can detect errors on its own. Because the interactions between the line-
encoding mechanisms and error detection mechanisms are generally ignored in coverage
calculations, published error detection coverage values for most networks are incorrect and must
be recalculated.

 19

Criterion 9 Error Detection: The Data Link Layer must provide sufficient guarantees of
message delivery free of undetected errors, using error detection mechanisms with
coverages that have been calculated correctly.

Does the network meet the required integrity values (undetected error probabilities and HD) for
the worst-case error pattern requirements (error bursts, maximum BER, and temporary
blackouts)? Does the network deliver valid messages within bounded latency with sufficient
probability despite expected error rates? Does the network meet availability requirements for the
worst-case error probabilities and distributions? Have the potential effects due to encoding of
the data on the physical layer and its implications to the coverage of error detection been
quantified? For example, have corrupted bit-stuffing formats been accounted for in an error
analysis? Are messages vulnerable to corruption of length fields that cause receiving clients to
use the incorrect frame location for frame check sequence (FCS) fields? If it is a required
service of the network, can receivers of data be certain of the sender’s identity, even in the
presence of faults? If messages use FCS hidden data (data that is included in the FCS calculation
but not transmitted as part of the message), has there been an accounting for the loss of FCS
coverage?

5. NETWORK LAYER, TRANSPORT LAYER, AND NETWORK MANAGEMENT.

In the OSI model, the network layer provides switching and routing technologies, creating
logical paths (known as virtual circuits) for transmitting data from node to node. Routing and
forwarding are functions of this layer, as well as addressing, inter-networking, error handling,
congestion control, and packet sequencing. Above the network layer, the transport layer
provides transparent transfer of data between end systems, or hosts, and is responsible for end-to-
end error recovery and flow control. It ensures complete data transfer. In embedded systems,
the functionality of these layers is often merged into a single layer of functionality. This section
discusses the issues related to the functions of both layers together. In addition, in some newer
protocols (for example, Time Trigger Protocol/SAE Class C (TTP/C), FlexRay2, and Avionics
Full-Duplex Switched Ethernet™), a network management layer is emerging to describe
hardware or software services that facilitate message agreement, network diagnosis, and
synchronization. Related issues are also discussed within this section.

5.1 NETWORK VULNERABILITY TO ADDRESSING INFORMATION FAILURE.

Errors in message content labeling or node-addressing information can cause serious problems in
a data network. An example failure mode is the masquerade failure, where one network node
can impersonate another node of the system. For the network to be dependable, there must be
mechanisms to handle these errors. The influence of software on network-addressing
information is also an issue, as discussed in section 5.8. Network technologies that use
configuration tables for network routing and addressing are also vulnerable errors. Addressing
that is done via tables created at run time have slightly less error exposure than protocols that
include addresses in every message. Addressing that is done via tables created at design time
have even less exposure.

2 FlexRay is a registered trademark of the DaimlerChrysler AG Corporation.

 20

Network error-handling logic that may be invoked by erroneous addressing information or that
may impact protocol flow needs to be analyzed to establish a bound on the influence of the
invocation of the error-handling logic and its impact (degradation) on network performance. The
behavior of any such logic and its associated vulnerability needs to be analyzed and justifiably
bounded. This is especially true for centralized intermediate stages, as discussed in section 5.3.

Criterion 10 Network Vulnerability to Addressing Information Failure: Mechanisms
should ensure correct forwarding, routing, or conversion failures despite likely failure
scenarios of network components.

Does the network technology use message addressing or message identification fields? Does the
network technology implement mechanisms to detect or mitigate the corruption of message
addressing or message identification fields? Has the fault coverage of this detection and
mechanism been established? Are the message-addressing or message identification fields
vulnerable to host software corruption? Does the network technology use tables to assist with
message addressing and routing? Does the network technology implement adequate checking
mechanisms to ensure the run-time integrity of the routing tables? Does the network technology
build routing information at run time? Are the algorithms and associated mechanisms used to
build run-time routing tables vulnerable to corruption or run-time errors? What network action
causes the network routing tables to be rebuilt? Can erroneous node software or electronic and
electric hardware invoke incorrect invocation in the table-building activity? Is the network
routing discovery time suitably bounded? Can addressing or routing errors cause lost packets or
fragments to circulate on the media and inordinately consume needed bandwidth? If multiple
layers of addressing are used (such as MAC and Internet protocol) then errors and masquerading
faults in all levels of addressing must be considered.

5.2 NETWORK VULNERABILITY TO FLOW FAILURE.

As with network-addressing failures, the network technology’s flow regulation logic also needs
to be evaluated. Issues relating to acknowledgement and retry logic are discussed in section 5.9.
Issues relating to host interface load balancing and buffering are discussed in section 6.1. Issues
relating to intermediate stages are discussed in section 5.3. Because of the complexity of modern
protocols, it is far from obvious how far-reaching the misbehaviors propagated from a failure can
be. It is recommended that a protocol level FMEA be performed.

5.3 IMPACT OF INTERMEDIATE STAGES.

If a network encompasses intermediate buffering or relay stages, then the behavior,
implementation, and impact of the intermediate stages needs to be established and evaluated with
the network behavior. In critical networks, it is common for such intermediate stages to
incorporate error detection or fault containment mechanisms. This section discusses some of the
issues and network attributes related to such intermediate buffering schemes that need to be
considered and evaluated.

 21

5.3.1 Vulnerability to Intermediate-Stage Failure.

In networks that deploy intermediate stages, the influence of the intermediate-stage components
may be significant. For example, in networks using stars or hubs, the intermediate-stage
component impacts all data flowing through it. One of the difficulties in analyzing the possible
adverse impacts of intermediate stages is bounding the failure modes of the intermediate-stage
component. If a network intermediate stage is developed to have full coverage (for example
using self-checking or monitoring schemes), then the failure modes of the intermediate stage
component causing data failure may be suitably justified as benign (e.g., fail-stop, assuming that
fail-stop is an acceptable mitigation in the failure analysis). It is imperative, however, that the
coverage of the self-checking or monitoring scheme be suitably justified, as discussed in
section 7.4.

It is common for networks to rely on in-line integrity mechanisms, for example, CRCs
checksums, parity, etc. In such cases, the failure modes of the intermediate-stage component
become more significant. With complex intermediate-stage logic, it is difficult to bound failure
modes of the intermediate devices. Without such bounds, one cannot determine the coverage of
in-line integrity mechanisms.

5.3.2 Vulnerability of the Intermediate Stage to Fault Propagation.

The vulnerability of the network intermediate stages to faults propagating from erroneous end
nodes should be analyzed. Such vulnerabilities may be related to erroneous control data or
erroneous temporal behavior. Any error-handling logic that may be invoked in response to
erroneous end-node traffic and behavior should also be analyzed so that any associated
intermediate-stage or -switch performance degradation or other propagated erroneous behavior
can be suitably bounded.

Criterion 11 Impact of intermediate stages: Intermediate stages (e.g., repeaters, gateways,
routers, and switches) must guarantee sufficient availability and integrity, as well as
sufficient logical and physical independence from other replicated intermediate stages to
ensure correct operation.

If the network uses intermediate stages, Is the availability of the intermediate stage sufficient to
fulfill network channel availability requirements? Are network intermediate stages for different
network channels independent? Is intermediate-stage-to-intermediate-stage signaling required
between independent network channels? Does the intermediate-stage-to-intermediate-stage
signal path introduce any fault propagation or common-mode influence? Do network
intermediate stages incorporate sufficient fault detection and coverage? Can fail-stop,
intermediate-stage behavior be justified? Does the network technology rely on in-line, integrity-
checking mechanisms? Can the network intermediate-stage action introduce failure modes that
will defeat network frame- or integrity-checking logic? What is the intermediate-stage response
to erroneous signals? Do intermediate stages ignore erroneous framing and cleanup and reshape
erroneous data streams? What is the intermediate-stage response to out-of-specification errors;
i.e., elasticity exhaustion, etc.? Does the network perform store-and-forward action? Does the
intermediate-stage perform recalculation of the integrity check sequences? Is the intermediate-
stage buffer memory suitably protected from transient upsets? Does the protection mechanism

 22

simply detect or does it detect and absorb transient upsets? Does the intermediate-stage response
to transient upsets lower the availability of the intermediate stage, i.e., do transient errors force
intermediate-stage resets and re-integration? What mechanisms exist to detect erroneous
message forwarding; i.e., the forwarding of old messages or sending messages to incorrect
addresses? Can intermediate-stage errors affect higher-order redundancy management
mechanisms to reduce overall network availability? Can network intermediate-stage action
introduce head-of-line blocking? What network mechanisms exist to mitigate these effects? Can
babbling or other erroneous node action impact intermediate-stage performance, for example,
result in buffer exhaustion? Can intermediate-stage start-up and reintegration time be bounded
with a faulty node present? Can intermediate-stage start-up or reintegration be impeded by the
erroneous action of intermediate stages on other channels? Are the failure assumptions of the
interstage justified by a complete FMEA? Is it possible for a faulty guardian to cause
irrecoverable network failures?

5.4 NETWORK CONFIGURATION DATA.

Many network technologies require configuration and routing tables to be programmed to assist
network operation. Therefore, design correctness of these tables is obviously important to
correct network operation. Design assurance issues relating to network table correctness are
discussed in section 8. The run-time integrity of the tables is also important. Therefore, the
storage, operation, and load integrity mechanisms of the configuration data need to be evaluated
with the network technology. In networked systems, the consistency between the copies of run-
time tables in different nodes is also an important issue. Hence, protocol mechanisms to ensure
table consistency should be evaluated.

Criterion 12 Network Configuration Data: Network topology and component
configuration data must be commensurate with the applications’ fault tolerance and
performance requirements—considering table production, loading, errors during
operation, run-time environmental effects (e.g., impact of radiation), and maintenance
actions.

Are network configuration data tables stored with sufficient integrity? How are network
configuration tables loaded? What network mechanisms are used to ensure network
configuration tables are not corrupted during loading? Does network configuration loading use
the same network data paths as normal traffic? Are specialized load protocols used for
performing network loading? Does the network incorporate sufficient interlocks to prevent the
inadvertent invocation of such download protocols? Are network tables updated during live
network operation? How are network modes and network table versions agreed at run time?
Does the network incorporate maintenance or query protocols operating on top of the live
network operation? Does the network incorporate sufficient interlocks to prevent the inadvertent
invocation of such protocols?

5.5 START-UP AND RECOVERY.

Network start-up and recovery mechanism are important since, in critical environments, start-up
and recovery time of the system is often a key attribute of the system performance. The behavior
of network start-up performance is, therefore, another attribute that requires careful evaluation.

 23

During start-up or recovery, the network is usually more vulnerable to faults. Many algorithms
and mechanisms are designed to work correctly, only if some minimum amounts of good
resources are available. However, if just prior to start-up, it appears that “everything has failed.”
A good design for start-up must be able to get past this “everything has failed” phase and be able
to bootstrap itself up to full operation. However, all too often, network designs assume that the
network was “born running” and cannot meet their fault-tolerance claims during start-up. On a
related issue, a system experiencing more faults than its design fault limit must return to proper
operation within bounded time after the number of faults are reduced to within its design limit.

Criterion 13 Start-Up and Recovery: Component and network integration, start-up, and
recovery must be performed in bounded time, considering dependability requirements,
environmental and deployment constraints, and interactions with different systems and
applications (such as application-level timing impact and power architecture influence).

Is network start-up time bounded even in the case of fault scenarios? Are the network start-up
and integration mechanism fault tolerant? Are the assumed faults consistent with the coverage
and FMEA declarations? If network start-up requires coordinated power sequencing, is the
required power-sequencing action assured to have the required network availability? Is the start-
up dependent on single components? What are the effects of such dependence, considering
failure scenarios? If host nodes are required to participate in network integration, start-up, or
recovery, are those host node behaviors considered in the analysis? Is there a host or other node
behavior within the protocol fault model that can cause repeated integration, start-up, or recovery
events and, thus lead to unbounded time to achieve normal network operation even if each
integration, start-up, or recovery attempt completes individually within bounded time? If there is
more than one statically designated network master, is the leader election process guaranteed to
converge within bounded time under worst-case assumptions and all faults within the specified
fault model? If system start-up is inhibited in the presence of hardware failures (e.g., start-up is
precluded with a network fault on one redundant bus), is the risk of system unavailability after an
in-flight restart mitigated?

5.6 GLOBAL SYNCHRONIZATION.

Data networks may have a need for synchronization of clocks among nodes for coordinated
network access or as an application level service. The following paragraphs focus on clock
synchronization services, but a subset of the aspects to be considered for clock synchronization
services are equally applicable to synchronization of logical clocks (counters) used for
redundancy management.

Clock synchronization algorithms and mechanisms must be able to acquire initial
synchronization, reacquire synchronization with a running network, and maintain
synchronization even while experiencing data network faults, including Byzantine and
masquerade failures. Clock synchronization algorithms and mechanisms are acceptable only if
they have been subjected to formal proofs of correctness and the assumptions used in these
formal proofs hold for the particular implementation being evaluated. Also, the quality of the
clock synchronization (e.g., precision, jitter, and monotonicity) must meet the system
requirements. Places that may cause derived requirements in this area include (1) time-triggered
operating systems and communication buffer management systems that cannot tolerate

 24

significant jitter or nonmonotonic time (periods where time appears to run backwards due to
clock corrections) and (2) applications that use delta time for differentiation or integration.

Criterion 14 Global Synchronization: If synchronization is required, have the
synchronization mechanism(s) been shown to work correctly under all defined scenarios,
including faults?

Has the stability of the algorithm been analyzed under different environmental and expected fault
conditions, including stability after power up of nodes and under all expected network
configurations? Similarly, has the precision been analyzed and is it bounded under expected
fault scenarios and operational conditions? Have the effects of single dependencies of
synchronization reference data been considered (faulty or no synchronization data)? Are such
dependencies adequately mitigated for the required safety levels? Have the effects of different
synchronization data view (e.g., due to different propagation delay, data acquisition delays, etc.)
been considered in the stability analysis? Have the effects of merging of data from different
network paths and potential differences due to different paths and propagation delays been
considered in the algorithm stability analysis? In algorithms using multiple clock sources, has
the use or election of the source been considered under the assumed failure conditions and
considering source coverage mechanisms? Are mechanisms in place that adequately verify or
support that the data used for synchronization does stem from the assumed or elected source, i.e.,
the synchronization algorithm is not vulnerable to masquerade faults? Have effects of the clock
correction been analyzed (such as task-time dependence on the clock synchronization and
influence of the correction on the available (potentially decreased) execution time to tasks)? For
asynchronous interfaces between two or more isochronous clock domains running at the same
frequency, is there a mechanism to prevent pathological metastability (the metastability
condition persists indefinitely due to the clocks not having any relative drift)?

5.7 FAULT DIAGNOSIS.

Some network technologies include fault diagnosis services to identify and isolate faulty member
nodes. Such services are strongly related to group membership and interactive consistency
services, which may use fault diagnosis services to manage network state-dependent application
decisions and guaranteed consistent delivery of messages.

Requirements of group membership being consistent and effects such as inconsistent reception
status of messages at different receiving nodes and potential consequences are discussed in detail
below. In general, it should be said that any diagnosis service will be nonperfect, e.g., due to
transients having local effects or due to failure modes of the sending nodes (e.g., Byzantine
failure modes).

Diagnosis information can be used by the network to build additional services for management
of redundancy sets or simply as acknowledgement. In this context, the use of the diagnosis
information needs to be in alignment with the expectations of the applications.

 25

Applications that use networks that provide group membership services should analyze:

• The underlying assumptions
• The consistency and correctness guarantees of group membership
• Their effects on the application level

Such analysis and effects on the application should also include temporal aspects, because
diagnosis information lags in time and so does membership.

Criterion 15 Fault Diagnosis: Any diagnosis, detection, or system-level agreement
mechanisms must justify fault assumptions and consider effects of diagnosis action.

What does the source of the diagnosis information rely on? What is the information’s source
integrity value and how is it in agreement with the assumptions? What is the influence of faulty
relaying components, lightning, high-intensity radio frequency (HIRF), and other external effects
on the diagnosis data and diagnosis algorithms? Have such influences been analyzed and
quantified to have acceptable effects? Does the diagnosis assume certain failure modes? Are the
consistency and correctness guarantees of the diagnosis information (such as group membership)
in agreement with the application’s use? Are the assumptions and properties quantified to the
level required? Does the application use diagnosis information? Is the application’s use of
diagnosis information in compliance with guarantees and assumptions of the diagnosis
information? Are there effects on the application level? Is the semantics of the group
membership information (e.g., nodes operational or node not operational) in alignment with the
application-level assumptions of its use; e.g., does the application assume correctness of the
message even though the membership only indicates operation? Has the coverage of the
mechanisms used to establish a nodes health with respect to group membership signaling been
evaluated against requirements? Has the safe use of membership semantics been analyzed in
“corner” cases, like start-up and integration of systems? Have temporal lags in error detection
and diagnosis been quantified and found suitable? Have start-up and integration been included
in the analysis of diagnosis and group membership?

5.8 CLIENT EFFECT ON NETWORK OPERATIONS.

A data network is often the glue that holds together a dependable system. A system data network
tends to become either the main fault containment mechanism in itself or is a major component
of the main fault containment mechanism(s). As such, it is important that a system data network
is not adversely affected by the clients it serves, no matter how badly the clients misbehave.
Many data networks allow their clients to influence the timing of network start-up by affecting
the timing of their nodes. It is possible for data network protocols to take an inordinately long
time to start, or they may not start at all, if the timing behavior of its nodes follows some
pathological pattern during start-up. During data network operation, some protocols allow
clients to adversely affect their behavior if the clients can control addressing, routing, priorities,
etc. Some systems require applications of different safety criticality levels to share the network.
When this is the case, the network must be robustly partitioned so that applications and clients of
low criticality cannot adversely affect the use of the network by high-criticality applications or

 26

clients. Another possible avenue for a client to adversely affect a system data network is via
unprotected test or network management paths.

Criterion 16 Client Effect on Network Operations: Can a network client adversely effect
network operations?

What is the assumed faulty behavior? If a restricted failure model of clients is assumed, what
substantiates the restricted faulty behavior? Do the analyses of clients include start-up and
integration scenarios and are they considered temporal effects of clients (such as potential long
software response times)? Do client-side actions or data impact network addressing (i.e.,
message identifiers (labels or addresses) are written under client control). Does the network
allow client impact of protocol-level control flow, such as mode changes? What network
mechanisms are in place to ensure that such actions or data do not endanger the operation of the
network? Do any protocol operations, such as start-up, require behaviors or constraints on
behaviors of the network clients and, if so, are such behavioral requirements or constraints
ensured in the system design?

5.9 ACKNOWLEDGEMENT.

For network protocols that employ acknowledgement schemes, the behaviors of this logic need
to be carefully analyzed, especially with respect to inconsistent message reception (i.e., some
nodes receive a message or an acknowledgement, while some do not). It cannot be assumed that
any acknowledgement mechanism provides, by itself, consistent message reception (also called
atomic broadcast). The implications of inconsistent message delivery, different message
delivery times to the application, and multiple deliveries should be analyzed with respect to the
overall system and its safety. In addition, if the acknowledgement mechanism calls for retries,
this additional load must not cause the network to exceed its bandwidth and timing budgets (e.g.,
jitter).

Criterion 17 Acknowledgement: Does the acknowledgement mechanism work adequately
under all fault scenarios?

What are the impacts of the acknowledgement mechanisms? (Are they fault tolerant)? Has the
acknowledgement scheme been analyzed, assuming adequate failures modes (e.g., such as
inconsistent or Byzantine message reception)? What are the effects of such failures? Have
adverse effects been suitably compensated by other means? Have effects of negative
acknowledgements (NACK) and message retries been analyzed during the performance analysis?
Is the number of retries bounded, and is this bounded number determined as a consequence of
the impact of retries on the performance? What are the effects of acknowledgement errors on the
application? Are effects suitably bounded (e.g., with respect to processor overhead)? If
acknowledgements are not supported, does the protocol support aging or staleness indications for
periodic messages that have not been received for more than a certain period?

6. APPLICATION SERVICES.

Current data network technologies comprise a number of application services that may or may
not be used by an application. All services need to be analyzed in the context of a safety

 27

assessment. In its simplest form, buffer management has associated properties that need to
concur with the application assumptions. Newer generations of data networks supply voting
schemes or redundancy management mechanisms. An example for such buses is ARINC 664.
In this section, the criteria for data network services used by applications are examined.

6.1 HOST INTERFACE MANAGEMENT.

Buffer management concerns itself with the message access order to the network, partitioning
requirements, and performance aspects of the network interface buffer as well as implications to
the host.

6.1.1 Client Buffer Queue Management.

Buffer management of systems may have system-level implications. One example of system-
level impact may occur if messages are associated with priority. In certain combinations of
buffers and accesses, priority inversion on the system-level may occur. When evaluating
networking technology for the deployment in systems, client buffer queue management
mechanisms should consider effects on the access to the network, such as fairness and
implications to the network and the host.

6.1.2 Buffer Management Partitioning.

In a robustly partitioned system, software partitions running on a node have a strict execution
budget and should adhere to their execution budget. On nodes where the data from a data
network is managed by a direct memory access (DMA) controller, the DMA controller may
repeatedly stall the execution time of running partitions, potentially having significant effect on
the execution time of software tasks. Unless effects such as cycle stealing are accounted for in
the execution budget of software tasks or the overall node architecture, software may miss
execution deadlines. Unless the access to the common buffer is restricted or controlled for each
partition, software partitions may overwrite messages of other partitions or use network
resources from other partitions. A partition may even be able to send data masqueraded as
another partition, unless protected. As stated in the introduction, a full treatment of partitioning
related to databuses is beyond the scope of this report.

6.1.3 Buffer Management Performance Considerations.

The performance considerations of buffer management should be considered when selecting a
network. In the past, the low-speed aviation digital electronics networks (such as ARINC 429
and 629) have put less emphasis on the performance of buffer management, because memory
access times or memory bus access times were often an order-of-magnitude quicker than
required for serving the data copying and coordination activities. With the advent of high-speed
communication in avionic systems, the need for a balance on the buffer management side with
respect to performance becomes more prevalent.

A push interface host management mechanism pushes data onto the network when the
application has finished computation and has released the associated data buffer. In such
models, primarily used in loosely periodic network approaches like ARINC 664, the data release

 28

time from the application is dependent on the application performance because the data is sent
when the application is finished with it and indicates it is available. The network data in such
push models is dependent on the application execution schedule and its release of data to the
network. If the release times and the data size are highly variable, the data released to the
network can be bursty in nature. Such host interface approaches can lead to peaks in bandwidth
use in integrated multidrop network systems, which can lead to longer data delivery times.
Network analysis for sizing of the network bandwidth and related resources may need to
consider application-level schedules and performance, taking into account application variations
and worst performance due to the influence of release times on data patterns. It should be
understood that the effect of release times can have system-level latency and jitter effects, e.g.,
the latency of data can change over a wide range due to nonaligned data patterns in integrated
network systems. The resulting jitter variations need to be considered on the application level to
ensure proper performance of the application in all possibly encountered latency values.

Criterion 18 Host Interface Management: The protocol’s interface to the host application
(including gateways) must provide promised prioritization, latency, and loss prevention of
messages for supported categories of service.

Has the buffer management been analyzed with respect to effects and system-level implications
(e.g., combined priority and buffer management causing head-of-line blocking or priority
inversions)? In mixed criticality systems, are communications buffers reserved per partition and
are assured not to be accessible for other software partitions in cases where there are partitioning
requirements for software? Have potential masquerading effects due to buffer management been
considered (e.g., software partitions masquerading as other partitions)? How is the access to the
buffers being controlled (control between different software partitions and control of access
between network and host software access)? Has this been analyzed with respect to safety
(effects of different criticality partitions)? Are system-level effects of blocking buffer access
being analyzed (e.g., increased software execution time and increased buffer size needs)? Has
the performance of the buffer been analyzed with respect to the needs of the communication (i.e.,
is the network speed and the buffer management speed balanced)? Are there relationships
between network configuration flow and buffer management configuration? Is there an effect of
changing network tables on the buffer management tables or mechanisms? Have such
relationships been considered during the design and what is done to ensure compatibility? Is
there a way to ensure that received messages are not overwritten in the buffers before being
retrieved, or that such overwriting is detectable and handled appropriately by the system an error
condition?

6.2 SUPPORT FOR APPLICATION LAYER REDUNDANCY.

6.2.1 Support for Active Replication.

Networks may signal the application of reception status, which may assist the application in
voting or selecting a correct value. Such mechanisms should be evaluated with respect to the
mechanisms’ correctness. In case the indication status stems from the same source as a possible
faulty value, the use of such status information might be limited.

 29

Application layer membership is a mechanism to manage the redundancy sets at an application
layer. Such application layer membership algorithms should be evaluated with the same scrutiny
as the node-level memberships described in section 5.7.

In some networks, the network host interface incorporates a life-sign mechanism to support
application membership and health diagnosis. The life-sign action should be evaluated with
respect to its effectiveness of detection of the failures.

6.2.2 Support for Passive Replication.

Some networks support mechanisms for passive-redundancy strategies, i.e., the ability of
multiple network nodes to share network bandwidth. These mechanisms are discussed in section
7.7. The network’s mechanisms to inform clients of the state of the passive-redundancy scheme
(what application is in control and how many spare applications are online) should also be
considered. Often a certain degree of transparency is required for the switchover between
members of the redundancy set. The network will have to be shown to meet this required degree
of transparency.

6.2.3 Support for Increased Integrity.

Some network technologies implement host interface support for self-checking pair host
configurations. Self-checking pair data is compared, and if it agrees, it is delivered as correct.
Self-checking, pairs-based input data should be compared before computation; otherwise, the
self-checking pair computation results are likely to diverge, even though both halves of a pair are
correct. Self-checking pairs should also be evaluated with respect to their independence from
power, common memory, vulnerability, and common design faults.

Self-checking host support is strongly influenced by the network-level, self-checking
mechanisms discussed in section 7.4.

Criterion 19 Support for Application Layer Redundancy: Any support for application
layer redundancy must fully meet stated redundancy management mechanism
requirements.

Has the application group membership service been analyzed with respect to its performance,
availability, and integrity targets under adequate fault scenarios? How are failures in
membership or similar services covered? What assumptions were made in determining this
coverage? How are these assumptions verified? Are the assumptions of correctness and
completeness of the application layer group membership service in agreement with the system-
level assumptions? Has the effect of the lag in updating the application been analyzed in the
system context? Do the provided services conform to the requirements from the application?
How is the synchronization ensured between the different replicants that are to be voted or
agreed? Any voting or selection scheme may lead to different results at different observers for
certain failure modes (Byzantine or local nonreception of a single message). Has the impact of
different results been taken into account in the safety analysis? Are there other mechanisms that
may influence the selection logic? Are such mechanisms analyzed with respect to potential
unwanted interaction? Is the network implementation vulnerable to masquerading faults

 30

resulting in potential defeat of redundancy? Are passive-replication strategies analyzed with
respect to control handover in failure cases? How is the state of faulty replica signaled to the
application? Do the two halves of a self-checking pair communication interface compare their
two copies of received data before it is allowed to be used for computation? Is this comparison
designed to be immune to Byzantine faults? Are the halves of a self-checking pair suitably
independent (e.g., independent power, separate memory, or memory sections)? If the same
message information is sent over redundant buses, are those redundant copies cross-checked, or
is the first seemingly valid message used? If the same message information is sent over
redundant buses, are those copies sent at the same time or staggered to mitigate against
correlated network disturbances?

6.2.4 Support for Robust Partitioning.

While robust partitioning (see section 2.3.2) is a characteristic of an architecture that is largely
outside the control of data networking, there are certain facets of robust partitioning that may
need to be supported from the network. First, the network should protect itself against
misbehavior of any of its clients (see Criterion 16). Then, if required, the network should protect
each of its clients from its other clients. This includes protecting robustly partitioned
subdivisions of each of its clients from other clients or partitioned subdivisions.

Criterion 20 Robust Partitioning (ARINC 651): If the network is required to provide
robust-partitioning guarantees, what has been done to substantiate any partitioning
claims?

If required, does the network enforce robust partitioning among its clients, even if multiple
clients share the same node? If required, does the network enforce robust partitioning among its
partitions within its clients? Does the partitioning against software faults include vulnerabilities
resulting from timing faults?

6.3 TIME SERVICE FOR TIME STAMPING AND TIME INTERRUPTS.

Application time services that may be supplied by the data network include time stamping and
time interrupt. Synchronization aspects of time are discussed in section 5.6, including a
discussion of the implications of time services to the applications. The quality of time services
can be adversely affected by a data network time-service design that is not robust.

Criterion 21 Time Service for Time Stamping and Time Interrupt: If time-stamping and
time-interrupt services are provided, are they sufficiently dependable and robust?

Is the time service robust with respect to potential implications such as effect of clock
differences? Is the use of time-stamping and time-interrupt services adequately mitigated or
included in a robustness analysis of application data algorithms? If the protocol is based on a
centralized time service, is failover for the time master supported? If it is based on a distributed
time service, is timekeeping maintained even for Byzantine clock faults?

 31

7. FAULT TOLERANCE MECHANISMS.

Some network technologies incorporate fault tolerance mechanisms to mitigate the failure of
network components such as guardians and monitoring schemes. Such mechanisms may be
particularly advantageous in aviation digital electronics environments in which high-network
availability and integrity is required. These mechanisms and associated evaluation criteria are
discussed the following sections.

7.1 TOPOLOGICAL FAULT TOLERANCE.

The network topology may have significant impact on the network tolerance to zonal or spatial
proximity faults, e.g., physical damage that affects a certain area of the vehicle. If the network
uses a bus topology, then any failure along the bus path may destroy network availability (even
for signals that do not have to traverse the failed part of the bus path). The bus zonal
vulnerability is particularly important if multiple redundant buses are assumed to increase
network availability. If all units are connected to all buses, then all buses are required to be in
physical proximity at the point of their interface to the other nodes. A failure at this point of
interface may, therefore, damage all of the independent bus channels.

Networks using intermediate stages may perform better in relation to zonal fault tolerance, as the
point-to-point relaying action of such technologies alleviates the impact of physical layer
damage. However, the placement and data-path planning of such intermediate-stage schemes
should also be considered as the network technology is mapped to a vehicle architecture; i.e.,
there is little benefit in placing two redundant, central intermediate stages in the same location.

Criterion 22 Topological Fault Tolerance: Redundant network components must be
physically separated and isolated to prevent correlated outages due to physical equipment
damage, loss of electrical power, and credible media faults.

Is the network vulnerable to spatial proximity faults, such as physical damage that is within a
specified distance limit? If a single piece of equipment is faulty, can its faults propagate to take
down the entire network (e.g., Can a single fault cause babbling behavior simultaneously on
redundant network paths?)? Is an adequate communication path availability ensured despite
faulty end equipment (babbling devices or short circuits)? Are common network resources, such
as switches, placed at adequate distances from each other so as not to be vulnerable, but to be
independent of physical damage or spatial proximity faults? Are redundant resources attached to
different power sources within the system?

7.2 GUARDIAN SCHEMES.

Some network technologies incorporate covering functions or guardian mechanisms to contain
node faults. Such guardians may be argued to increase network availability. However, the
implementation and performance of the guardian function needs to be carefully evaluated to
verify that suitable coverage and independence is provided.

Irrespective of any guardian implementation, it is imperative that suitable tolerances for guardian
enforcement action are established to provide suitable design margin. As with other critical

 32

protocol parameters, these tolerances should accommodate worst-case aging and expected life-
time degradations of all components related to the guardian. The criteria for establishing suitable
guardian parameterization would ideally be formalized and verified, as discussed in section 8.

Latent failure of guardian schemes is another consideration; this is discussed in section 7.6.

Criterion 23 Guardian Schemes: Some techniques, such as network guardians, must be
used to ensure that a single-point client failure will not take down the network.

Does the network deploy guardians? What is the intent of the guardians? What coverage is the
guardian assumed to provide (what failure modes can the guardian detect or contain)? What is
done to substantiate the coverage claims? Does the claimed coverage of failure modes consider
boundary system conditions such as start-up or integration? What is done to ensure
independence of the guardian (power, time, logical dependence, and physical dependence)?
Have potential side effects of the guardian behavior been considered (especially central
guardians)? Is there an effect on in-line coverage due to guardians? Have tolerance margins
(different oscillators) due to difference between the guardian and the guarded device been
established and quantified?

7.3 PROTOCOL LOGIC FAULT TOLERANCE.

Networking technology may also incorporate protocol flow and algorithmic fault tolerance
strategies, i.e., voting on protocol-state information or required protocol actions. The strength of
such protocol mechanisms should be evaluated in the context of the coverage provided by the
network implementation. For example, if all nodes are self-checking, then little protocol-state
fault tolerance is required as all protocol errors are contained at the source and justified to be
benign. Similarly, if the guardian mechanisms contain protocol flow errors, then less protocol-
state fault tolerance is required. However, if suitable fault containment or coverage cannot be
established, the protocol layer vulnerabilities to erroneous state and addressing information
should be evaluated.

If fault-tolerant protocol logic is implemented, the impact of its protocol algorithms will also
need to be evaluated. This means that any protocol layer mechanism needs to ensure the
required agreement on protocol state for integrity and the required replication for availability.
Often in two-channel systems, there is a conflicting goal between availability and integrity.
Hence, mechanisms to improve protocol integrity may reduce protocol availability.

Criterion 24 Protocol Logic Fault Tolerance: The protocol must ensure that errors in
protocol logic and protocol state do not result in unacceptable reduction of integrity and
availability.

Can mismatches in protocol logic and state occur during protocol start-up? If such mismatches
occur, is there a bound on the time until they are resolved? Does the network protocol logic rely
on information from single sources; or is protocol logic dependent on agreeing data from
different sources? Does protocol dependence rely on different sources to increase the robustness
of algorithms to potential node failures? Are the integrity and availability levels of the protocol
logic met by the network?

 33

7.4 LOCAL TRANSMISSION-MONITORING AND SELF-CHECKING SCHEMES.

Network technologies may also implement monitoring or self-checking services to improve fault
detection and fault tolerance. As with the guardian action, the effectiveness of such schemes
depends on the amount of independence and coverage that can be claimed by the
implementation. For example, Controller Area Network incorporates an error-checking
mechanism that will switch the network to a passive state if the transmissions of the controller
are not suitably acknowledged. Since this is implemented within the same integrated circuit as
the communications component, the action may be degraded by common-mode failures. In
addition, such schemes may introduce potential fault propagation vulnerabilities, since it is
possible for a node to transition to the passive state in response to the erroneous NACK
generated from a faulty node. Such vulnerabilities should be analyzed as the network is
evaluated.

Other networks may employ local wrap-back schemes where a node monitors its own
transmission via local receivers. Such schemes should be analyzed for vulnerability to Byzantine
faults, as a local monitoring circuit may perceive the local wrapped-back signals as good, but
receivers at the end of a loaded transmission line may see a degraded or erroneous signal.

Criterion 25 Protocol Transmission-Monitoring and Self-Checking Schemes: The protocol
must reliably detect transient and permanent faults in both nodes and message
transmissions.

Does the network incorporate local health-monitoring schemes to detect node health? Are the
network-monitoring schemes suitably independent? Are network-monitoring schemes
vulnerable to faulty status sent by erroneous nodes? Does the network technology use local
transmission wrap-back? Has transmission wrap-back been analyzed for Byzantine failure
vulnerability? Does the network incorporate self-checking pair configurations? Has the
coverage and independence of the self-checking configuration been justified?

7.5 RECONFIGURATION AND DEGRADED OPERATION.

Network technologies may also incorporate mechanisms to implement reconfiguration or
continued operation in a degraded mode. For example, some physical layers may incorporate a
degraded mode of operation that allows communication to continue even if one-half of a
differential communications channel is faulted. If such degraded modes are to be leveraged, then
the performance (e.g., BER) of the degraded operation needs to be evaluated to ensure that
adequate performance is maintained. The protocol mechanism for the detection and
announcement of such degraded operation should also be evaluated to verify that timely and
correct diagnosis is provided.

Other protocols such as IEEE 1394 may reroute the network path to mitigate physical or node
paths. If such protocol action is to be leveraged by a system, then mechanisms used to
implement such actions will need to be evaluated to ensure that the reconfiguration time is
suitably bounded. As discussed in section 5.5, the issues surrounding the erroneous invocation
of such logic must also be considered. The recovery mechanisms for such logic should also be
investigated to ensure nodes are not permanently isolated in response to local transient errors.

 34

Criterion 26 Reconfiguration and Degraded Operation: Capabilities provided in the
presence of a specified number and type of faults must be sufficient to meet operational
requirements.

Can a faulty node cause good nodes to be evicted from system configuration or otherwise cause
degradation into a mode that worsens the effects of the fault? Does the network technology
provide degraded modes of operation? Is the network performance under degraded mode
sufficient to meet network functional requirements? Is network degraded mode operation
suitably annunciated to network clients? Does the network perform dynamic reconfiguration of
routing to mitigate bad network paths or nodes? Is the reconfiguration time suitably bounded? If
online reintegration is supported, what mechanisms are in place to cope with intermittent failures
and ensure the health of nodes to be reintegrated?

7.6 LATENT FAILURE DETECTION.

Fault detection, isolation, and recovery functions used within aviation digital electronics systems
are often required to be periodically tested to ensure that the detection and recovery actions
remain effective. Such detection and recovery functions are usually transparent to normal-mode
operations (i.e., have no visible action as long as there are no failures). Hence, without test, it is
possible that such functions may fail passively (“stuck at good”) and the protection will be lost
without indication. Network fault detection and covering functions have the same issue.
Therefore, network mechanisms to assist the latent fault detection should be analyzed to ensure
that they do not introduce failure vulnerabilities. Interlocks and protection mechanisms to ensure
that such testing occurs only in safe system states should also be evaluated. The coverage of the
network test procedures should also be evaluated to verify that all key network mechanisms are
suitably verified.

Criterion 27 Latent Failure Detection: Latent faults must not accumulate to where they
threaten network failure (availability or integrity).

Can an accumulation of latent faults overwhelm a network’s ability to tolerate faults? Can a
latent fault (e.g., a stuck-at-good fault detector) lead to network failure due to lack of coverage?
Does the network technology support a mechanism for latent fault detection, especially in a
mismatched protocol state among network clients? If state variables are maintained by the
protocol at each client, can multiple unrelated state variables be corrupted before the first
corruption is detected? Is the coverage of the network latent fault detection suitable to establish
the health of all critical network protection functions? Are suitable test activation interlocks
incorporated into the network technology to inadvertent test mode activation?

7.7 VOTING, SELECTION, OR AGREEMENT SERVICES AND REDUNDANCY
MANAGEMENT.

Networks may also incorporate redundancy management and voting mechanisms to simplify
application-level fault tolerance. Voting algorithms supplied by the network should be compared
with the assumption of the application to avoid unsafe operation.

 35

7.8 BYZANTINE FAULT TOLERANCE.

Byzantine fault tolerance is an essential part of any ultradependable system’s design. Today,
with over 20 years of published papers on the subject, there are still many misconceptions
relating to Byzantine failure, both with respect to what makes a system vulnerable and the nature
and reality of Byzantine faults. A Byzantine fault is any fault that produces different symptoms
for different observers. This can happen at any point where a signal splits; i.e., one source goes
to more than one destination. Byzantine faults are a lot like metastability in that there is no way
to prevent them; you can only treat the symptoms so the faults do not become system failures.

A Byzantine generals’ problem (BGP) is a system failure caused by a Byzantine fault. If the
multiple observers do not require any mutual coordination, a BGP cannot occur. But, if the
observers have to coordinate in some way or if their actions are compared (by voting or some
other means) for fault tolerance, then a BGP is possible. Thus, if a system uses any mutual
coordination to achieve its dependability requirements, Byzantine fault tolerance is needed.

Byzantine fault propagation escapes most classical fault containment techniques. Solutions to
the BGP are well known, but require a large amount of additional communication bandwidth, a
minimum set of redundancy that exceeds what is needed for systems that do not need to tolerate
Byzantine faults, and the use of coverage-tested Byzantine filters. Discussions of actual
Byzantine failures and methods for coping with them can be found in references 5 and 6. The
theoretical basis for Byzantine agreement protocols can be found in reference 7.

Criterion 28 Voting, Selection, or Agreement Services and Redundancy Management: The
network protocol must support the ability to determine what nodes are part of the active
network quorum.

Does the network support selection and agreement services directly? Does the network provide
adequate mechanisms for application software to implement selection and agreement services?
Are such agreement services targeted at integrity or availability? Is the overhead for agreement
function evaluated and justified to be acceptable? Have temporal effects been evaluated in the
selection? Are the time constants of tracking changes in membership fast enough for the
application? Are assumptions made by the membership or agreement service justifiable? What
vulnerabilities exist while the quorum is inconsistent?

Criterion 29 Fault Model: The protocol must be evaluated with respect to a precisely and
completely stated fault model, and the fault model must be compatible with the system
architecture.

Does the network claim to be Byzantine fault tolerant? Has the network been analyzed with
respect to Byzantine fault tolerance? What are the effects of Byzantine fault tolerance on
integrity and availability? If a hybrid fault model is used, is there justification for the relative
rates of occurrence of different classes of faults (e.g., Byzantine, strictly omissive, or symmetric)
for different failure scenarios. Has the Byzantine fault-tolerant algorithm been suitably analyzed
and has coverage been justified (Byzantine fault containment properties)? Has the Byzantine
filtering coverage been justified? Has the fault model been analyzed with respect to influences

 36

to all services even those that are possibly not used (this should exclude any effects of services
not used)?

8. DESIGN ASSURANCE.

8.1 DEVELOPMENT PROCESSES.

Often network technology forms the backbone of the system architecture. The design
correctness of the network implementation is, therefore, of utmost importance as the network
provides a significant common-mode failure vulnerability. With the increasing complexity of
network technology, the design correctness problem is increasing with every generation of
silicon. Therefore, the network technology should be designed with best-practice design
procedures. Within the aviation digital electronics domain, this would correspond to DO-178B
for software-related network components and DO-254 for hardware components. Network
technologies that have formal design assurance artifacts will pose less certification risk than
other technologies and may be preferred for that reason. Technologies without formal design
assurance processes will need to be considered on a case-by-case basis. The complexity and
degree of commercial use of the networking technology will then need to be considered. The
commercial off-the-shelf (COTS) provisions within DO-254 were designed to handle COTS
hardware technologies that have been used in many systems and have accumulated a huge
service experience base. While this experience may be leveraged to assist the design assurance
case, certification credit will require substantiation of the service experience data. This treatment
is commonly applied to microprocessors. The techniques’ applicability to networking-related
hardware will need to be considered as the network is evaluated.

Criterion 30 Design Assurance Processes: Have appropriate design assurance processes
been followed for design and deployment of the network?

Has the network technology been developed to be in compliance with avionics design assurance
guidelines, i.e., DO-178B or DO-254? Does the network technology’s commercial use volume
support COTS classification, including intellectual property block used within new integrated
circuits, as well as manufactured devices? If COTS classification is used, has the COTS product
been deployed in similar applications to justify suitable coverage for correctness claims? Is the
network technology behavior simple enough to be fully tested? Do diverse approaches (e.g.,
design diversity) provide adequate and quantifiable coverage if credit is taken for such diversity?
Is there a Plan for Hardware Aspects of Certification and a Plan for Software Aspects of
Certification for the network infrastructure?

8.2 AVAILABILITY OF STANDARDS AND CONFORMANCE EVIDENCE.

8.2.1 Open Specification and Standardization.

The use of open specifications and standardization might assist a certification authority in
establishing the acceptability of a network. Irrespective of the formality of the design artifacts,
the quality of the network technology specification is a key attribute. It is preferable if the
technology is open with a standardized and published specification, as this will enable the
protocol mechanisms to be analyzed and discussed within the academic and industrial

 37

community, including the application for formal verification studies. The standardization
process itself is beneficial because the committee activity usually associated with the open
standardization process may also lead to an open detailed examination of the network behaviors.
However, care is required for network technology that is not designed specifically for use in a
safety-relevant environment; the completeness of the specification will need to be carefully
reviewed. Often, such standards may specify the normal mode of operation only; the protocol-
actions-to-erroneous behavior and the associated degraded modes of operation may not be
sufficiently treated in the standard document. The evaluation of the network specification should
include such completeness analysis.

Another area where specification completeness may be lacking for COTS protocols is in the area
of implementation choices that have been made below the protocol specification. COTS
solutions may not be fully described because of the need to maintain competitive advantages
between vendors. Hence, many key implementation choices may not be visible and this may
impact assurance process where detailed understanding and analysis of the interactions of all
technology layers is required. The availability of suitable design information should be
considered as the network technology is evaluated.

8.2.2 Conformance and Interoperability Testing.

As with the specification, the availability of standard conformance test campaigns and
specifications may also be advantageous. This is especially important for network technology
that is sourced from multiple vendors, since it may assist in identifying interoperability glitches.
The issues raised in relation to specification completeness also arise in relation to the
completeness of the conformance test campaigns: Are all operating modes covered, and are
exception and error reactions sufficiently traveled?

8.2.3 Protocol Design Correctness.

In addition to completeness, the correctness of the specification is obviously important. The use
of formal methods and development of formal proof arguments for protocol algorithms show
much promise, as they can exhaustively verify the algorithmic behavior. However, when
reviewing formal verifications, the assumptions that underpin the formal proofs need to be fully
understood and evaluated against the real-world failure expectations and behavior. Similarly, the
composability of the formal verifications needs to be understood to ensure interactions between
different protocol algorithms (for example, membership services and clock synchronization). In
some protocols, for example TTP/C, interdependencies exist that may need to be evaluated with
formal arguments. That said, formal verification of protocol algorithms can increase design
correctness confidence, and therefore, network technology that has such verification evidence
may be more attractive.

Criterion 31 Availability of Standards and Conformance Evidence: The technology and
protocol of the network should be clearly specified and analyzable.

The use of open specifications and standardization might assist a certification authority in
establishing the acceptability of a network. Credit for analysis of specification properties and
interoperability between different networks should be supported by conformance and

 38

interoperability tests. The use of formal methods to demonstrate protocol design correctness
should be proposed and accepted by the certification authorities. Is the network technology
supported by an open specification? Is the specification that is being standardized available to
open-industrial committees? Is the network specification complete? Does the network
technology address all operational modes of the network, including erroneous node action and
associated fault recovery actions? Is the network specification sufficiently detailed to address all
required protocol action? Does the networking technology have published conformance test
criteria and campaigns? Do the conformance test criteria cover all network protocol behaviors,
including fault detection and recovery actions? Have the critical protocol mechanisms and
algorithms of the network technology been formally verified? Have the assumptions
underpinning the formal verifications been reviewed to ensure that they are consistent with real-
world-targeted environment? Are protocol mechanisms and associated formal proofs
composable: i.e., Do protocol mechanisms and associated proofs stand by themselves or are they
interrelated? Has the network technology been subjected to other validation activities? Did the
fault injection campaign include suitably sufficient visibility to observe the key behaviors of all
important network mechanisms? Have anomalies and fault observations from such activities
been adequately mitigated?

8.3 DESIGN MARGIN.

The issues discussed in sections 3 and 4 also require some design assurance to ensure that
adequate design and safety margins are established for the selected network technology. Such a
design needs to be established and justified to be valid over the whole system lifetime,
addressing parasitic and parametric shifts due to temperature effects, etc. This safety margin
evaluation needs to be established in several domains, such as the time and value domains of
signals under worst-case design parameters, network loading, etc.

For physical layer attributes, this means that influencing factors need to be analyzed with respect
to their margin and contribution to the safety margin. Such physical layer attributes may include
oversampling margins that should include the transceiver skew over the whole lifetime of the
product, assuming worst-case loading, aging of components (e.g., clock stability over time),
temperature range of environment, etc.

Criterion 32 Design Margin: Required design margins should be supported by reviewable
evidence.

Has the network design margin been established for worst-case component behaviors? Have all
contributions to network design margins been identified?

8.4 CONFIGURATION TABLE CORRECTNESS AND PERFORMANCE JUSTIFICATION.

In addition to the design correctness of the network implementation, the design correctness of
network configuration parameters and tables is also required. This is especially important if the
table parameterization impacts protocol algorithmic-level behavior, for example, clock
synchronization timing and propagation delay parameterization. In such instances, the
parameters may severely impact protocol performance. The incorrect configuration of such
parameters may, therefore, invalidate any formal proofs of algorithmic correctness. Similarly,

 39

tools may be used to establish parameters for network-policing policies, for example, message
transmission rate limiting and maximum message jitter. In such cases, the correctness of these
parameters may severely impact network performance assumptions. Therefore, when evaluating
a network for suitability, consideration should be given to the rigor applied to ensuring correct
network configuration parameters. Ideally, all parameters critical to network operation will have
explicit formal requirements and invariants that are traceable to network functional behavior,
assumptions, and requirements. Such traceability may assist the completeness checking of the
guidance presented. Thus, the guidance supplied will be suitably assured for correctness and
completeness.

The network technology may also provide tooling to assist network configuration and its
associated verification. Such tools are often required to handle the size and complexity of
modern networking technologies and to assist with the generation of nonhuman readable binary
configuration tables. If tooling is used for configuration data generation or verification, then the
development pedigree of the tooling may also need to be examined as the network technology
suitability is evaluated. If the tooling is in-line (i.e., the tooling generates protocol configuration
parameters that are not verified by subsequent process checks), then the generation
tooling should be qualified in accordance with the DO-178B guidelines for development tools.
Alternatively, if the tooling is simply used to verify the network configuration parameters, then
they are less stringent and DO-178B verification tool guidance should be adopted. The data flow
path of in-line generation and verification tooling needs to be evaluated to ensure that adequate
independence exists within the tool chain to prevent a common tooling failure. Ideally, the
configuration inspection tools will be driven from reviewed network-related functional data flow
requirements and the formal network parameter constraints and invariants as described above.

For some modern asynchronous networks (for example, ARINC 664), the size and scale of the
configuration problem is very large, and end-to-end performance (e.g., data flow latency and
jitter) is difficult to analyze and bound. The sheer complexity of the network-level interactions
between end-nodes behaviors, switch implementations, and the chosen network-policing policies
(e.g., message rate limiting) may greatly complicate network performance justification.
However, procedures or tooling to analytically bound and justify the worst-case behavior of such
networks is required to meet certification requirements. Therefore, the capability and maturity of
available analysis tooling should be given careful consideration as these networks are evaluated.
Similarly, network technologies that incorporate complicated MAC interactions may also
complicate end-to-end performance calculations. Such interactions and any associated network
logic (e.g., retry logic and queuing mechanisms) also need to be considered by performance
calculations and associated tooling. It is possible that erroneous node behavior can drain
network performance until the network has diagnosed the problem and has contained it.
Networks that bound the magnitude and duration of these adverse performance influences may
be preferable, as they may greatly simplify performance justification calculations.

Highly integrated, multivendor systems’ network technologies that incorporate tooling to assist
the incremental change of the network tables, which allows new functions and their associated
data paths to be added to the network with minimal impact on previously analyzed functions,
may also be attractive, since such tooling may ease incremental certification effort.

 40

Criterion 33 Configuration Table Correctness and Performance Justification: Justification
for configuration table correctness and performance justification should be provided.

Has the criteria for correct network parameterization and configuration been established? Are
the network configuration criteria traceable to network function behavior or top-level
requirements or specification? Does tooling assist network configuration and verification? Is
the tooling qualified in accordance with the tool guidance established in DO-178B? Have
procedures and criteria to bound the worst-case performance of the network been established?
Do the worst-case performance criteria address detailed MAC layer interactions? Do the worst-
case performance criteria address worst-case fault detection and reconfiguration actions? Does
the network technology provide automated tools to assist worst-case performance calculation?
Are intermediate-stage buffers and end-node queues adequately sized? Are tools providing
performance-bounding qualified in accordance with the tooling guidelines of DO-178B? Does
the network technology and associated tooling accommodate incremental change management?

8.5 NETWORK MONITORING AND TEST EQUIPMENT.

With the complexity of modern network technology, the ability to monitor and observe network
behavior is very important to support design validation. Similarly, the ability to insert faults into
the different network layers may be required to test the network redundancy management
mechanisms or the fault response behavior of applications operating on top of the network
infrastructure. Therefore, the availability and capability of the test equipment that exists for the
network technology may also be a very important consideration. In the ideal situation, such test
equipment will be able to observe all behavior of all network nodes, including network start-up
and recovery actions. The portability of the test equipment should also be considered, as such
equipment is often required to support flight-testing.

The no-interference guarantees of the test equipment may also need to be evaluated if it is to be
deployed in a flight test scenario. The ability to monitor the entire network behavior from
limited test inspection access points should also be considered. In some modern switched
technologies, such access is more difficult than simpler buses. Hence, work in some newer
switched technologies is being performed to develop the network-wide controllability and
observability needed to test the maintenance of these new or more complicated networks; while
at the same time, trying to minimize the invasiveness and logistics complexity of connecting test
equipment to these networks.

Criterion 34 Network Monitoring and Test Equipment: Do adequate test equipment,
network access points, mechanisms, and procedures exist to ensure that the network is
configured correctly and operating correctly (including meeting its specified behavior in
the presence of any faults)?

The use of network monitoring and test equipment to establish certification credit should not
invalidate the data being observed and should be demonstrated to perform in accordance with the
operational requirements for the features being used. Is test equipment available for the network
technology? Does the test equipment facilitate the observation of all network operational
modes? Does the network test equipment facilitate sufficient fault injection to exercise sufficient
network fault detection mechanisms? Does the network test equipment support observation

 41

modes with sufficient noninterference guarantees to support flight-testing? How many network
test access points are required to monitor the entire holistic network behavior? (is this feasible
for achieving flight test requirements)? Is monitoring and test equipment assured to be
noninterfering during operation? Is it guaranteed that the network behavior does not change if
monitoring is not performed and correct behavior is inferred from monitoring or testing?

9. SECURITY.

Historically, data communication security has not been an important issue in commercial
aviation digital electronics. This began to change with the growing awareness and sensitivity
relating to cyber-security in the 1990s. Subsequent terrorist activities accelerated this awareness
and sensitivity trend. At the same time, some developments in aviation digital electronics design
have made aviation digital electronics systems more vulnerable. Higher levels of integration and
more inter-networking connectivity have increased the chances for entrance paths into critical
aviation digital electronics functions. Possible gateways onto these paths include, but are not
limited to: radio frequency (RF) in the airplane (e.g., portable maintenance access terminals and
cabin crew tablets), off-aircraft radio, external gatelink and maintenance ports (optical and RF),
and passenger networks. The increasing use of COTS protocols and networking technologies
(with their known weaknesses) has the potential of attracting attackers who are familiar with
these weaknesses. With ever-increasing bandwidth of modern network technologies, there are
also increasing pressures to fully use spare network capacity. Hence, the mixing of critical and
noncritical end systems and associated data on common network infrastructure is another
increasing trend.

A network should protect itself against security threats (e.g., denial-of-service attacks) and
should not allow itself to be used as a means for supporting attacks against its clients. The
ability of the network to suitably secure and authenticate private transmissions between different
clients on the network should also be evaluated, if such usage scenarios are also anticipated.
Network firewall schemes should also be evaluated, especially if critical and open systems share
the same network infrastructure. While it may be only “security through obscurity,” aviation
digital electronics systems are really more secure when COTS is not used.

Criterion 35: Can security weaknesses adversely affect network dependability (safety)?

Does the network technology have security issues that can adversely affect the ability of the
network to supply the services needed to support system safety; in particular, is the network
susceptible to denial-of-service attacks (e.g., 100BaseTX “killer packets,” Ping of Death)? Does
the network technology use open COTS protocols that are well known enough to be targets of
security threats? Does the network technology require specialized security augmentations; e.g.,
firewalls?

Criterion 36: If needed, does the network deal adequately with the security issues of
privacy (also known as confidentiality or secrecy), integrity, authentication, or
authorization?

Does the network technology support sufficient secure services for user and application
authentication? Does the network technology support secured data transmission mechanism?

 42

Does the network support multilevel security? How many levels or security domains does the
network technology support? Is network configuration data protected and secured during
deployment and during load?

10. EVALUATION PROCESS.

As one or more candidate system architectures for aircraft-level functions are proposed,
candidate data networks must be evaluated. These evaluations feed PSSA, system and
subsystem fault trees, and revisitation of the common cause and zonal analysis, as appropriate.
When a final (relatively speaking) design emerges, then a bottom-up FMEA or a FMECA should
be performed. Data network technology services may appear in any level of the system design
and are required to be analyzed from both the bottom up (FMEA/FMECA) and top down
(FTA/PSSA).

To perform the data network evaluations, the guidance of AC 20-156 and the narrative parts of
this Handbook should be read and understood. From this understanding and sufficient
knowledge of the data network technologies and component implementations, an evaluation can
be made that will provide the required data for the above processes. In numerous places
throughout this Handbook, there are exhortations to consider the worst case. This does not mean
that the worst case should be considered for only the one particular criteria that is stated. All the
worst cases of criteria must be considered simultaneously for each criterion, unless there is a
demonstrable reason why multiple worst cases cannot occur simultaneously. Evidence must be
made available for regulatory review for each criterion that requires supporting evidence.

11. SUMMARY.

This Data Network Evaluation Criteria Handbook builds on previous work. It was created to
facilitate the overall certification process for aircraft or aircraft engines that employ digital
electronics systems containing data networks by providing evaluation criteria to be used in the
development, selection, modification, adaptation, or approval of data network technologies and
components to be deployed in safety-critical aviation systems. This Handbook adds to previous
work-specific and detailed criteria for evaluating a wide range of data network technologies and
components with respect to the possible adverse impacts on certification due to their use.
Particular attention was given to issues that are generally overlooked or underappreciated in the
industry.

The characteristics of data networks are so varied that it is impossible to create a single set of
detailed and specific criteria to which all the criteria are applicable to all data network
technologies and components in all possible applications. The combination of extremely wide
variation and detail leads to a set of criteria that can be overwhelming. However, for safety-
critical systems, the details are very important. Therefore, this Handbook tries to include as
much breadth and depth of criteria as possible. To partially mitigate the problem of having an
overwhelming set of criteria, this Handbook presents the criteria on two levels. The higher level
is presented in the body of the Handbook with much more detailed discussions included in
appendix A. This still leaves someone applying these criteria with the task of determining what
criteria are applicable to what data network. Because the number of data network technologies
and component implementations that can be created is unbounded, making a definitive mapping

 43

to the applicable set of criteria is impossible. Creating such a mapping just for existing data
network technologies and component implementations is beyond the capabilities of just one
Handbook.

This Handbook is a good companion to AC 20-156. The Advisory Circular provides a means for
manufacturers and designers to gain FAA approval of an aviation data network by showing that
the data network, as designed, will perform its intended function and satisfies the applicable
airworthiness requirements when installed on an aircraft or aircraft engine. It tells manufacturers
and designers what they must do, but does not include detailed explanation of how, nor does it
provide any warnings about pitfalls that may be encountered by designers who are not data
network experts. There is a mismatch in this companionship; the document and criteria structure
is different between them. The Handbook was designed to follow the typical protocol stack
structure rather than to match AC 20-156. Only time will tell if the structure of either of these
documents and their criteria are easier to follow by most readers or if one document should be
changed to match the other. It is not recommended to merge these documents or have one
subsume the other. They each have a purpose. AC 20-156 was designed to provide
assurance goals and issues. This Handbook was designed to provide a detailed technical
framework for aid in providing technical data to support the assurance goals and address the
issues published in AC 20-156. However, the Handbook was not intended to provide an
acceptable means of compliance.

12. REFERENCES.

1. CAST, Databus Evaluation Criteria. position paper CAST-16, Certification Authorities
Software Team, February 2003.
www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast
-16.doc

2. Lee, Y.H., Rochlin, E., and Scandura, P.A., Handbook for Ethernet-Based Aviation

Databuses: Certification and Design Considerations, FAA Research Report, 2004.

3. AC 20-156, “Aviation Databus Assurance,” August 2006.

4. Driscoll, K., Hall, B., Koopman, P., Ray, J., and DeWalt, M., “Data Network Evaluation

Criteria Report,” FAA report DOT/FAA/AR-09/27, 2009.

5. Driscoll, K., Hall, B., Paulitsch, M., Zumsteg, P., and Sivencrona, H., “The Real

Byzantine Generals,” Proc. of the 23rd Digital Avionics System Conference (DASC),
October 2004.

6. Driscoll, K., Hall, B., Sivencrona, H., and Zumsteg, P., “Byzantine Fault Tolerance,

From Theory to Reality,” SAFECOMP 2003, September 2003.

7. Lamport, L., Shostak, R., and Pease, M., “The Byzantine Generals Problem,” ACM

Transactions on Programming Languages and Systems, 4(3): 382–401, 1982.

 44

13. GLOSSARY OF TERMS.

Databus and network technologies’ terminology can vary considerably. For this reason, a
standard set of definitions for all terminology, with respect to aviation digital electronics
networks, does not exist. For example, the term “slot” can be used to refer to either a physical
address in a cabinet or a transmitting node’s temporal position within a table-driven sequence.
This glossary is provided to resolve ambiguity and to keep this Handbook consistent.

Anisochronous (also Aperiodic): The essential characteristic of a time scale or signal such that
the time intervals between consecutive significant instants do not necessarily have the same
duration or durations that are integral multiples of the shortest duration.

Asynchronous: The essential characteristic of time scales or signals such that their
corresponding significant instants do not necessarily occur at the same average rate. This term
often is misused to mean anisochronous.

Babbler: A node that has babbling transmissions.

Babbling: The act of transmitting a signal not in accordance with a network’s protocol.
Typically, this means transmitting at times not allowed by the protocol.

Backplane: A card that connects together one or more cards or modules.

Bit-dominant signaling: A bit-dominant signaling method has at least two classes of signals,
having the property of dominance. Signals with this dominance property have a priority such
that if two or more signals appear on the media the same time, only the (most) dominant signal is
perceived by receivers.

Box (also Cabinet or Rack): A mechanical enclosure that contains one or more cards or modules
that are typically connected together via a backplane.

Bridge: A client that conveys data through and between two or more networks.

Byzantine Fault: A fault presenting different symptoms to different observers.

Byzantine Failure: The loss of a system service due to a Byzantine fault in systems that require
consensus.

Card: A thin rectangular supporting member that electronic components are mounted on. These
components could be mounted on one or both sides of the card.

Client: A function that uses one or more services of the network. Note that this is a functional
definition; whereas Card, Module, and Box are mechanical definitions; and Node, Device, and
Drop are electrical definitions. There may be clients that have a need for, or are only capable of,
using a subset of the services provided by the network. Roles of the client are Master,
Contender, Slave, Peer, Bridge, or Monitor. A client that is capable of performing one of these

 45

roles, whether or not it is currently performing such a role, is called role-capable. For example, a
client that can be a Master (even if it is not the current Master) is called Master-capable.

Criteria (see Evaluation Criteria)

Databus (see Data Network)

Data Network: The communication connection among electronic components. The term bus
and databus many times are used in a sense that is synonymous with network. However, the
strict definition of bus is a particular network topology. Other topologies include mesh, ring, and
star. The term network is preferred to avoid ambiguity. The term bus is used in this document
only to denote a particular topology. This is to avoid oxymorons like ring bus. However, bus
and databus are used in this document to mean network when referencing other documents that
use these terms in the ambiguous sense.

Device (see Node)

Drop: An electrical connection to a network. A box or module may have none, one, or multiple
connections to the network.

End Node: A node that is the ultimate producer or consumer of a data network’s service (e.g.,
the transmitter or receiver of a message).

Evaluation Criteria: A characteristic or feature of a data network that may have an impact on
system safety. One cannot definitively say that a particular characteristic or feature would have a
safety impact for any particular system, because the system’s architecture in which the network
is used may be insensitive (e.g., not needed) to the particular characteristic or feature, but
sensitive architectures would be a problem. For example, a network with a flawed retry
mechanism could work just fine in a network that did not do any retries.

Frame: A term that has two distinct definitions in wide use by the aviation digital electronics
communication and other communication fields. In aviation digital electronics, the term usually
means one repetition of a repeating sequence of scheduled message times. In other
communication fields, the term often is used as being synonymous with message or packet.
Because of the wide use of both of these definitions, selecting one definition over the other
would be foreign to a large number of the intended audience of this Handbook. Compounding
this problem is the fact that it is often difficult to distinguish between the two definitions purely
by context. Therefore, this Handbook will try to minimize the use of this term and ensure that
the correct meaning is obvious whenever it is used.

Guardian: A device placed in the signal flow of a data network that is used to contain failures.

Head-of-Line Blocking: The characteristic of a first-in, first-out (FIFO) buffer that causes
priority inversion when the head (next item to be output) of a FIFO queue is blocked from being
outputted because it has a low priority, while items behind it have a high enough priority that
they could have been outputted from the FIFO if the head item was not blocked.

 46

Host: Client hardware.

In-line Error Detection: Any error detection scheme that does not compare or vote among
redundant paths.

Intermediate Stage: A bridge, guardian, or other device through which data network signals
must pass.

Intrinsic Safety: A design technique applied to electrical equipment and wiring for hazardous
locations. The technique is based on limiting electrical and thermal energy to a level below that
required to ignite a specific hazardous atmospheric mixture.

Isochronous: The essential characteristic of a time scale or a signal such that the time intervals
between consecutive significant instants either have the same duration or durations that are
integral multiples of the shortest duration.

Masquerade Failure: A failure that causes one node to pretend to be another.

Master: A client that has control of the assets (or a subset of the assets) of a network. Generally,
there is, at most, one master at any time. However, there may be networks that use an oligarchy,
where several masters jointly and concurrently control a set of assets. In the cases where an
oligarchy is used, the term Master shall mean every member of the oligarchy that can
concurrently affect control of its assets. There are some sophisticated networks that allow a
Master to control just a subset of its assets. In this case, there may be multiple Masters, as long
as the assets they each control are not also under the control of another Master. These asset
subsets may be of different services, e.g., there may be a data transfer Master and an interrupt
Master; or the assets of a service may be partitionable, e.g., the individual links of media in a
mesh topology.

Master/Shadow: A fault-tolerant scheme in which one redundant device (the Master) is in
control until it fails. Upon the Master’s failure, another redundant device (the Slave) takes over.
This scheme may have multiple Slaves in a priority chain in which a Slave takes over whenever
all higher-priority, redundant devices have failed.

Message: One continuous transmission on the network.

Module: A unit of electronics that consists of one or more cards mechanically bound such that
they are inserted and removed from a backplane as a single unit.

Monitor: A client that nonintrusively observes the actions of the network without being a
Master, Peer, or Slave.

Network (see Data Network)

Node or Device: The electronics connected to a network via a single drop.

 47

 48

Partitioning (see Robust Partitioning)

Peer: A client that has equal authority over the assets of a data network.

Robust Partitioning: A mechanism for assuring the intended isolation of independent aircraft
operational functions residing in shared computing resources in all circumstances, including
hardware and programming errors. This mechanism was developed for the ARINC 650 family
of characteristics. Support for this mechanism is provided particularly by ARINC 653 and 659.

SERDES: A portmanteau for “serializer deserializer.” An electronic component that converts
parallel data to serial, and serial to parallel. This component usually includes a method for
encoding the serial data such that a clock can be reconstructed when the data is converted from
serial to parallel. This encoding may also be designed to provide for their desirable features such
as direct current balance.

Signal: A variation of a physical quantity used to convey data.

Slave: A client that is responding to the control of a Master.

Slot: A predefined interval of time in which a node (or subset of a system’s nodes) has exclusive
access to network resources. In minislotting, the minislot interval of time defines when the node
may claim access to resources and then the excess is held beyond the end of a minislot time
interval.

Source coverage: Fault tolerance mechanisms that contain the effects of a fault to remain within
the fault’s source or provide means to make all the source’s faults easily detectable.

Symbol: A signal state within a defined time interval that is recognized as distinct from other
symbols.

Synchronous: The essential characteristic of time scales or signals such that their corresponding
significant instants occur at precisely the same average rate. Note: The timing relationship
between corresponding significant instants usually varies between specified limits.

APPENDIX A—DATA NETWORK TECHNOLOGY AND ISSUES

A.1 PHYSICAL LAYER.

The lowest level (Layer 1) of most data communication reference model stacks, such as the
International Standard Organization Open System Interconnect, Society of Automotive
Engineering (SAE) International, or Department of Defense, is the physical layer. The function
of the physical layer is to send and receive communication symbols via network media. Layer 1
defines mechanical characteristics (such as connector configuration), characteristics of the
media, and characteristics of the signal. The physical layer is responsible for transferring
individual bits through the communication media. This level is concerned with the following:

• Connector geometry, gender, and pin assignments
• Physical connections to the media and their characteristics
• Media topology
• Media characteristics (attenuation, delay distortion, impedance, noise, etc.)
• Full-duplex or half-duplex transmission
• Signal speed
• Definition of symbols with respect to signal characteristics (e.g., in amplitude and time)
• Physical service data units; serial bits or multiple bits in parallel
• Handshaking
• Notification of physical fault conditions

The laws of physics impose limits on the frequency and quality of a signal that can be
transmitted through a given media, as described by the works of Nyquist [A-1] and Shannon
[A-2]. Designers of each data network try to create a physical layer that maximizes data rate and
quality for a given cost.

Given the physics and cost constraints, some compromises and trade-offs must be made. Users
of data networks in safety-critical applications must be aware of how these design choices for the
physical layer can impact system safety via the quality of data transmission provided by the data
network.

A.1.1 ENVIRONMENT.

Data network components must meet the requirements of an aviation digital electronics
environment, as described in RTCA DO-160. This means that the data network components not
only must survive this environment but must also simultaneously satisfy all requirements placed
on the data network while residing in this environment.

A.1.2 PROBABILITY OF BIT ERRORS.

Because the physical layer is the foundation upon which all other protocol layers depend, any
failure in this layer will adversely affect all the layers above it unless adequately mitigated. An
obvious question that must be answered is: What is the probability of failure in the physical
layer?

 A-1

Physical layer specifications often state a bit error rate (BER), which gives the probability of
error for each bit. This number is typically in the 10-6 to 10-15 range. The purported source of
these errors is the signal-to-noise ratio (SNR). Formulas relating SNR to BER have a form
similar to:

BER = ½(1−erf)(Eb/No)1 /2

where erf is the error function, Eb is the energy in one bit, and No is the noise power spectral
density (noise power in a 1-Hz bandwidth). The ratio Eb/No is a form of SNR. The energy per
bit, Eb, can be determined by dividing the carrier power by the bit rate. As an energy measure,
Eb is measured in joules. No is in power (joules per second) per Hz (seconds), so Eb/No is a
dimensionless term, or simply, a numerical ratio.

It is important to note that the exact formulas for BER depend on the modulation and encoding
schemes used, because these schemes, coupled with the physical properties of the media, are
important for establishing the so-called “eye pattern.” This pattern encloses the space bounded
by the minimum upper value, maximum lower value, and the minimum spacing between
transitions of a signal. Figure A-1 shows a typical eye pattern created by the superposition of
many symbols and the effects of additional signal noise. The two dashed horizontal lines in the
figure represent the minimum and maximum value of the receiver’s input threshold that the
receiver uses to determine whether an incoming signal is high or low. The two vertical dashed
lines represent the variation in the time that the receiver samples the input. A receiver’s decision
about the data value of an incoming signal takes place within the area enclosed by these dashed
lines, which is highlighted by the gray box in the figure. The distance between this box and the
incoming signal’s eye pattern determines the noise margin of the receiver. It is clear that the
smaller the area enclosed by the eye pattern, the higher the probability that an error will occur.
The size of the eye pattern is determined by the modulation and encoding schemes plus signal
noise. Thus, claims of a specific BER without reference to the modulation and encoding
schemes and assumed noise amplitudes are worthless for predicting the probability of bit errors.
When establishing the actual value for BER, the test patterns used in an evaluation must be those
that are actually used by the network, not just the linear feedback shift register-generated pseudo-
random bit sequences used by most BER test equipment. The BER test must also be run in the
same noise environment as the actual system will experience.

 A-2

Figure A-1. Eye Pattern

The designs of data network error handling and data network reliability analyses are often based
on the misconception that bits traversing a data network are independent of other bits on the
same network medium. However, designers of data network physical layers are familiar with a
phenomenon called intersymbol interference (ISI). The definition of ISI from the Federal
Standard 1037C [A-3] is:

“1. In a digital transmission system, distortion of the received signal, which distortion
is manifested in the temporal spreading and consequent overlap of individual pulses to
the degree that the receiver cannot reliably distinguish between changes of state, i.e.,
between individual signal elements. Note 1: At a certain threshold, intersymbol
interference will compromise the integrity of the received data. Note 2: Intersymbol
interference attributable to the statistical nature of quantum mechanisms sets the
fundamental limit to receiver sensitivity. Note 3: Intersymbol interference may be
measured by eye patterns.

 A-3

2. Extraneous energy from the signal in one or more keying intervals that interferes
with the reception of the signal in another keying interval.

3. The disturbance caused by extraneous energy from the signal in one or more keying
intervals that interferes with the reception of the signal in another keying interval.”

ISI can be caused by timing jitter from adjacent bits, “baseline wander,” or reflections due to
impedance mismatches.

It is clear that the transitions that form the sides of an eye pattern are affected by the adjacent
bits. Bits much further away also can impact an eye pattern via baseline wander caused by
accumulated effects of direct current (dc) imbalance that charge the capacitors and inductors in
the communication path. These capacitors and inductors include the components that a signal
must go through (such as transformers) and the intrinsic characteristics of the media and any
other components that touch the media (e.g., each receiver and each transmitter adds parasitic
capacitance to the media). This baseline wander raises or lowers the eye pattern for every bit,
shifting it with respect to the receivers’ input threshold. This shift affects the probability that the
receiver sees an input as one value or another as long as the baseline has wandered away from
nominal. During its development, opponents of the 100BaseTX Ethernet design touted the fact
that there existed “killer packets.” These are packets containing particular data patterns that
produce baseline wander bad enough to induce bit errors on their own. Most Ethernet PHY
chips have active compensation for some amount of baseline wander. When using 100BaseTX,
care should be taken to provide a means to prevent killer packets from appearing on the network
or to use only those PHY devices that can compensate for killer packet levels of baseline wander.

Another adverse effect that can cause correlated bit errors is reflections due to impedance
mismatches. Impedance mismatches can occur whenever the media or the electrical properties
surrounding it changes. This happens whenever the media is split (e.g., for stubs or drops), when
the signal passes through a connector, at receivers and transmitters, or by having inadequately
shielded media pass near materials of different electrical characteristics. Note that these
impedance concerns are true for both electrical and optical data communication.

Another phenomena with some characteristics similar to that of impedance mismatch reflections
is the problem of the “Wired-Or” glitch (which can be viewed as “Wired-And” with the
application of DeMorgan’s theorem). Data networks that are susceptible to this problem are
those that exploit a bit-dominant signaling method on the media to perform some logic function.
One such function is bit-dominant bitwise priority arbitration. Examples of networks that use
bit-dominant bitwise priority arbitration include the Controller Area Network (CAN), which is
commonly used in automotive applications, and the SAE AS4710 PI-bus, which is the military
avionics standard backplane bus. The Wired-Or glitch occurs when two or more transmitters
drive a dominant signal onto the medium and a proper subset of these transmitters stops driving
the dominant signal. When this happens, the medium state near these transmitters changes to the
recessive state for a time equal to the round-trip delay between them and the nearest
transmitter(s) still driving the medium to the dominant state. To keep a receiver from
erroneously interpreting these glitches as valid changes of signal state, the receivers must be
designed to tolerate these glitches, or design rules must be followed that limit the duration of the

 A-4

glitches (usually by limiting the length of the medium as a function of the bit width) to a duration
that can be tolerated.

BER tests must be done using the worst-case modulation and encoding scheme symbol patterns,
the worst-case signal path (including the effects of all inductors and capacitors), and the worst-
case reflections due to impedance mismatch. Design, installation, and repair rules must be
established so that situations worse than those used in this test do not occur.

BER is only the beginning, the lower bound, of the probability for erroneous bits. There are a
number of other sources that can cause erroneous bits. These sources include: external noise
sources (including crosstalk), clock jitter and drift within transmitters and receivers, metastability
within receivers, and other hardware failures.

Trying to tolerate failures caused by external noise sources is difficult because the external noise
sources (such as crosstalk, lightning, and high-intensity radio frequency (HIRF)) can cause
arbitrary error patterns with unknown probabilities. The best, and most widely used, way of
dealing with external noise sources is to try to make the bits immune to upset. This immunity
can be produced by shielding the media from external noise sources, making the signaling
scheme robust (e.g., differential drivers with large margins), and adding components to filter out
noise. A number of recent developments have eroded these protections. Composite skin aircraft
provide less protection against noise sources outside the aircraft. Newer, higher-speed data
networks use signaling levels with smaller margins. The wider bandwidths of the higher-speed
data networks make it more difficult to filter out noise. One way to counter the erosion caused
by the last two trends is to minimize the speed and bandwidth required to meet the system’s data
throughput needs; that is, to use a network that is as efficient as possible. No matter how much
effort is put into trying to make a data network immune to external noise, there can always be
some noise source with a large enough magnitude to overcome these efforts. When a data
network is overwhelmed by large-amplitude external noise, it is important for the network to
recover as soon as possible.

Some designers are now suggesting the use of wireless data networks within an aircraft. There
have even been suggestions that these wireless data networks be used for safety-critical
functions. However, this appears to be a daunting design challenge given that the external noise
sources (such as lightning and HIRF) can cause arbitrary error patterns with unknown
probabilities.

It is hard to reconcile an existing electromagnetic-interference requirement for a wired data
network to survive 200 volts per meter of noise versus a wireless receiver’s input being almost a
million times more sensitive.

A.1.3 PROBABILITY OF ELECTRICAL COMPONENT FAILURES.

The avionics industry has a long history of evaluating the dependability of a system, at least for
benign faults (i.e., faults that are inherently self-containing or can obviously be detected and
contained). However, the fact that complex integrated circuits can have arbitrarily bad behavior
is too often ignored. Even extremely simple analog devices can have surprising failure modes.
For example, a simple Military Standard (MIL-STD)-1553 databus transmitter was observed that

 A-5

produced a perfect Manchester waveform output when the component had no signal input. A
similar problem has been observed with a fault-free RS-485 driver transmitting a rectangular
waveform when its inputs were “stuck high.” When applying the evaluation criteria described in
this report, one must remember that electronic circuitry can fail in a way that produces arbitrarily
bad behavior, limited only by the energy provided to it (which can be considerable when stored,
e.g., capacitors).

With the advent of higher-speed networks, smaller impairments to a signal can cause problems.
This creates a concern for the quality (including aging effects) of connectors, media, and drivers.

As data network speeds increase, not only does the SNR decrease on the network media, it also
decreases within the electronics. This reduction in SNR makes electronics more susceptible to
single-event upset (SEU) and metastability. The evaluation of SEU susceptibility should be done
as part of the environmental evaluation.

Metastability is an electronic circuit design issue rather than an environmental issue. As clock
speeds increase to create higher-performance electronics, the amount of circuitry that can be
driven by a single clock zone decreases. This creates more clock zones and the need for a larger
number of synchronizers at the boundaries between the different clock zones. Each synchronizer
has some probability of metastability failure. The metastability failure rate for a synchronizer is
given by the formula

α*fdata*fclock*e−βt

where α and β are constants unique to each synchronizer implementation, fdata is the frequency
of the data, fclock is the frequency of the clock, and t is the time that the synchronizer waits for
its first-stage flip-flop to settle to a valid value. As data network speed increases, fdata and
fclock tend to increase proportionately and t is the inverse of fclock (in the design of most
synchronizers, t is one clock period). This means that synchronizer transient failure rates
increase with system speed (S) proportional to S2eS. This already very steep function is
exacerbated by the fact that higher clock speeds require more synchronizers. Luckily, the very
characteristics that allow increased speed also tend to improve the values of α and β. However,
the only way to determine accurate values of α and β is to test for them.

Synchronizer metastability error rate is tested by giving the synchronizer data that is
asynchronous (and statistically independent) to the synchronizer’s clock while sweeping the
value of t. The resulting number of errors for each t is fitted to a semi-log line versus t. The
intercept of this line is α and the slope is β. It is important to note that this test must be done on
an actual implementation of each synchronizer design. A very widely held misconception is that
α and β depend only on the design of the first-stage flip-flop in the synchronizer. While the
characteristics of this flip-flop have a large influence on α and β, it is not the only influence. As
electronic component geometries shrink, the electrical characteristics of interconnect actually
become more important than that of transistors. This increases the importance of characterizing
the interconnect between the first-stage flip-flop and the second-stage flip-flop in each

 A-6

synchronizer design. Electrical characteristics of the second-stage flip-flop (such as input
thresholds) are also important. The difference in results from testing the actual synchronizer
design versus testing just the first-stage flip-flop may not be significant for applications that do
not have stringent safety requirements. But, for systems that have dependability requirements in
the neighborhood of 10-9, this difference could consume the entire dependability budget. Thus,
for a synchronizer metastability error rate test to be valid, the test must be performed on the
actual synchronizer design.

One factor that affects BER is jitter on the input-sampling clock in the receivers. Higher data
rates are more sensitive to this jitter. Often, the receivers use phase-locked loops (PLL) to create
these clocks. The PLLs are driven from an external clock source. The tighter jitter requirements
for higher-speed data networks often require higher-quality external clocks that drive the PLLs.
These clock quality requirements often include restrictions on short-term and long-term jitter.
The same clock quality issues affect transmitters. In this case, jitter on a transmitter clock causes
jitter in the data. The sum of the transmitted data jitter and received clock jitter affect the error
rate of the received data.

A design factor related to the input-sampling clock jitter in receivers is the ratio of the clock’s
period to the smallest interval between input signal transitions. This has a large impact on the
gray box in figure A-1. A higher-frequency sample clock simultaneously makes the box smaller
horizontally and allows the box to be placed more precisely in the center of the eye. A sample
clock that is too slow can place the box too close to the edge of the eye pattern. This can be a
source of bit errors in the receiver and be a source of asymmetric or so-called Byzantine faults.

Jitter and frequency offsets between a transmitter’s clock and a receiver’s clock also can cause
buffer overruns and underruns in elasticity buffers and can be the source of asymmetric and
Byzantine faults.

A.1.4 ELECTRICAL ISOLATION PROPERTIES.

The causes of total system failure can be segregated into three main classes: exhaustion of
redundancy, single point of failure, and lack of fault containment. Of these, the one that is most
often seen as part of real-world total system failures is the lack of fault containment. One
important aspect of fault containment is the electrical isolation between redundancies. In
examining a system design for possible electrical fault propagations, one can use the following
mental process, which imagines that:

• Each redundant power supply is painted a unique color
• Each electron leaving a power supply is painted the same color as that supply
• Each component or conductor that an electron enters is painted that electron’s color
• If there is a color conflict, a possible galvanic fault propagation path has been found

To prevent the data network from becoming a galvanic fault propagation path, these paths are
usually interrupted with attenuators and resistors, fiber optic cables, optical isolators, or
transformers. Some of these isolation methods impose requirements on the physical layer
signaling. For example, transformers needed dc-balanced signaling, such as Manchester or

 A-7

8b/10b. Some of these isolation methods may preclude the use of collision detection or the use
of mixing dominant and recessive signals on the media to perform some logic function.

Some networks, such as universal serial bus, power over Ethernet, and Institute of Electrical and
Electronic Engineers (IEEE 1394), transmit power on some of the conductors in their cables.
Requiring use of this power creates a significant problem for galvanic isolation.

Many fault-tolerant architectures include the concept of receive-only nodes. The required
characteristic of these nodes is that they can receive information that is transferred across the
media, but are prevented from having any effect on any shared media. In these architectures, it is
essential to provide assurances that these receive-only nodes cannot affect the data network.

A.1.5 PHYSICAL COMPOSABILITY.

As the size of a network grows in the number of nodes, number of links, number of
taps/splices/wyes, link distances, etc., performance or signal quality can suffer. Some of the
physical layer characteristics that can be adversely affected include a decrease in signal margins,
added latency or propagation delays, an increase in reflections due to impedance mismatches,
and an increase in the probability of reflections constructively adding together to create higher-
amplitude problems. A well-designed data network anticipates the effects of network growth
and can work correctly with any size network up to explicitly stated limits. The description of a
data network may include design rules that must be followed for the data network to maintain
sufficient physical layer quality margin as the size of the network changes. These rules can
include such things as topology restrictions (e.g., nodes on a bus cannot be connected any closer
than a certain interval), limitations of signaling speed versus distance, or setting certain
parameters within the data network’s components that affect its performance (e.g., setting
intermessage gap sizes or contention resolution times based on the maximum round-trip delay
over a given topology installation).

A.2 DATA LINK LAYER.

The data link layer is the layer immediately above the physical layer in most data communication
reference model stacks. It provides the functions, procedures, and protocols needed to establish,
maintain, and release data link connections between the nodes of a network. A conceptual level
of data processing or control logic in the hierarchical structure of a node is responsible for
maintaining control of the data link. The data link layer’s functions include bit injection into the
transmitter and bit extraction at the receiver; address and control field interpretation; command
and response generation, transmission, and interpretation; synchronization; error control; and
flow control.

The data link layer is divided into two sublayers: the media access control (MAC) sublayer and
the logical link control (LLC) sublayer. The MAC sublayer controls how a node on the network
gains permission to transmit on it. MAC sublayer protocols often try to provide prioritization or
fairness in granting access to the media. MAC sublayer protocols also try to maximize the use of
the media and minimize the probability of starvation (not granting access to requesters). The
LLC sublayer controls frame synchronization, flow control, and error checking. Conceptually,
the LLC sublayer sits on top of the MAC sublayer.

 A-8

A.2.1 The MAC.

The MAC sublayer is a particularly important part of a data network’s protocol when the
network is used for real-time systems. Simple problems in the MAC sublayer can cause
catastrophic loss of the services that the real-time system needs from the data network. These
problems include no access (starvation), not enough access, or wrong time access. One source of
these problems is the design of the protocol itself, coupled with access demands and timing of
clients, including faulty clients that fail to follow the behaviors expected or required by the data
network specification.

Other problems can be caused by failures (including permanent and transient failures) in the
hardware that directly controls or accesses the network media. These failures may be introduced
by any of the sources described in section A.1. Of particular concern is the possible brittleness
(lack of robustness) of the MAC sublayer protocol. That is, does the MAC sublayer protocol
amplify the effect of small failures and errors such that they become large problems? For
example, does the MAC sublayer protocol allow transient failures and errors to have an effect
that persists longer than current transmissions?

The following six sections describe problems unique to each type of MAC.

A.2.1.1 Master and Slave.

The simplest MAC mechanism is to designate a single node as the master controller. This single
node will have sole authority to grant access to data network’s media. The most common
example of this kind of MAC in avionics is the MIL-STD-1553. A centralized media access
controller has several weaknesses; the most obvious is that it is a single point of failure. That is,
if the controller fails to function or functions incorrectly, the entire communication system will
fail. This problem can be mitigated by adding fault tolerance, either within the controller or by
having multiple controllers. However, designing such fault tolerance is difficult, and no known
data networks that are now used or proposed for aviation digital electronics employ such a
scheme.

A.2.1.2 Bit-Dominant Arbitration.

Bit-dominant bitwise arbitration, sometimes called the Lanning protocol, is a very old MAC
mechanism. It was used in telegraphy about a century ago. This mechanism uses two (or more)
classes of signal that have a dominance characteristic such that if more than one signal appears
on the media simultaneously, only the (most) dominant signal is perceived by receivers. Each
message begins with a sequence of bits representing the message’s priority, most significant bit
first. As each bit is transmitted, each transmitting node checks the value on the media. If the
value transmitted by a node is recessive, but the value on the media is dominant, the node
recognizes that it has a lower priority than some other node that is currently transmitting. As
soon as a node recognizes that it has lower priority, it stops transmitting its message. The lower-
priority node(s) may again try to transmit after the current message transmission completes.

This arbitration method has a number of physical layer issues. Another issue is the constraint
that each bit must have a duration that is longer than the worst-case, round-trip delay on the

 A-9

media. To this constraint, one must add the effects of local clock jitter, sampling granularity
error, and the signal jitter caused by the dc component of these relatively large bits.

This type of arbitration has no fairness. It is possible for one node to use all the network
bandwidth and cause starvation in all other nodes. The system designer must add fairness on top
of these protocols.

A.2.1.3 Carrier Sense Multiple Access/Collision Detect.

Carrier sense multiple access/collision detect is the MAC used for IEEE 802.3 (Ethernet). A
node that wants to transmit first, listens to the media. If the media is busy, the node waits. If the
media is not busy, the node attempts to transmit. If more than one node tries to transmit at the
same time, a collision is detected. When a collision is detected, the transmitting nodes stop
transmitting and try again later.

Well-known problems with this arbitration scheme include the following.

• It is nondeterministic, e.g., miniscule changes in timing can cause changes in message

order, and there is the small (but unknown) probability that collisions among transmitters
can recur until they abort and then recur again so no messages ever get delivered).

• It has no fairness guarantees.

• It turns simple deaf nodes into babblers.

• How is the message schedule determined or agreed upon?

• How are system clocks synchronized to ensure that all nodes have the correct notion of

system time?

• Corrupted tokens—which means the next node that should have gained access to the

media will not know that it should have done so and traffic will cease.

• Swallowed tokens—where the current node holding the token dies before it can send the

token on, again traffic will cease.

• Counterfeit tokens—to solve the above problems, new tokens have to be minted, failures

in this mechanism can cause duplicate tokens.

A.2.1.4 Time Division Multiple Access.

Time division multiple access (TDMA) and its variants use a preagreed order of transmission for
the size of the message. These types of MAC require some form of clock synchronization.

 A-10

A.2.1.5 Token Passing.

In a token-passing MAC, the node that currently has access to the media must hold a token. For
another node to gain access to the media, the current node must pass this token on to the other
node.

A.2.1.6 Minislotting.

A node using a minislotting MAC measures time from the end of each transmission. A node is
allowed to transmit if the time it measures exceeds a threshold unique to that node and no other
node has started to transmit. ARINC 629 uses a variation of this MAC. One problem with basic
minislotting is that it has no fairness. ARINC 629 attempts to solve this problem by adding
another timer, which blocks a node from transmitting more than once in a period that is long
enough to allow other nodes fair access to the media. However, this scheme does not prevent a
node (or multiple nodes) from transmitting for a length of time that will starve other nodes.

A.2.2 MAC Replacements.

Many dependable, real-time data network systems use the hardware from an existing data
communication network that has an inadequate MAC and then apply a substitute MAC on top of
the existing hardware. This effectively removes the MAC and turns the existing data
communication network node hardware into something that is little more than a simple
serializer/deserializer (SERDES) that just converts parallel data to serial data and back again, but
requires much more hardware (e.g., in the form of gate count) than would be needed to build just
a SERDES. Many such networks are based on IEEE 802.3 (Ethernet). The system designer
must consider whether the excess hardware can cause problems under unintended circumstances.

A.2.3 LINE-LEVEL ENCODING.

Line-level encoding is the way that logical data is physically represented on a network.

BER is heavily influenced by the eye pattern that is created by a network’s line-level encoding
scheme. In addition to affecting the data network’s own signal quality, line-level encoding can
also affect other equipment via radiated emissions. Thus, it is important to determine whether
the spectrum radiated from the line-level encoding has components in frequencies that can
adversely affect other equipment.

A.2.4 MESSAGE FORMATING (FRAMING).

The message formatting or framing part of the LLC sublayer handles groups of bits sent over a
link as discrete units. A message (also known as the frame or a packet) may contain control and
addressing information, as well as error detection, for example, cyclic redundancy code (CRC)
information or forward error correction information. The size and composition of the frame
varies according to the protocol. Depending on the protocol, components of a message may
include preamble, start delimiter, source address, destination address, routing information, length
field, flow control information, MAC information, error detection or correction information, or
end delimiter.

 A-11

In evaluating the dependability of a message format, one must examine the consequences of any
part of that format having an error.

Preambles need to be of sufficient size to restore dc levels to the nominal value, facilitate
synchronization of the bit-sampling clock to the incoming data stream, etc. Because dc levels
may not have nominal values during the receipt of a preamble, there is a good probability that
receiving nodes will see errors in the preamble. Some poor receiver designs assume these errors
will always be at the beginning of the preamble and, thus, only tolerate errors there. A more
robust design would tolerate any number of failures in the preamble except for errors that make
the preamble look like the next part of the message, typically a start delimiter. This is possible
because preambles typically are highly redundant with no unique information residing in any one
bit.

Are there parts of a message where an error could cause the loss of more than one message?
This question includes not only bit errors that occur while the message transits drivers, media,
and receivers, but also erroneous values that may be created by the source node or intermediate
stages. An example is the corruption or counterfeiting of a token bit pattern in a token-passing
MAC.

Other than redundancy bits (e.g., error detection or correction fields), is the message format
efficient? Note that inefficiency leads to more bits, which leads to a greater possibility of an
error. Related to this concept is the observation that some information that is transmitted in a
message in one protocol (where it is vulnerable to errors) may not be transmitted in another
protocol. For example, there are table-driven protocols in which all addressing, length
information, etc., are held in a memory protected from errors rather than being transmitted on the
network. There also are protocols that use redundant signal lines for error detection and
correction (EDAC) instead of adding check bits to the message. Combining these two ideas, one
could have a data network (such as SAFEbus) where messages have absolutely no overhead;
every message bit is a data bit.

A.2.5 ERROR DETECTION.

Network criteria that have significant influence on the overall safety are the error detection
capabilities of the link layer, because efficient error detection directly affects the integrity of the
data. The key to the underlying effectiveness of the error detection mechanism is the assumed
failure model of links. It is often assumed that link failures are primarily bit flips, and the
vulnerability of the link layer error detection mechanisms to undetected errors in data is
evaluated in the context of BER. Yet, the BER effectiveness evaluation is only one criterion to
be evaluated. Error detection criteria should stretch to include effects, such as wire crosstalk,
and correlated errors, such as HIRF events, unless mitigated with other means (such as
shielding).

This section discusses error detection of the link layer. Link layer errors can occur in the
communication media, in its drivers and receivers, or in intermediate nodes (such as repeaters).
Section 5 addresses some error detection mechanisms that may reside in the equipment at the
ends of the network or at intermediate stages within the network.

 A-12

A.2.5.1 Protocol Violation Error Detection.

Detection of errors on the link layer should include a strength evaluation of a network protocol
state machine to detect errors that are semantically incorrect. For example, message format
fields may exhaustively use all combinations of possible values. Implementation of the protocol
and protocol state machine should be able to detect violations caused by values that are not valid.
Otherwise, erroneous messages may be interpreted in a nonintended way, resulting in safety
implications.

A.2.5.2 Parity and Frame Check Sequences.

Parity and frame check sequence evaluation criteria that do not include the adequate description
and validation of error pattern may result in the use of mechanisms that do not have adequate
error detection capabilities. Typically, the validated BER can be used for adequate error
detection coverage assessment. There are many different error detection mechanisms and
encodings, such as CRC, Fletcher, Adler, AND, XOR, etc., with different characteristics;
however, this document only focuses on the characteristics of a few representative mechanisms.

CRCs are commonly used to detect link errors. In general, CRCs have been found to be
extremely strong in detection of bit flips. Yet, the number of bit flips a certain CRC polynomial
can detect depends on the length of the covered data and the generator polynomial used in the
check-data computation. The metric most commonly used for determining the quality of error
detection is hamming distance (HD), i.e., the minimum number of independent bit flips that can
result in an undetected error. Given the HD and BER for the medium, the designer can compute
the probability of an undetected error. This probability should be sufficiently small for the
reliability requirements of the data network.

Another error detection metric is the ability to detect error bursts. An error burst of a particular
length, n, is defined as sequence of n bits, the first and last of which are erroneous. The CRC can
detect all error bursts of length k (where k is the degree of the generator polynomial) or smaller.
While CRCs can also detect some error bursts longer than k bits, some error patterns are
guaranteed to be undetectable, so the CRC should not be relied upon to detect error bursts greater
than k bits in length.

High error rates and correlated error probabilities may especially be encountered in wireless
networks, where there is basically no shielding from external effects. The worst-case analysis
may become a real challenge for such networks in the aviation digital electronics domain.
Architectural means, such as voting of triple-redundant data channels as mitigation to in-line
error detection techniques, can only detect errors on the link if the channels are truly
independent. Wireless network connections may be extremely vulnerable to common-mode
effects on different channels due to unavailability of shielding protection.

In-line error detection may not only affect integrity (namely the probability of undetected errors),
but also availability. While BER can be a useful figure to describe environmental effects and the
integrity mechanisms can be very effective in detecting errors, the detection of an error again has
implications on the availability of data at the end node. Any detected erroneous message cannot

 A-13

be used by the application, resulting in decreased availability. The longer a message gets, the
more likely a message may not be available due to an error. Unavailability of data can have
similar safety effects as incorrect data.

A.2.5.3 Interactions Between Line-Level Encoding and Error Detection.

When assessing the system safety, one must not overlook the potential impact of line encoding
on the error detection capabilities. Such interactions should be examined for the worst case. As
the CRC (or similar in-line, error-encoding mechanism) is computed over the data, which is then
transformed to a representation that is sent over the physical layer, the properties of the error
detection change. Properties change because the encoder and decoder transform the
representation. As a consequence, a single bit flip can result in multiple bit flips for the data at
the link layer where the CRC is calculated. Similarly, the perceived error burst length that a
CRC can tolerate may be shorter than expected due to the encoding. Figure A-2 depicts a
scenario of data with a frame check sequence (FCS) that is encoded using 8b/10b as transmission
format. The actual error burst is smaller than the maximum error burst tolerated by the CRC.
Yet, due to the decoding of the physical data, the perceived error burst as seen at the receiver is
longer than the tolerated value. If not considered, such interactions between encoding and error
detection can invalidate error detection analysis.

At receiver: At sender:
Transmission

Figure A-2. Error Burst Length Extension Due to Encoding

A similar effect between the coding and physical layers is the multibit error vulnerability of
protocols that employ bit stuffing to guarantee a minimum number of transitions at the line level.
To properly encode and decode the bit-stuffed data, the entire message, including any CRC or
other error detection field, must be bit-stuffed. However, a small number of bit-flips in a bit-
stuffed message can result in a cascade error where data bits are interpreted as stuff bits and vice
versa. In this case, the number of actual bit flips (as few as two can cause the cascade error) can
result in a much larger number of bit flips in the decoded message that can exceed the error
detecting capabilities of the CRC

Encode

Bit stuffing,
Manchester,
8b/10b, etc.

Data FCS

FCS = f(Data)

Data* FCS*

FCS = f(Data*) =

Decode

FCS’

Blocks Actual error burst

Maximum burst tolerated

Error burst seen at receiver

 A-14

When evaluating the overall error detection coverage, one must include the error detection
probability of the FCS, the error detection probability (if any) available from the coding scheme,
and the possible interactions between the two.

Active intermediate stages (such as network relay stations containing active logic, i.e., silicon
devices) may defeat any in-line error detection mechanisms (such as CRCs), because the
potential failure mode of such devices may be arbitrary. The assumption of a uniform error
model may not hold for such scenarios, because silicon failures may transform in-line error
detection codes in a way that the frame check sequence is unable to signal an error in the worst
case.

A.3 NETWORK LAYER, TRANSPORT LAYER, AND NETWORK MANAGEMENT.

In the OSI model, the network layer provides switching and routing technologies, creating
logical paths, known as virtual circuits, for transmitting data from node to node. Routing and
forwarding are functions of this layer, as well as addressing, inter-networking, error handling,
congestion control, and packet sequencing. Above the network layer, the transport layer
provides transparent transfer of data between end systems, or hosts, and is responsible for end-to-
end error recovery and flow control. It ensures complete data transfer. In embedded systems,
the functionality of these layers is often merged into a single layer of functionality. This section
discusses the issues related to the functions of both layers together. In addition, in some newer
protocols, (for example, Time Trigger Protocol/SAE Class C (TTP/C) and FlexRay) a network
management layer is emerging to describe hardware or software services that facilitate message
agreement, network diagnosis, and synchronization. Issues relating to these issues are also
discussed.

A.3.1 NETWORK VULNERABILITY TO ADDRESSING INFORMATION FAILURE.

If the network technology encompasses message-labeling or node-addressing identification
information, then the failure modes of the addressing or labeling mechanisms need to be
evaluated; as such, mechanisms may be vulnerable to component failures or transport corruption.
An example failure mode is the masquerade failure, where one network node can impersonate
another node of the system. Failures of addressing or message-labeling information is especially
important in integrated modular aviation digital electronics systems comprising numerous
aircraft functions, because failure of these mechanism can lead to unbounded data flow failures,
which makes functional failure isolation almost impossible at the application layer.

The data network vulnerabilities to technology shortcomings may differ, depending on the
network implementation. If the network packet format includes addressing or other information
that indicates message content (e.g., a message or label identification), then the network is
obviously vulnerable to corruptions of these fields during transmission. For the network to be
dependable, there must be mechanisms to handle any such corruptions. These mechanisms must
be evaluated to establish their coverage (their ability to handle these corruptions). Note that
network integrity mechanisms (e.g., frame-check sequence) may detect transmission errors;
however, these mechanisms have limited coverage, as described in section 4.4 of reference A-4.
Any fault-handling mechanism must have provable coverage against all the possible failure
modes of the communication channel. Message routing and blocking enforcement of

 A-15

intermediate stages (e.g., guardians, etc.) based on addresses or labels need also to be evaluated
to ensure they provide adequate coverage, as described in section 7.2 of reference A-4.

The influence of software on network-addressing information is also an issue, as discussed in
section 5.8 of reference A-4. Such software-directed access may leave a network vulnerable to
failures that corrupt the addressing information.

In addition to the vulnerability from dynamic errors incurred during transmission, many network
technologies require configuration tables to assist the network-routing and -addressing logic that
may be vulnerable to static errors. The mechanisms to ensure the design correctness and run-
time integrity of these configuration tables must also be evaluated and justified. These issues are
discussed in sections 5.3 and 8 of reference A-4.

In some network technologies, routing information and logical topologies may be built at run
time. An example is the tree-building discovery protocol of IEEE 1394. These mechanisms
must obviously be evaluated in relation to their vulnerability to component failures or data
corruption, unless failure modes or error detection can be suitably justified. The vulnerabilities
that may cause the erroneous invocation of mechanisms that recreate routing information and
logical topologies must also be understood and analyzed, since such invocation may seriously
degrade (if not prevent) network operation. These issues are further discussed in section 5.5 of
reference A-4.

Similarly, network error-handling logic (that may be invoked by erroneous addressing
information or that may impact protocol flow) needs to be analyzed to establish a bound on the
influence of the invocation of the error-handling logic and its impact (i.e., degradation) on
network performance. The behavior of any such logic and its associated vulnerability needs to
be analyzed and justifiably bounded. This is especially true for centralized intermediate stages,
as discussed in section 5.3 of reference A-4.

A.3.2 NETWORK VULNERABILITY TO FLOW FAILURE.

As with network-addressing failures, the network technology’s flow regulation logic also needs
to be evaluated. Issues relating to acknowledgement and retry logic are discussed in section 5.9
of reference A-4. Issues relating to host interface load balancing and buffering are discussed in
section 6.1 of reference A-4. Issues relating to intermediate stages are discussed in section 5.3 of
reference A-4.

A.3.3 IMPACT OF INTERMEDIATE STAGES.

If a network encompasses intermediate buffering or relay stages, then the behavior,
implementation, and impact of the intermediate stages needs to be established and evaluated with
the network behavior. The behavior of these intermediate stages can vary considerably with
network implementation. In simple form, they may be solely relaying stages. In more elaborate
schemes, they can comprise store-and-forward and routing logic. Finally, in critical networks, it
is common for such intermediate stages to incorporate error detection or fault containment
mechanisms. This section discusses some of the issues and network attributes related to such
intermediate-buffering schemes that need to be considered and evaluated.

 A-16

A.3.3.1 Vulnerability to Intermediate-Stage Failure.

In networks that deploy intermediate stages, the influence of the intermediate-stage components
may be significant. For example, in networks using stars or hubs, the intermediate-stage
component impacts all the data flowing through it. The availability of the intermediate-stage
component must, therefore, be analyzed and justified to be adequate to fulfill the network
availability requirements. If multiple intermediate stages are deployed, then the independence of
intermediate-stage failure should be analyzed and suitably justified. If intermediate-stage-to-
intermediate-stage signaling is required, then this signaling and logic needs to be analyzed for
failure vulnerabilities and possible fault propagation. Similarly, any protocol common-mode
influence on the intermediate-stage availability must also be understood.

Integrity implications of intermediate-stage mechanisms must be carefully analyzed and
evaluated. One of the difficulties of such an analysis is bounding the failure modes of the
intermediate-stage component. Since the intermediate stage influences every bit that it is
relaying, the effects of a faulty intermediate-stage component can be significant. The integrity
implications of a failing intermediate stage are very much dependent on network implementation
and architecture. For example, in the ROBUS network elements of the SPIDER architecture
(which votes data from three independent channels), the failure of a single intermediate-stage
component can be easily detected and is effectively masked from the receiving node.

Alternatively, if a network intermediate stage is developed to have full coverage (for example,
using self-checking or monitoring schemes), then the failure modes of the intermediate-stage
component may be suitably justified as benign (e.g., fail-stop). It is imperative, however, that
the coverage of the self-checking or monitoring scheme is suitably justified, as discussed in
section 7.4 of reference A-4.

It is common for networks to rely on in-line integrity mechanisms, for example, CRCs
checksums, parity, etc. In such cases, the failure modes of the intermediate-stage component
become more significant, since the network integrity is dependent on the coverage of these
codes. With complex intermediate-stage logic, it is difficult to bound failure modes of the
intermediate devices, and relatively simple failure modes may have significant impact on in-line
coverage techniques. To illustrate the impact of a relatively simple failure mechanism, consider
the scenario of an intermediate-stage elasticity buffer erroneously underrunning or overrunning.
If the result of such an overrun or underrun is the insertion or deletion of a single cell from a
relayed Manchester stream, the resultant relayed stream may suffer a cell shift that causes data
corruption for the remainder of the transmission. If such a failure is not detected by the encoding
or framing scheme, this shifted data stream may easily defeat CRC coverage (as discussed in
section 4.4 of reference A-4). In such cases, the data integrity claims of the network are,
therefore, limited to the failure rate of the relaying component. This scenario is important as it
illustrates the interdependencies of the error detection logic (i.e., the framing and encoding layer)
strength and the CRC coverage. Strict enforcement and error detection mechanisms may
strengthen the data integrity claims; and with that said, quantifying such behavior may be
difficult. It is also important to understand where the error detection is performed. For example,
if the error detection is only performed at receivers, and intermediate stages do not perform such
action, the reshaping or retiming behavior of the intermediate stage may degrade the end-to-end

 A-17

effectiveness of such detection (i.e., the scenario of erroneous signals at the intermediate-stage
input getting cleaned up and reshaped by the intermediate-stage action that produces a relayed
output stream with no encoding errors). The impact of reshaping and re-encoding layers of
intermediate-stage logic needs also be considered in this regard.

In addition to hard or transient logic errors, intermediate stages may also be vulnerable to out-of-
specification behavior. For example, clock drift may lead to similar overrun scenarios, as
described above. The network vulnerability to such errors, together with the potential
contributors to such out-of-specification behavior, need to be understood as the network is
evaluated. It should be noted that there may be both systematic contributions, such as long-term
drift of oscillators and their performance under aging and temperature variations, etc. They may
also be due to local transients; for example, acceleration or gravity forces on crystals or PLL
modulations resulting from power supply instability or fluctuation. It is obviously important that
the intermediate-stage elasticity buffers are sized to accommodate such variations. In addition,
the intermediate-stage reaction and response to out-of-specification errors is another attribute
that warrants careful consideration.

For intermediate stages that encompass store-and-forward behavior, the situation is complicated
further since the behavior of the intermediate-stage component is more complex. The
vulnerability of the intermediate buffer memory to transient upsets (such as SEUs) needs to be
established. It is preferable if some form of protection is in place. If only error detection is in
place (for example, parity mechanisms), then intermediate-stage response to such errors needs to
be analyzed and understood. For example, if a parity error causes a reset or machine-check
exception, then the availability of the intermediate stage would be impacted as the reset
procedure is initiated. The vulnerability of the intermediate stage to SEUs and the subsequent
reinitialization time will then need to be considered when justifying network channel availability.
It should be noted that a similar analysis is also required for software-implemented switching
schemes that use random access memory (RAM)-based data with parity-type schemes.

If the intermediate buffer memory is not protected via parity or EDAC schemes, then the impact
of such upsets on end-to-end integrity claims needs to be understood. Obviously, should the
intermediate stage perform recalculation of integrity checksums (such as CRCs), then the impact
to buffer memory upset is limited by the SEU vulnerability of the intermediate buffer RAM.

In addition to buffer memory errors, faults of the intermediate-stage configuration and routing
tables also need to be analyzed in a similar manner. If these are not protected, then the impact of
erroneous control flow, routing information, etc., needs to be carefully analyzed. The responses
to detected errors also need to be understood in relation to their impact on intermediate-stage
availability, as discussed above.

Permanent faults of the intermediate-stage control and buffering logic need to be considered. As
with the simple relaying logic, these may impact data integrity claims. In addition, when
buffering action is present, the vulnerabilities to erroneous message forwarding need to be
analyzed and understood. Network mechanisms to detect old or out-of-order packet forwarding
must, therefore, be analyzed and evaluated with the network performance, unless suitable benign

 A-18

failure modes of the intermediate stage can be justified via coverage techniques (self checking,
monitoring, etc.).

For protocols that incorporate control flow information in the transmission, for example, the
reset-sequence indicator proposed by ARINC 664 part 7, the erroneous behavior of a single
network channel needs to be considered in the redundancy management of networks.
Mechanisms for redundancy management can be potential logical fault propagation paths and,
thus, need to be considered when justifying the network availability. For example, consider the
scenario of an ARINC 664 P7 babbling switch that only sends frames with sequence number of
0. Such a failure could be due to a stuck address line in a switch, resulting in continuous sending
of the same frame, which might happen to be a frame announcing a reset. The receipt of such a
frame on either channel (of the dual-network paths) causes the receiving node to reset its frame
sequence for a virtual link once (if the redundancy mechanism of ARINC 664 part 7 is used).
Hence, the erroneous channel may upset the sequencing and data flow of the independent, good
channel at least once. The reset-sequence indicator will only be considered once due to the
integrity mechanism in ARINC 664. Thus, the influence of a stuck frame is bounded. Failure
modes with more complicated failure behavior that could defeat the integrity check of ARINC
664 end systems may have to be considered if it cannot be argued that their probability of
occurrence is low enough.

Note that due to the centralized position of the intermediate stage, failure effects, such as those
described in the previous sections, may touch many parts of the system. Hence, the common-
mode influence of such intermediate-stage behavior needs to be carefully evaluated and
understood.

In addition, the intermediate-stage buffering mechanisms and protocol interactions need to be
understood to mitigate issues relating to head-of-line blocking. This same problem can occur in
application services, as discussed in section 6.1.1 of reference A-4.

A.3.3.2 Vulnerability of Intermediate Stage to Fault Propagation.

The vulnerability of the network intermediate stages to faults propagating from erroneous end
nodes should be established. Such vulnerabilities may be related to erroneous control data or
erroneous temporal behavior. For example, consider a central guardian reintegrating onto a
TDMA scheme; if the TDMA position is resolved by listening to TDMA sequence index
indicators included in the TDMA traffic stream and if the integration logic of the intermediate
stage is not tolerant to erroneous information, a faulty node may be able to delay or prevent the
intermediate stage recovery.

Similarly, incorrect flow management may impact the intermediate stage or switch performance.
For example, babbling end nodes or other babbling intermediate stages and switches (sending
syntactically continuous frames) may impact available buffer space and cause overruns unless
suitable enforcement and error containment policies are in place. The buffer management
policies, associated buffer sizing, etc., need to be carefully analyzed, as network performance
under normal and erroneous node behavior is justified.

 A-19

Finally, any error-handling logic that may be invoked in response to erroneous end-node traffic
and behavior should also be analyzed so that any associated intermediate stage or switch
performance degradation or other propagated erroneous behavior can be suitably bounded.

A.3.4 NETWORK CONFIGURATION DATA.

Many network technologies require configuration and routing tables to be programmed to assist
network operation. Therefore, design correctness of these tables is obviously important to
correct network operation. Design assurance issues relating to network table correctness is
discussed in section 8 of reference A-4. The run-time integrity of the tables is also important.
Therefore, the storage, operation, and load integrity mechanisms of the configuration data need
to be evaluated with the network technology. This examination should also address run-time
table placement, for example, RAM protection schemes such as parity and EDAC. Similar
considerations, as to those discussed in section 5.3.1 of reference A-4, in relation to buffer
protection and recovery actions should be considered in relation to run-time configuration table
placement.

In networked systems, the consistency between the copies of run-time tables in different nodes is
also an important issue. Hence, protocol mechanisms to ensure table consistency should be
evaluated. However, as discussed in section 5.5 of reference A-4, the availability impact of such
consistency enforcement mechanisms needs to be considered. In systems where the network
tables and system or application software are tightly coupled, mechanisms to ensure
software/network compatibility are needed. This is especially true if the network tables are
configured separately from the application software images.

The mechanisms to load the configuration and routing tables are also important. First, the
integrity of the loading mechanism needs to be established so that the configuration data does not
get corrupted during the load process. Second, if the table load mechanism uses the same data
path as the normal network data flow, the partitioning properties of the network path have to be
established. For example, some network technologies use dedicated load protocols to facilitate
the loading process. The interlock mechanisms and mode selection logic used for these load
protocols need to be analyzed to ensure that the erroneous invocation of the protocols does not
degrade network availability. In addition, network tables may need to be updated in a “live
operational mode,” for example, when a network is running minimal network traffic to support
the “hotel functions” of operating doors, lights, and basic power distribution. In the live
operational mode, the mechanisms to coordinate mode change and table switching need to be
carefully evaluated.

Similarly, network maintenance and query protocols are sometimes used on top of the network
infrastructure, such as in the Simple Network Management Protocol. These network
maintenance protocols also can introduce safety implications. The network vulnerability to the
actions performed with these protocols needs to be analyzed and considered. For example, if it is
possible to invoke software exceptions via these maintenance interfaces, the impact of the
exception processing on the normal application functionality needs to be bounded.

 A-20

A.3.5 START-UP AND RECOVERY.

Network start-up and recovery mechanism are important since, in critical environments, start-up
and recovery time of the system is often a key attribute of the system performance. The behavior
of network start-up performance is, therefore, another attribute that requires careful evaluation.

During start-up, the network is usually more vulnerable to faults. Unless the start-up algorithms
have been designed to be fault tolerant, or the network hardware has been designed with
adequate fault containment, it may not be possible to guarantee a correct or timely network start.
In such cases, the availability of the network channel will need to be re-evaluated to consider the
impact of potential contributors to erroneous start-up action. To illustrate such a scenario,
consider a TDMA protocol where the initial frame of the protocol contains a table version
identifier. This may be sent explicitly or implicitly, i.e., buried within the CRC calculation of the
network frame. If the first node to send at start-up sends an incorrect table identifier and the
response of the other good nodes receiving such a frame is to back off for a defined period of
time, the erroneous node can hold off network start-up. If that node continues to send, then
network start-up action may be delayed indefinitely. This is an interesting example, because it
illustrates the interaction between availability and integrity mechanisms, which often occurs
when integrity patches are implemented on top of networks that have been designed with a
availability mindset, which is very common in commercial off-the-shelf (COTS) protocols.

Another interesting issue relating to start-up is the constraint the network implementation may
place on external aircraft systems, for example, power sequencing. The network may assume
that network components are powered-on within certain intervals or in a specified sequence.
Such is the case when central guardian action is assumed, as described in the section 7.2 of
reference A-4. In time-driven networks, the alignment of start-up behavior may significantly
impact network start-up. Such issues are further discussed in section 5.8 of reference A-4. It is,
therefore, desirable to note such constraints while the network is being evaluated. If the network
is required to be safety critical, the assurance of the network-assumed behavior may drive
considerable complexity and cost into these other systems. However, without such assumptions,
the network justification and associated availability claims may be incomplete.

In some network technologies, for example IEEE 1394, network-addressing and routing
information is built when new nodes are added to the network. Such behavior should be
carefully analyzed for its impact on network start-up time, which will essentially be limited by
the slowest node. A faulty node, for example, a node undergoing continuous restart behavior,
may also need to be considered (depending on the fault containment and coverage of the nodes
implementation). If sufficient coverage cannot be justified, a faulty node may disrupt network
availability by continuously initiating network restarts. In such a scenario, all components that
may contribute to such a failure need to be analyzed while network availability is being justified.
In addition, the fault tolerance of “discovery routing protocols” should be established and
analyzed to bound the influence of faulty logical behavior.

Authentication is another issue that is often worth considering during start-up. This is especially
true in TDMA networks that may use the temporal order of messages to assist as an
authentication mechanism when the network is running. At start-up, when there is not an
established time base, this authentication technique is not available. Hence, the network may be

 A-21

more vulnerable to authentication failure. This is particularly interesting for dual-channel
networks, because the lack of suitable authentication may enable a faulty node to impact multiple
transmissions as it appears differently on each of the channels. If the algorithms of the
associated network are only tolerant to a single failure, then such a dual-error manifestation may
break the protocol assumptions and prevent correct network operation. This may even be true if
guardian schemes are in place (because the guardians may lack suitable authentication
capability). The strength of guardian enforcement is another attribute that requires careful
consideration. This is discussed in section 7.2 of reference A-4.

In general, it is important that the network technology protocol mechanism and algorithmic
claims are carefully evaluated for their performance during start-up. For example, a clock-
synchronization algorithm may tolerate a Byzantine error when the data network is fully up and
running, but may require a certain minimum number of correct nodes to be up before the fault
tolerance mechanism can operate correctly. The impact of the algorithmic behavior when fewer
clocks than the minimum are available should be understood. For example, what is the impact of
having only two clocks available for an algorithm that requires four clocks to be Byzantine fault
tolerant? Bounding such effects is required as the network performance and safety case is
evaluated. In addition to the analysis of the network’s start-up mechanisms, network technology
reintegration mechanisms also need to be analyzed to establish their tolerance or vulnerability to
erroneous protocol control flow information that may delay or prevent a node’s timely
integration.

Many algorithms and mechanisms are designed to work correctly only if some minimum
amounts of good resources are available. However, just prior to start-up, it can appear that
everything has failed. A good design for start-up must be able to get past this “everything has
failed” phase and be able to bootstrap itself up to full operation. However, all too often, network
designs assume that the network was “born running” and cannot tolerate failures during start-up.

A.3.6 GLOBAL SYNCHRONIZATION.

Data networks may have a need for synchronization of clocks within nodes for coordinated
network access or as an application-level service. The following paragraphs focus on clock
synchronization, but a subset of the aspects to be considered for clock synchronization are
equally applicable to synchronization of logical clocks (counters) used for redundancy
management.

A.3.6.1 Algorithm Mechanism.

Clock-synchronization algorithms consist of several steps during synchronous operation. The
first step is the initial clock acquisition, in which synchronizing nodes acquire the current clock
values or counter values from one or more different nodes. This can be done via messages
prescheduled according to a table or can be triggered upon request. After a node has acquired
synchronization with the data network, it must maintain that synchronization. It does so by
periodically acquiring clock-difference information from the other nodes. This also can be done
via messages prescheduled according to a table or can be triggered upon request. Another
method is to time the arrival of normal data messages (i.e., expected arrival time of a message
versus the actual arrival time) and infer the current state of the transmitter clock of that message

 A-22

versus local clock state. After preprocessing of the clock-difference information (such as for the
elimination of propagation delay influences), the second step at each node is the calculation of
the correction value for the local clock based on the (preprocessed) clock values. This step is
sometimes called the convergence function, because it should ensure convergence of the
distributed node clocks towards a common clock. The next step is applying the correction value
to the clock so that all nodes have clock times that are more closely synchronized to each other
than before the synchronization step was taken.

Several properties and influences, if not mitigated, may lead to an unstable or failing clock
synchronization algorithm, which can lead to potentially unsafe system state.

The clock-synchronization algorithms depend on the propagation delays through the network.
Different propagation delay between different nodes or different data acquisition delays at nodes
may lead to inconsistent or inaccurate views of the actual propagation delay, which is used to
judge the clock difference between different nodes. Such differences may have effects on the
stability of the algorithms. The most often cited challenge in clock synchronization is
synchronization in the presence of Byzantine failures. Byzantine in this context means that
different nodes have different views of the clock values from another node. It seems hard to
quantify the possibility of Byzantine scenarios in the clock synchronization at first. Considering
that clock-synchronization algorithms often measure the difference between expected arrival of a
message and the actual arrival, any arrival time differences of sync data in the context of
different or slightly varying propagation delays lead to scenarios similar to Byzantine fault
scenarios. If the system does not compensate for propagation delay differences, the views of the
clock values can be significantly different. Compensation of propagation delays decreases the
difference but does not remove them. Such scenarios of different views of clock values at
different nodes, if not considered in a stability analysis, may pose a safety threat. The stability
analysis is normally captured in an analytical bound of a precision value.

The clock data values may also contain some faulty values either due to failures during
propagation or due to end-node failures. Considering source coverage, the correction value
calculation may have to tolerate certain failure modes to achieve a bounded precision value. One
issue in clock synchronization is the combination of clock values from different communication
paths that stem from the same source. In case of triplex redundant channels, the clock values
arriving on different communication channels can be voted. For dual replication, voting is not
possible. In certain topologies, an intermediate active component may have effects on all values
from different clock sources that travel through it; e.g., a single short-circuited central star
component in TTP/C or FlexRay may have influence on all clock values from different sources.
If the star topology is only dual (which is the case for most well-known data networks aimed at
embedded real-time systems, such as TTP/C, FlexRay, and Avionics Full-Duplex Switched
Ethernet), these failures of the stars can cause failures in the end systems that need to be
considered by the end systems themselves, due to the fact that the duel inputs from the data
network cannot be voted. The selection process between the different replicated communication
paths determines the amount of influence a failure in one of the communications can have on the
overall precision values. This effect, unless restricted, may have dependability implications.

 A-23

The algorithm calculating or selecting the correction amount for the local clock should consider
the assumed failure conditions and the number of faulty nodes it may have to tolerate in the
context of the systems source coverage mechanisms to ensure a bounded precision. An analysis
of the precision should consider the effects of potential masquerade failures. For example, in
FlexRay, the correction value calculation function can tolerate several incorrect clock values
stemming from different nodes, but may be unable to tolerate a single faulty node, if the node
fails such that it masquerades as other nodes when transmitting synchronization frames.

In the case of master and slave synchronization schemes, the switchover time from one master to
another master used for synchronization may need to contain the time to diagnose a faulty
master. During such a diagnosis time, slave nodes may still synchronize to their (faulty) master
node or not synchronize at all. Both scenarios can affect the precision.

When a node applies the correction of the clocks to its local clock, any task dependent on the
local node clock may have to consider potential influences of this correction on its execution
time. For example, the correction of clocks may have implications on the period available for
the execution of tasks. Effectively, the execution time available to a node may be shortened by
the precision due to correction and coordination with other nodes. This influence may have
impact on the execution time available to tasks.

The clock-synchronization algorithm needs to be careful in what information it uses to do clock
corrections. For example, if the correction function of the clock-synchronization algorithm uses
the same collected time values twice for calculation of the correction values, the algorithm can
become unstable. Such a scenario may happen during start-up of the system. Such instability
has been observed. Any tool verifying the stability properties of clock synchronization or person
analyzing the properties should consider such effects and different configurations. Also, the
compatibility and consistency of the clock-synchronization configurations at different times
should be checked.

Start-up of clock synchronization may have availability implications if it is dependent on the
fault coverage of a single node. Similarly, during start-up, clocks may drift for a much longer
time than during normal operation, because less or insufficient clock value sources are available.
Such longer drift times should be included in the stability analysis and consequently the
precision values.

A.3.7 FAULT DIAGNOSIS.

Some network technologies include fault diagnosis services to identify and isolate faulty member
nodes. The services may run autonomously in the network hardware or comprise software
application services that run on top of the network, which diagnosis information provided by the
network layer. Such services are strongly related to group membership and interactive
consistency services, which may use fault diagnosis services to manage network state-dependent
application decisions and guaranteed consistent delivery of messages.

A group membership service delivers the operational status of some or all nodes of a data
network to other nodes. Group membership service, or variants thereof, is a subset of an
interactive consistency service. Group membership indicates the operational state of nodes

 A-24

(ideally consistent), while interactive consistency provides consistent agreement of nodes on any
(sent) value.

Group membership information indicates the health state of a node. It can be concluded from
this information that the node is operating correctly. Yet, the information that a node sends out
may not reflect the current state of a message; e.g., the operation of a node as indicated by group
membership does not ensure that the message is correct (integrity violation) unless sufficient
error detection coverage for the node and the communication path is assured.

Group membership is usually derived from the correct or incorrect reception of a message from a
node. If these messages are correct, group membership infers that the node is correct. On the
other hand, if the reception of a frame is not correct, group membership mechanisms can
attribute this to a transient or permanent fault on the communication path. In aviation digital
electronics systems where transient upsets may be experienced in relation to power drop outs or
massive upsets from HIRF or lightning events, the ability of the diagnosis schemes to distinguish
transient external upsets and permanent node errors should also be carefully analyzed to ensure
that the diagnosis algorithm meets the real-world expectations. The persistence of any
indictment action that may result from the invocation of such diagnosis also needs to be
understood to ensure that the loss of network availability resulting from such indictments is
suitably bounded.

Requirements of group membership being consistent and the effects, such as inconsistent
reception status of messages at different receiving nodes and potential consequences, are
discussed in detail below. In general, it should be said that any diagnosis service will not be
perfect, e.g., due to transients having local effects or due to failure modes of the sending nodes
(Byzantine failure modes).

A.3.7.1 Application Use of Diagnosis Information.

Diagnosis information can be used by the network to build additional services for management
of redundancy sets or simply as acknowledgement. In this context, the use of the diagnosis
information needs to be in alignment with the expectations of the applications. These services
are (1) group membership, from an application perspective, intends to use the membership
information for the selection of the correct data, and (2) interactive consistency intends to
provide the data consistently at all nodes.

Group membership is often based on the reception of messages from nodes and will have some
temporal lag until state changes are updated. Effects of time lag should be considered in the
evaluation process.

It has been proven that group membership in arbitrary fault scenarios (without source coverage)
cannot guarantee correctness and consistency at the same time, whereas correctness means that
all correct nodes are regarded as nonfaulty by all other correct nodes (but faulty nodes may also
be viewed as correct), and consistency means that all correct nodes are consistently seen as
correct at all correct nodes. An implementation of group membership with insufficient coverage
or insufficient communication rounds required (and theoretically proven) to tolerate certain

 A-25

failure modes may either sacrifice availability or integrity; e.g., enforcing consistency in a single
string implementation can lead to availability loss.

In CAN, any acknowledgement algorithm claiming consistency (atomic broadcast) despite an
arbitrary failure mode should be analyzed in a similar manner. This is discussed in section 5.9 of
reference A-4.

Applications that use networks that provide group membership services should analyze

• the underlying assumptions,
• the consistency and correctness guarantees of group membership, and
• their effects on the application level.

Such analysis and effects on the application should also include temporal aspects, because
diagnosis information and membership lag in time.

During reintegration and start-up of the data network, the group membership information
provided by a newly integrated or started node may include information about the system’s state,
which the network may not have observed itself or obtained from other nodes. In detail,
integrating nodes may observe the network’s operational state over a period of time or may
integrate quickly by accepting other nodes’ views of the operational state of the network. In the
latter case, the use of the information provided by other nodes needs to be in alignment with
application-level assumptions of the membership information; e.g., if an integrating node adopts
the group membership state from other nodes and the application assumes that the membership
state information includes agreement on, or availability of, application state information, it may
also have to acquire the application state information that is associated with the semantics of a
group membership bit.

A.3.8 CLIENT EFFECT ON NETWORK OPERATIONS.

A data network is often the glue that holds together a dependable system. A system data network
tends to become either the main fault containment mechanism in itself or is a major component
of the main fault containment mechanism(s). As such, it is important for a system data network
to not be adversely affected by the clients it serves, no matter how badly the clients misbehave.

Many data networks allow their clients to adversely affect their operation in several ways.

The first adverse interaction occurs immediately upon start-up. Many data networks allow their
clients to influence the timing of network start-up by affecting the timing of their nodes.
Variations in node start-up times can be caused by different host power-up sequences, different
self-test mechanisms, etc., coupled with the requirement for the client to enable its node to
participate in the network, e.g., in FlexRay and TTP/C, the host needs to switch on the controller.
Different start-up times of node components should not be allowed to cause starvation of
components (retry exhaustion). For example, after some retries of an insufficient response, a
FlexRay network chip starts over again and the software needs to interact; if software is too
slow, then there is no availability. It is possible for data network protocols to take an

 A-26

inordinately long time to start, or it may not start at all, if the timing behavior of its nodes follow
some pathological pattern during start-up. When such networks are used, the performance of
higher-protocol layers (such as those implemented in software) should be analyzed to ensure
proper start-up time and to avoid problem scenarios like those described here.

During data network operation, some protocols allow clients to adversely affect their behavior if
the clients can control addressing, routing, priorities, etc. Some systems require applications of
different safety-criticality levels to share the network. When this is the case, the network must
be robustly partitioned so applications and clients of low criticality cannot adversely affect the
use of the network by high-criticality application or clients.

Another possible avenue for a client to adversely affect a system data network is via unprotected
test or network management paths.

A.3.9 ACKNOWLEDGEMENT.

For network protocols that employ acknowledgement schemes, the behaviors of this logic need
to be carefully analyzed, especially with respect to inconsistent message reception (some nodes
receive a message or an acknowledgement and some do not). It cannot be assumed that any
acknowledgement mechanism provides, by itself, consistent message reception also called
atomic broadcast). Also, the sender of the message may fail before resending the message; e.g.,
mechanisms with negative acknowledgement schemes need a way to signal such negative
acknowledgement. If signaling is not possible, inconsistencies may arise. An example of
acknowledgement causing inconsistent message reception is the negative acknowledgement
algorithm (sending of error flag) in CAN. If an inconsistent bit reception in the next-to-last bit
occurs, some nodes will accept the message and others will not. In such a scenario, a
retransmission will occur, leading to multiple message copies at some receivers and a single
message copy at others. As a consequence, the delivery semantics have gone from “exactly
once” to “at least once.” Receiving nodes may not be able to distinguish the duplicate message
from a legitimate second message, and message delivery to different nodes may occur at
different times. In case the sender suffers a failure and it is not able to resend the message,
permanent inconsistencies in message reception will arise. The implications of inconsistent
message delivery, different message delivery times to the application, and multiple deliveries
should be analyzed with respect to the overall system and its safety.

Similarly, in a network where acknowledgement vectors or bits are used, an inconsistent
reception may cause system-level effects. Generally, if acknowledgement is only based on an
action of a subset of nodes, inconsistencies may occur as a consequence of the design (e.g., the
recessive or dominant physical layer acknowledgement, in which one receiver is sufficient to
signal a dominant state, is an action of only a subset of the receivers; or the acknowledgement-
signaling mechanism relying on the reception status of a subset of receivers, such as the
reception status of the next one or two receivers, may be vulnerable to inconsistent reception).

Message retry mechanisms, due to negative acknowledgement or missing positive
acknowledgement, may have implications on the network performance and maximum loading.
To bound network loading, retry mechanisms should be analyzed for the number of retries to

 A-27

make sure they are bounded, or they should be analyzed whether retries are forced to be bounded
via counters for retransmissions or bounded via timeouts.

Acknowledgement errors can affect application-level error handling or exception mechanisms,
such as invocation of error routines leading to additional overhead for processors. Any safety
implications of increased workload should be analyzed.

A.4 APPLICATION SERVICES.

Current data network technologies comprise a number of application services that may or may
not be used by an application. All services need to be analyzed in the context of a safety
assessment. In its simplest form, any buffer management mechanism has associated properties
that need to concur with the application assumptions. Newer generations of networks also
supply voting schemes or redundancy management mechanisms. An example of such buses is
the ARINC 664. In this section, the criteria for data network services used by applications are
examined.

A.4.1 HOST INTERFACE MANAGEMENT.

Buffer management should be concerned about the message access order to the network,
partitioning requirements, and performance aspects of the network interface buffer, as well as
implications to the host.

A.4.1.1 Client Buffer Queue Management.

Buffer management of systems may have system-level implications. One example of system-
level impact may occur if messages are associated with priority. In certain combinations of
buffers and accesses, priority inversion on the system level may occur; e.g., certain
implementations of CAN can have a priority inversion of messages.

These CAN implementations have a priority message queue that holds a large number of
messages and an intermediate buffer that intends to contain only the two highest-priority CAN
messages. The buffer with the highest-priority messages is used for network arbitration and for
serializing and sending on the network out of this buffer. This is called the sending buffer. One
message position in the sending buffer, which is normally a dual-port memory, is intended for
sending, while another position is intended for “refilling” from the larger message buffer with
the next higher-priority message, while the message on the other position is sent on the network.
If a higher-priority message (priority 3) arrives at the large message buffer, the lowest priority
that is currently in the sending buffer (priority 4) needs to be replaced by this new message. If
this replacement action coincides with arbitration on the network, another message with lower
priority (priority 5) may win the arbitration, because one position of the sending buffer has just
been sent and is empty and the other message (priority 4) is being replaced by a message with a
priority 3 message. This is an example where a lower-priority message has won arbitration over
a higher one. While this situation can be improved (i.e., not suffering from priority inversion) by
supplying a sending buffer with space for three messages, similar situations may exist, and the
system-level and safety implications should be checked due to such scenarios.

 A-28

Similar phenomena can occur due to local buffer management. One example is a priority
arbitration scheme where only a single first-in, first-out transmit buffer is used. If only the head-
of-line message contends for the communication resource, the performance drop due to head-of-
line blocking can be significant. In the worst case, a node may not get any access to the network
and will not be able to send.

When evaluating networking technology for the deployment in systems, client buffer queue
management mechanisms should consider effects on the access to the network, such as fairness
and implications to the network and the host.

A.4.1.2 Buffer Management Partitioning.

In a robustly partitioned system, software partitions running on a node have a strict execution
budget and should adhere to it. On nodes where the data from a data network is managed by a
direct memory access (DMA) controller, the DMA controller may repeatedly stall the execution
time of running partitions, potentially having significant effect on the execution time of software
tasks. Unless such effects of “cycle stealing” are accounted for in the execution budget of
software tasks or the overall node architecture, software may miss execution deadlines.

Partitioning violations, due to addressing and masquerading nodes, were discussed in section 5.1
of reference A-4. Partitioning violations may also occur due to buffer management. In systems
having applications of differing safety criticalities running on one node (processor) and each
having common access to the communication buffer, any wrong access to the common
communication system buffer can result in several undesired phenomena.

Unless the access to the common buffer is restricted or controlled for each partition, software
partitions may overwrite messages of other partitions or use network resources from other
partitions. A partition may even be able to send data masqueraded as another partition, unless
protected. A simple, but potentially unsafe, example may be a common address area where all
partitions have access, but each partition is assigned a source address on the network based on its
assigned range within the buffer. Any faulty access to another partition’s memory area can result
in faulty addressing on the network, masquerading effects, and data overwrite, just to name a few
potential safety hazards.

Another area of control to the buffer is the coordination between the network and the software
(or host processor) sides of access to the buffer. The buffer management should be analyzed to
ensure the mutual exclusion of buffer access (or access to certain areas). Unless the access is
controlled for both the data area and potential control areas (interaction between status area
potentially updated by the network, while at the same time, the software side tries to change or
read the control information), interactions may result in unwanted effects. One example is the
atomic write for messages sent on the network (transmit buffers). A message should not be sent
until it has been completely written into intermediate buffers. If the contents of a transmit buffer
are sent out onto the data network’s media while software is still writing to that buffer, the
resulting transmitted message could contain contents that are a mix of old contents and new
contents. While such coordination may occur automatically for different processes due to
scheduling of process execution on processors that is tied to a communication schedule for the

 A-29

data network, the dual-port memories often used for buffer management may be much more
likely to be affected by such coordination errors.

The host needs access to the receive-buffer areas common to the networks, and the host needs to
be restricted or otherwise carefully controlled during the reception of incoming traffic from the
data network. If not coordinated or controlled, data inconsistency in applications may arise. If
blocked from either side, blocking effects should be considered. Blocking of message reception
while the host reads the buffer (if such blocking is possible) may have system-level impacts,
such as requiring the re-sending of messages or queuing at sender side. Blocking the host-side
access while the data network is updating a receive buffer may increase the execution time of
software. In cases where dual buffers are used to allow an incoming data network message to be
written to one buffer while the host software is reading from another buffer (ping-pong buffers),
potential delays in the availability of data and the switchover logic after message reception needs
to be considered.

Well-designed data network interfaces that have solved these receive buffer access problems for
all corner cases on a single node may still have problems for architectures that use broadcast
messages. It is possible that the receive buffer mutual exclusion mechanism on each of the
receivers works correctly (the host never receives messages from the data network that have
inconsistent contents due to buffer timing and access issues), but could cause the atomic property
of the broadcast to be lost. That is, timing differences among the receivers may cause different
receivers to see their buffers in different states, even if they all receive exactly the same sequence
of messages from the data network. In the cases where atomic broadcast must be supported, the
data network may also be required to support receive buffer consistency.

Similarly, network errors that can trigger host software exception loops also need to be
considered. This is to ensure that such exception loops do not interfere with the time budgets
and partitioning mechanisms of host software.

A.4.1.3 Buffer Management Performance Considerations.

The performance considerations of buffer management should be considered when selecting a
network. In the past, the low-speed aviation digital electronics networks (such as ARINC 429
and 629) have put less emphasis on the performance of buffer management, because memory
access times or memory bus access times were often an order of magnitude quicker than required
for serving the data-copying and coordination activities. With the advent of high-speed
communication in avionic systems, the need for a balance on the buffer management side with
respect to performance becomes more prevalent. Performance evaluations should consider the
required access needed from the network and the host sides, memory device and memory bus
access times, and special support provided by the hardware, such as burst memory access.
Interactions between performance enhancement schemes, such as burst memory access that
reduces buffer access time, and interactions with access time and requirements (e.g., blocking of
memory devices or memory bus may have implications to arbitration of the memory or the
memory bus) should be considered in the evaluation.

For network technologies that require software functions to assist the network data flow (for
example, data unpacking, data copying, etc.), the software impact of changing the network tables

 A-30

also needs to be considered and suitably bounded. This is especially true of network tables that
are configured and loaded independently of software application images. Ideally, software
execution margins can be suitably bounded and argued to meet the worst-case network data flow
assumptions that can be run-time configured. Network technologies that support the bounding of
such interactions are preferable.

A.4.2 SUPPORT FOR APPLICATION-LAYER REDUNDANCY.

A.4.2.1 Support for Active Replication.

Networks may signal the application of reception status, which may assist the application in
voting or selecting a correct value. Such mechanisms should be evaluated with respect to their
correctness. In case the indication status stems from the same source as the possible faulty value,
the use of such status information might be limited.

Application-layer membership is a mechanism to manage the redundancy sets at an application
level. Such application-layer membership algorithms should be evaluated with the same scrutiny
as the node-level memberships described in section 5.7 of reference A-4. One example that can
be regarded as application-level membership information is the network management vector in
FlexRay.

Node-level and application-layer membership is often combined within some networks to
incorporate message agreement and redundancy mechanisms. Such services provide a
foundation on which to build active replication strategies for applications. For example, the
National Aeronautics and Space Administration ROBUS protocol used in the SPIDER
architecture presents voted message data to the network interfaces, containing the visibility and
impact of erroneous data to within the network infrastructure. In another example, one version
of TTP implements enforced message agreement strategies, where nodes not in agreement with
the majority of network nodes are forced to re-integrate. While the membership mechanisms of
these two networks can be equally effective in providing a consistent view of system-wide
membership, there is a difference in the amount of system resources that are adversely affected
while these mechanisms sort out errors. For example, a Byzantine error in a SPIDER
architecture is effectively masked with the network layer. In one version of TTP, depending on
the degree of Byzantine fault containment provided by the guardian in a particular fault scenario,
the same error may force multiple nodes to re-integrate. The side effects of these policies and
their effect on applications should therefore be understood as the network technology is
evaluated.

In some networks, the network host interface incorporates a life-sign mechanism to support
application membership and health diagnosis. A life-sign mechanism requires an application to
perform a specific action that is used to judge an application as correct. Based on the correctness
of the action, the application may be removed from the membership. The life-sign action should
be evaluated with respect to its effectiveness of detection of the failures. Due to the minimal
action in normal operation, the error detection coverage may be limited.

 A-31

A.4.2.2 Support for Passive Replication.

Some networks support mechanisms for passive-redundancy strategies, i.e., the ability of
multiple network nodes to share network bandwidth. These mechanisms are discussed in section
7.7 of reference A-4. The networks mechanisms to inform clients of the state of the passive-
redundancy scheme, i.e., what application is in control and how many “spares applications” are
online, should also be considered. Since such information may aid the detection of latent spares
exhaustion, services to synchronize the state of spares should also be evaluated to ensure that
such mechanisms do not introduce potential fault propagation paths.

A.4.2.3 Support for Increased Integrity.

Some network technologies implement host interface support for self-checking pair host
configurations. Self-checking pair data is compared, and if it agrees, it is delivered as correct.
Self-checking pairs-based input data should be compared before computation; otherwise, the
self-checking pair computation results are likely to diverge even though both halves of a pair are
correct. Self-checking pairs should also be evaluated with respect to their independence from
power, common memory, vulnerability common design faults, etc.

Self-checking host support is strongly influenced by the network-level, self-checking
mechanisms discussed in section 7.4 of reference A-4.

A.4.3 TIME SERVICE FOR TIME STAMPING AND TIME INTERRUPTS.

Application time services that may be supplied by the data network include time stamping and
time interrupt. Synchronization aspects of time have been discussed in section 5.6 of reference
A-4, including a discussion of the implications of time services to the applications.

The quality of time services can be adversely affected by a data network time-service design that
is not robust. Time stamping of data allows an application to determine data freshness.
Sometimes all that it is needed is ordinal freshness; that is, the application only needs to know
what data set is newer. In some instances, an application may use time stamps to determine the
interval between two data samples, which could effect calculations that use delta time. Some
applications may use data network supplied time interrupts as a replacement for a local real-time
clock to do task scheduling. This has the benefits of a time source that is independent of the
effects of possible faulty software and allows for the synchronization of task scheduling among
multiple processors. If these services from the data network are faulty, either from network
internal faults or by propagating faults from clients, a time stamp service could cause wrong time
values to be used as inputs to calculations or, when coupled to a host’s tasking clock, could cause
tasks to not have enough time to execute.

A.5 FAULT TOLERANCE MECHANISMS.

Some network technologies incorporate fault tolerance mechanisms to mitigate the failure of
network components, such as guardians and monitoring schemes. Such mechanisms may be
particularly advantageous in aviation digital electronics environments where high-network

 A-32

availability and integrity is required. These mechanisms and associated evaluation criteria are
discussed in the following sections.

A.5.1 TOPOLOGICAL FAULT TOLERANCE.

The network topology may have a significant impact on the network tolerance to zonal or spatial
proximity faults, for example, physical damage that affects a certain area of the vehicle.

If the network uses a bus topology, then any failure along the bus path may destroy network
availability. Similarly, faults in network termination may lead to loss of availability and may
also introduce other Byzantine vulnerabilities, as discussed in section 7.8 of reference A-4. The
bus zonal vulnerability is particularly important if multiple redundant buses are assumed to
increase network availability. If all units are connected to all buses, then all buses are required to
be in physical proximity at the point of their interface to the different nodes. A failure at this
point of interface may therefore damage all of the independent bus channels. Similarly, a
chronic failure of a node, (for example, fire) may also damage all buses that are close to the
node. Therefore, when evaluating the suitability of bus-related network technology, care should
be taken to ensure that the technology or network architecture has suitably mitigated such zonal
vulnerabilities, either by separating bus and or by isolating network interfaces. The secondary
effects of incorporating isolation schemes should also be considered in relation to their impact on
the physical layer performance and the potential to Byzantine failure, as discussed in section 7.8
of reference A-4 and section A.5.8 herein.

Networks using intermediate stages may perform better in relation to zonal fault tolerance, as the
point-to-point relaying action of such technologies alleviates the impact of physical layer
damage. However the placement and data path planning of such intermediate-stage schemes
should also be considered, as the network technology is mapped to a vehicle architecture; i.e.,
there is little benefit in placing two redundant central intermediate stages in the same location.

A.5.2 GUARDIAN SCHEMES.

Some network technologies incorporate covering functions or guardian mechanisms to contain
node faults. Such guardians may be argued to increase network availability. However, the
implementation and performance of the guardian function needs to be carefully evaluated to
verify that suitable coverage and independence is provided.

There are several variants of guardian implementations; they may be locally (i.e., one node)
implemented on-chip or placed with independent guardian chips. Alternatively, the guardian
action may be supplied by network intermediate stages, for example, in centralized guardians or
peer-based ring schemes. The first attribute that needs to be considered in relation to the
guardian action is the amount of coverage that the guardian provides: i.e., what failure modes of
the node does the guardian contain. Often due to the cost optimizations, the coverage of the
guardian may be focused to cover only a subset of a node’s failures. For example, in low-cost
TDMA networks (e.g., FlexRay and TTP/C), local guardian schemes are often limited to time-
window enforcement. The extent of the protection provided is also limited to specific network
modes; for example, network start-up is often left uncovered. Time-window enforcement does
not protect against logical protocol errors, for example, erroneous protocol signaling. Such faults

 A-33

must therefore be mitigated with additional guardian behavior or fault-tolerant protocol logic, as
described in section 7.3 of reference A-4.

Irrespective of the coverage provided by the guardian scheme, the independence of the guardian
enforcement is another attribute that requires careful consideration. Often in network technology
targeted for low-cost domains, the guardian function may be implemented on the same die
(silicon integrated circuit (IC)) as the communications controller. The justification of
independence may therefore be more difficult; as such, schemes may be vulnerable to common-
mode failures that disable or degrade the guardian actions. The use of independent clocks and
partitioned dies may assist here, although detailed analysis of failure modes will be needed to
support independent failure claims. Another common dependence may be the power source.
Network technology with truly independent physical guardian action will require less analysis
and may be preferred as it presents less certification risk.

In addition to the physical independence, logical guardian dependencies should also be
considered. For example, if the guardian is dependent on its host controller for global time or
protocol state synchronization, the coverage of the guardian may be compromised. For example,
consider a TDMA time enforcement guardian that relies on its host for schedule synchronization.
If the host is “deaf,” i.e., simply unable to hear network traffic, it may continuously try to start.
If it performs in accordance with the correct start-up activity, then—from the guardian’s
perspective—the faulty host may appear to operate correctly. In reality, it will be continuously
disturbing protocol traffic. Such dependencies should be considered when network and guardian
technology is evaluated.

To mitigate the shortcomings of simple local guardian schemes, several network technologies
have evolved to incorporate intelligent central guardian schemes. The degree of intelligence in
the central guardian is dependent on the network technology, varying from simple time
enforcement and slightly-out-of-specification (SOS) fault containment, to full protocol-level
policing functions; e.g., protocol semantic-state enforcement or similar message policing.
Centralizing these protection mechanisms allows for more intelligent guardians to be
implemented at lower costs. However, implementations of the guardian schemes should also be
evaluated to ensure that they provide adequate levels of independence and fault coverage.
Protocol and node failures not covered by the guardian will need to be addressed by other means,
either by fault-tolerant protocol logic (discussed in section 7.3 of reference A-4) or additional
fault detection implemented on the client nodes, such as self-checking, as described in section
7.4 of reference A-4.

The use of intermediate-stage guardians introduces additional constraints on the target system.
Consider for example, a dual-star (central guardian) network configuration. If the
implementation of the central guardians lacks sufficient fault detection coverage, then it is
difficult to bound the failure modes of the guardians. The influence of a faulty guardian on
protocol action must be established. For example, is it possible for the guardian to cause
nonrecoverable protocol flow errors in the establishment of disjoint TDMA cliques if the other
(good) guardian is not available? If this is the case, then a system-level power sequence may be
required to ensure at least one good guardian before the end nodes commence communication.
In addition, the vulnerability of the guardian implementation to transient errors (SEUs, etc.) will

 A-34

need to be bounded, as such events may take the good guardian off line long enough for a faulty
guardian to force irrecoverable error scenarios.

As discussed in section 5.3.2 of reference A-4, the implementation of central- and intermediate-
stage guardian integration and start-up logic schemes should also be evaluated to ensure it is
suitably fault tolerant to erroneous end-node faults. If guardians from different network
availability channels share signals or protocol state information, then the vulnerability of such
mechanisms to failures of the other channel guardian failure should also be evaluated. Similarly,
the self-test and scrubbing of intelligent guardian actions may be challenging.

Irrespective of any guardian implementation, it is imperative that suitable tolerances for guardian
enforcement action are established to provide suitable design margin. As with other critical
protocol parameters, these tolerances should accommodate for worst-case aging and expected
life-time degradations of all components related to the guardian. The criteria for establishing
suitable guardian parameterization would ideally be formalized and verified.

Latent failure of guardian schemes is another consideration, as discussed in section A.5.6.

A.5.3 PROTOCOL LOGIC FAULT TOLERANCE.

Networking technology may also incorporate protocol flow and algorithmic fault tolerance
strategies, i.e., voting on protocol-state information or required protocol actions. Such voting
may effectively contain protocol-state faults propagating from an erroneous node or other
network device. The fault-tolerant global clock synchronization action discussed in section 5.6
of reference A-4 is an example of such action. Similar strategies may be applied to other
protocol actions, such as start-up, reintegration, and mode change. The strength of such protocol
mechanisms should be evaluated in the context of the coverage provided by the network
implementation. For example, if all nodes are self-checking, then little protocol-state fault
tolerance is required, as all protocol errors are contained at the source and justified to be benign.
Similarly, if the guardian mechanisms contain protocol flow errors, then less protocol state fault
tolerance is required. However, if suitable fault containment or coverage cannot be established,
the protocol layer’s vulnerabilities to erroneous state and addressing information should be
evaluated.

If protocol logic fault tolerance is implemented, the impact of its protocol algorithms will also
need to be evaluated. This means that any protocol-level mechanism needs to ensure the
required agreement on protocol state for integrity and the required replication for availability.
Often in two-channel systems, there is a conflicting goal between availability and integrity.
Hence, mechanisms to improve protocol integrity may reduce protocol availability; for example,
logic to contain errors during start-up may render the protocol unable to start.

A.5.4 LOCAL TRANSMISSION-MONITORING AND SELF-CHECKING SCHEMES.

Network technologies may also implement monitoring or self-checking services to improve fault
detection and fault tolerance. As with the guardian action, the effectiveness of such schemes
depends on the amount of independence and coverage that can be claimed by the
implementation. For example, CAN incorporates an error-checking mechanism that will switch

 A-35

the network to a passive state if the transmissions of the controller are not suitably
acknowledged. Since this is implemented within the same IC as the communications
component, the action may be degraded by common-mode failures. In addition, such schemes
may introduce potential fault propagation vulnerabilities, as it is possible for a node to transition
to the passive state in response to the erroneous negative acknowledgements generated from a
faulty node. Such vulnerabilities should be analyzed as the network is evaluated.

Other networks may employ local wrap-back schemes where a node monitors its own
transmission via local receivers. Such schemes should be analyzed for vulnerability to Byzantine
faults, as a local monitoring circuit may perceive the local wrapped-back signals as good, but
receivers at the end of a loaded transmission line may see a degraded or erroneous signal.
Hence, the wrap-back signal state may not be representative of the network observed state.
Byzantine faults and fault tolerance strategies are discussed in more detail in section 7.8 of
reference A-4.

Some networks and protocols implement support for self-checking configurations, allowing
multiple network interface circuits to be tightly synchronized and to cross-check each other. An
example of such a network is ARINC-659. When evaluating the coverage provided by such
schemes, care should be taken to examine where the cross-checking and error-containment
voting is performed. In ARINC-659, checking and voting is performed at each receiver, hence
full coverage of the entire transmission path is assured. Local checking in ARINC-659 is
performed solely to increase network availability, with each network IC enabling and monitoring
the transmissions of its other half. As with guardian functions, such cross-enabling schemes
should be analyzed to ensure that there is sufficient margin for the enabling and disabling action
to ensure transmissions are not truncated to produce potentially Byzantine signals. Similarly,
self-checking errors that rely on loop-back monitors may be vulnerable to Byzantine faults as
discussed above.

A.5.5 RECONFIGURATION AND DEGRADED OPERATION.

Network technologies may also incorporate mechanisms to implement reconfiguration or
continued operation in a degraded mode. For example, some physical layers may incorporate a
degraded mode of operation that allows communication to continue even if one-half of a
differential communications channel is faulted. If such degraded modes are to be leveraged, then
the performance (e.g., BER) of the degraded operation needs to be evaluated to ensure that
adequate performance is maintained. The protocol mechanism for the detection and
announcement of such degraded operation should also be evaluated to verify that timely and
correct diagnosis is provided.

Other protocols, such as IEEE 1394, may reroute the network path to mitigate physical or node
paths. If such protocol action is to be leveraged by a system, then mechanisms used to
implement such actions will need to be evaluated to ensure that the reconfiguration time is
suitably bounded. The issues surrounding the erroneous invocation of such logic must also be
considered. The recovery mechanisms for such logic should also be investigated to ensure nodes
are not permanently isolated in response to local transient errors.

 A-36

A.5.6 LATENT FAILURE DETECTION.

Fault detection, isolation, and recovery functions used within aviation digital electronics systems
are often required to be periodically tested to ensure that the detection and recovery actions
remain active. Such covering functions are usually transparent to normal mode operations,
hence, without test, it is possible that such functions may fail passively and the protection will be
lost. Network fault detection and covering functions are no different; therefore, network
mechanisms to assist the latent fault detection should be considered as the network technology is
evaluated. To illustrate common network vulnerabilities to latent failure, consider the following
scenarios: the short-circuit of intermediate-stage guardian function and if the network traffic can
propagate through the shorted guardian without error then the passive state of the guardian
enforcement action may pass unnoticed, leaving the system vulnerable to a second uncontained
failure of another network component. Similarly, consider a network component with a “stuck at
good” CRC calculation circuit; i.e., all data received results in a good CRC, unless such
functions are tested. It will be difficult to detect such a state in normal protocol operation since
all CRCs are nominally good.

Network mechanisms that incorporate modes and mechanisms to assist the latent fault detection
of network components may be preferred. However, such mechanisms should be analyzed to
ensure that they do not introduce failure vulnerabilities, because testing for latent failure may
disrupt nominal network performance. Interlocks and protection mechanisms should also be
evaluated to ensure that such testing occurs only in safe system states. The coverage of the
network test procedures should also be evaluated to verify that all key network mechanisms are
suitably verified. For complex error detection and enforcement schemes (for example, protocol
semantic correctness enforcement), the ability to achieve adequate coverage via the self-test
mechanism may be challenging, since such coverage will require all decisions causal to the
enforcement actions to be suitably exercised.

A.5.7 VOTING, SELECTION, OR AGREEMENT SERVICES AND REDUNDANCY
MANAGEMENT.

Networks may also incorporate redundancy management and voting mechanisms to simplify
application-level fault tolerance. The self-checking configuration, discussed in section 7.4 of
reference A-4, is an example of such a scheme where increased network component redundancy
is leveraged to achieve increased network integrity and availability. In self-checking
configuration, a pair works and sends out messages in coordination (that is, at the same point in
time). Depending on the required availability targets, self-checking may need two or more self-
checking pairs.

Another form of network redundancy is active replication in a triple modular redundancy (TMR)
voting scheme. In contrast to self-checking configurations where messages are sent at the same
point in time for a pair, nodes always send out the data at different points in time in a TMR
scheme. Thus, TMR implements a type of temporal redundancy. In TMR schemes, end nodes
need to correlate messages sent at different times before being able to vote, while in self-
checking pair configurations, nodes can take the first valid message with integrity (messages that
agree and stem from two halves of pair).

 A-37

Network selection should consider what active replication scheme fits its needs best. Self-
checking pair schemes may require special hardware support for synchronized sending of
messages, but simplify voting schemes to become a “pick-first valid” message. On the other
side, TMR-based systems may not require additional hardware but require, message management
(storing) for the messages received at different times from different hosts before voting as well
as a voting function implemented at each end node.

Dual replication can either be targeted at ensuring availability or integrity. That is, the
replication ensures continuous service despite a (single) failure. The integrity of the value
provided is equal to the source integrity of the node and, of course, the communication integrity.
On the other side, if replication targets integrity, the end node would perform a comparison of
two values. If they agree, the integrity of the data is ensured; if they do not agree, this is a signal
to the application, and the integrity is not lost. Yet, the availability achieved is similar to the
availability of either component and, of course, the availability of the communication path. Such
voting algorithms supplied by the network should be compared with the assumption of the
application to avoid unsafe operation; e.g., in ARINC 664, the redundancy management layer
chooses the first syntactically correct frame and is targeting availability, assuming that any
failure on the communication path is detected by in-line integrity mechanisms (like CRCs). The
first syntactically correct frame is of the integrity of the communication source. Any fault
defeating the integrity mechanism leading to an undetected error in a dual-replicated, pick-first
valid scheme may impact integrity of the data. Masquerading faults are faults where a faulty
node pretends to be another node. Masquerading faults can defeat any redundancy management,
because multiple inputs to any voting or selection functions may stem from the same fault zone.
Network implementations and mechanism should be analyzed with respect to masquerading fault
vulnerabilities.

The network technology may also support mechanisms to implement passive replication
strategies, for example, the capability of redundant or replicated nodes to share the same network
transmission slot. The replicated or redundant nodes take over when the first replica ceases
control. In such active and shadow schemes, consideration should be given to the time it takes to
detect the failure of the components; e.g., in the case of a failure during sending of a message
monitor by another component, the coverage scheme may only detect the failure after it has
already been (partially) sent. Thus, the receiving node may have to wait for the next message
that can be sent. In addition, the network Master-shadow mechanism should be evaluated for its
ability to hand over control in a fault scenario. The effectiveness of release of control mostly
depends on guardians or coverage schemes deployed.

A.5.8 BYZANTINE FAULT TOLERANCE.

The Byzantine failure scenario or Byzantine generals’ problem (BGP) was first presented nearly
20 years ago. Since its introduction, it has become the subject of a great many papers and
scrutiny by the fault tolerance community. Numerous Byzantine-tolerant algorithms and
architectures have been presented in the subsequent two decades. With the ever-increasing
dependency on electronic hardware and software to perform safety-critical control functions and
the emerging trend to implement control with distributed multiprocessor systems, where
consensus may be a prerequisite, the practical issues relating to Byzantine behavior need to be
understood. For these types of systems, existence of Byzantine fault tolerance is a litmus test for

 A-38

dependable systems design. However, the wide-scale industrial acceptance of the problem is yet
to find maturity. Only recently has SOS faults, a subset of the Byzantine fault class, received
some widespread attention. Today, there are still many misconceptions relating to Byzantine
failure, both with respect to what makes a system vulnerable, and the very nature and reality of
Byzantine faults. This handbook revisits the Byzantine problem from a practitioner’s
perspective. It is the intention to provide the reader with a working appreciation of the
Byzantine failure, from a practical, as well as a theoretical perspective. A discussion of typical
circuit-centric failures and the difficulties in preventing the associated failure propagation is
presented. These will be illustrated with real-world Byzantine failure observations. Finally,
various solutions to the Byzantine problem are presented and discussed within a context of the
viability of their industrial deployment.

A Byzantine fault is any fault that produces different symptoms for different observers. This can
happen at any point where a signal splits; i.e., one source goes to more than one destination.
Byzantine faults are a lot like metastability in that there is no way to prevent them; you can only
treat the symptoms so the faults do not become system failures.

Byzantine faults can happen in the amplitude domain. For example, assume that a digital driver
gets stuck at 1/2. Because of manufacturing tolerances, other digital circuits using this value
may assume it is a 0 or may assume a 1. The most common fault of all (an open) into a
complementary metal-oxide semiconductor input looks like a 1/2. Byzantine faults can happen
in the time domain. For example, in a synchronous redundant system, no matter how tightly you
synchronized the redundant channels, there will always be some (infinitesimally small) time
skew between the channels. An input that goes to multiple channels can arrive at a clock tick
and within the skew so some channels will see the input arriving before the clock tick and some
see it arriving after the clock tick. If the redundant channels vote on the input’s value at the
clock tick, some will use the old value and some will use the new value. Note that the voters will
say some of the channels are faulty even though no hardware fault occurred. This is a design-
induced Byzantine fault.

A BGP is a system failure caused by a Byzantine fault. If the multiple observers do not require
any mutual coordination, a BGP cannot occur. But, if the observers have to coordinate in some
way, or if their actions are compared (by voting or some other means) for fault tolerance, then a
BGP is possible.

Byzantine-fault propagation escapes most of the classical fault containment techniques.
Solutions to the BGP are well known, but do require a large amount of communication
bandwidth. It has been proven that to tolerate F Byzantine faults, you need 3F+1 fault
containment zones. From this, one can deduce the surprising result that a simple triple-channel
system cannot tolerate even one Byzantine fault, no matter how cleverly it is designed. The next
surprising result is that to be fully tolerant to two faults, you need seven fault containment zones.

To further illustrate the Byzantine propagation capability, one can envision a “Schrödinger’s
CRC,” similar to the Copenhagen misinterpretation of “Schrödinger’s Cat,” where the CRC is
simultaneously correct for any interpretation of Byzantine data. The behavior of a 1/2 bit on a
CCITT-8 CRC circuit is shown in figure A-3. This figure shows 8 data bits followed by the 8

 A-39

CCITT-8 CRC bits with one of the data bits to be transmitted stuck at 1/2. Because the
transmitter’s CRC is a linear (XOR) combination of its data bits, each CRC bit affect by the 1/2
data bit can also be 1/2. The switching threshold voltages are shown for two receivers (a and b).
The resulting data received by a and b are different, but each copy has a correct CRC for its data.
Thus, CRCs can provide no guarantee of protection against Byzantine fault propagation.

Figure A-3. A Schrödinger’s CRC

Interactive consistency of messages is a service provided by a data network to ensure consistent
message reception in the presence of Byzantine failures. Byzantine failures manifest as different
nodes having a different view of the messages communicated (either no message at all or even
different values). It is not possible to diagnose Byzantine faulty nodes unless source coverage
(aiming at fault containment) is provided.

Any voting mechanism at end nodes may have a different input set (due to one Byzantine fault,
resulting in one different value, or due to a node-local transient fault, resulting in possible faulty
but normally detected value). Any voting scheme (e.g., TMR or any selection logic) may select
or vote and result in a different value (but possibly a value stemming from a correct node). Such
effects may need to be considered by applications for evaluation.

Even if source coverage (e.g., self-checking sources) is used, any voting or selection scheme may
still result in a different selection outcome. Similarly, master and shadow implementations at a
network level may send out a frame that is corrupted either by a faulty node or transient faults.
Switchover from master to shadow may be problematic in arbitrary fault scenarios, because some
nodes may correctly receive the master’s frame and some may not. If the shadow node correctly
receives the master’s frame, it may never be able to take over control. Such scenarios should be
evaluated.

Coding techniques (such as the use of CRCs or cryptographic signatures) are sometimes
proposed as a solution to the Byzantine problem. These solutions assume that certain fault
behaviors cannot occur. But, they offer no supportable rationale or enforcement mechanisms to
ensure that these fault behaviors do not occur. Until such supportable rationale or enforcement
mechanisms are made available, these solutions have no value.

Networks requiring Byzantine tolerance need to mitigate Byzantine failures by incorporating
Byzantine-filtering actions. The Byzantine filter transforms Byzantine input signals to consistent
erroneous or correct signals. In such systems, the coverage of the Byzantine filter action is a

 A-40

critical network parameter. In addition, networks are required to incorporate classical Byzantine
agreement protocols.

Network evaluations should consider the need for topological support or fault containment
mechanism to achieve consistent message delivery.

A.6 DESIGN ASSURANCE.

A.6.1 DEVELOPMENT PROCESSES.

Often network technology forms the backbone of the system architecture. The design
correctness of the network implementation is, therefore, of utmost importance, as the network
provides a significant common-mode failure vulnerability. With the increasing complexity of
network technology, the design correctness problem is increasing with every generation of
silicon. Although multiple independent lanes of redundancy may be suitable to mitigate random
component failure, if common network technology is used across all lanes, then the system is
vulnerable to generic design defects of the network technology implementation. Dissimilar
network redundancy schemes may be deployed to mitigate such issues; however, such
architectural strategies are beyond this evaluation. Therefore, it is preferable if the network
technology was designed with best-practice design procedures. Within the aviation digital
electronics domain, this would correspond to RTCA DO-178B for software-related network
components and DO-254 for hardware components. Network technologies that have such formal
design assurance artifacts will pose less certification risk than other technologies and may be
preferred for that reason. Technologies without formal design assurance processes will need to
be considered on a case-by-case basis. The complexity and degree of commercial use of the
networking technology will then need to be considered. The COTS provisions within DO-254
were designed to handle hardware technologies that have been used in many systems that have
accumulated a huge service experience basis. This use experience may be leveraged to assist the
design assurance case. This treatment is commonly applied to microprocessors. The
applicability of such techniques to networking-related hardware will need to be considered as the
network is evaluated.

A.6.2 AVAILABILITY OF STANDARDS AND CONFORMANCE EVIDENCE.

A.6.2.1 Open Specification and Standardization.

The use of open specifications and standardization might assist a certification authority in
establishing the acceptability of a network. Irrespective of the formality of the design artifacts,
the quality of the network technology specification is a key attribute of the network technology.
It is preferable if the technology is open with a standardized and published specification, as this
will enable the protocol mechanisms to be analyzed and discussed within the academic and
industrial community, including the application for formal verification studies. The
standardization process itself is beneficial, as the committee activity usually associated with the
open standardization process may also lead to an open, detailed examination of the network
behaviors. However, care is required for network technology that is not designed specifically for
use in a safety-relevant environment. The completeness of the specification will need to be
carefully reviewed. Often, such standards may specify the normal mode of operation only, the

 A-41

protocol actions-to-erroneous behavior and the associated degraded modes of operation may not
be sufficiently treated in the standard document. The evaluation of the network specification
should include such completeness analysis.

Another area where specification completeness may be lacking for COTS protocols is in the area
of implementation choices that have been made below the protocol specification. COTS
solutions may not be not fully described because of the need to maintain competitive advantages
between vendors. Hence, many key implementation choices may not be visible and this may
impact assurance process where a detailed understanding and analysis of the interactions of all
technology layers is required. The availability of suitable design information should be
considered as the network technology is evaluated.

A.6.2.2 Conformance and Interoperability Testing.

As with the specification, the availability of standard conformance test campaigns and
specifications may also be advantageous. This is especially important for network technology
that is sourced from multiple vendors, since it may assist in identifying interoperability glitches.
The issues raised above, in relation to specification completeness, also arise in relation to the
completeness of the conformance test campaigns; i.e., Are all operating modes covered, and are
exception and error reactions sufficiently traveled?

A.6.2.3 Protocol Design Correctness.

In addition to completeness, the correctness of the specification is obviously important. The use
of formal methods and development of formal proof arguments for protocol algorithms show
much promise here, as they can exhaustively verify the algorithmic behavior. However, when
reviewing such formal verifications, the assumptions that underpin the formal proofs need to be
fully understood and evaluated against the real-world failure expectations and behavior.
Similarly, the composability of the formal verifications needs to be understood to ensure
interactions between different protocol algorithms (for example, membership services and clock
synchronization). In some protocols, for example TTP/C, interdependencies exist that may need
to be evaluated with the formal arguments. That said, formal verification of protocol algorithms
can increase design-correctness confidence and, therefore, network technology that has such
verification evidence may be more attractive.

Informal validations (for example, random fault injections campaigns) may also increase
confidence in the network architecture. However, the conclusions that can be drawn from the
fault-injection campaign need to be carefully scrutinized with a detailed understanding of the
effects of the fault injection in relation to the technology implementation. For example, consider
a heavy-ion fault injection on a communications controller with and without parity on its
microsequencer memory. Without parity, this technique may provide useful insight into the
performance of the system architecture. This was demonstrated during the TTP/C FIT research
program that illustrated the architectural vulnerabilities to Byzantine errors (in this instance
caused by bit flips in the instruction memory that resulted in slight deviations of transmission
time). However, the same campaign performed on a controller incorporating parity for all
onboard random access memory locations may not have been so revealing, as the parity

 A-42

detection mechanism may swamp the observations with parity-induced fail-stops that cover up
the other design weaknesses. This type of study would be less relevant in finding these other
architecture and design weaknesses. The issues relating to the design and implementation
visibility of COTS technologies are reiterated here, as this visibility may be required to draw any
architectural inference from these studies.

A.6.3 DESIGN MARGIN.

The issues discussed in sections A.1 and A.2 also require some design assurances so adequate
design and safety margins are established for the selected network technology. Such a design
needs to be established and justified to be valid over the whole system lifetime, addressing
parasitic and parametric shifts due to temperature effects, etc. This safety margin evaluation
needs to be established in several domains, such as the time and value domains of signals under
worst-case design parameters and network loading.

For physical layer attributes, this means that influencing factors need to be analyzed with respect
to their margin and contribution to the safety margin. Such physical layer attributes may include
an oversampling margin that should include the transceiver skew over the lifetime of the product,
assuming worst-case loading, aging of components (e.g., clock stability overtime), temperature
range of environment, etc.

A.6.4 CONFIGURATION TABLE CORRECTNESS AND PERFORMANCE
JUSTIFICATION.

In addition to the design correctness of the network implementation, the design correctness of
network configuration parameters and tables is also required. This is especially important if the
table parameterization impacts protocol algorithmic-level behavior, for example, clock
synchronization timing and propagation delay parameterization. In such instances, the
parameters may severely impact protocol performance. The incorrect configuration of such
parameters may, therefore, invalidate any formal proofs of algorithmic correctness. Similarly,
tools may be used to establish parameters for network-policing policies, for example, message
transmission rate limiting and maximum message jitter. In such cases, the correctness of these
parameters may severely impact network performance assumptions. Therefore, when evaluating
a network for suitability, consideration should be given to the rigor applied to ensuring correct
network configuration parameters. Ideally, all parameters critical to network operation will have
explicit formal requirements and invariants that are traceable to network functional behavior,
assumptions, and requirements. Such traceability may assist the completeness checking of the
guidance presented. Ideally, the guidance supplied will be suitably assured for correctness and
completeness.

The network technology may also provide tooling to assist network configuration and its
associated verification. Such tools are often required to handle the size and complexity of
modern networking technologies and to assist with the generation of nonhuman readable binary
configuration tables. If tooling is used for configuration data generation or verification, then the
development pedigree of the tooling may also need to be examined as the network technology
suitability is evaluated. If the tooling is in-line, i.e., the tooling generates protocol configuration
parameters that are not verified by subsequent process checks, then the generation tooling should

 A-43

 A-44

be qualified in accordance with the DO-178B guidelines for development tools. Alternatively, if
the tooling is simply used to verify the network configuration parameters, then they are less
stringent and DO-178B verification tool guidance should be adopted. The data flow path of in-
line generation and verification tooling need to be evaluated to ensure that adequate
independence exists within the tool chain to prevent a common tooling failure. In the ideal, the
configuration inspection tools will be driven from reviewed network-related functional data flow
requirements and the formal network parameter constraints and invariants.

For some modern asynchronous networks, for example ARINC 664, the size and scale of the
configuration problem is very large and end-to-end performance (e.g., data flow latency and
jitter) is difficult to analyze and bound. The sheer complexity of the network level interactions
between end-node behavior, switch implementation, and the chosen network policing policies
(e.g., message rate limiting) may greatly complicate network performance justification.
However, procedures or tooling to analytically bound and justify the worst-case behavior of such
networks is required to meet certification requirements. Therefore, the capability and maturity of
available analysis tooling should be given careful consideration, as such networks are evaluated.
Similarly, network technologies that incorporate complicated MAC interactions may also
complicate end-to-end performance calculations. Such interactions and any associated network
logic (e.g., retry logic and queuing mechanisms) need also to be considered by performance
calculations and associated tooling. Similarly, erroneous node behavior and associated diagnosis
latencies should also be considered to bound the influence of the faulty node behavior on
network performance. Networks that bound such influences may therefore be preferable, as they
may greatly simplify performance justification calculations

For highly integrated multivendor systems network technologies that incorporate tooling to assist
the incremental change of the network tables, allowing new functions and their associated data
paths to be added to the network with minimal impact on previously analyzed functions may also
be attractive, since such tooling may ease incremental certification effort.

A.6.5 NETWORK MONITORING AND TEST EQUIPMENT.

With complexity of modern network technology, the ability to monitor and observe network
behavior is very important to support design validation. Similarly, the ability to insert faults into
the different network layers may be required to test the network redundancy management
mechanisms, or the fault response behavior of applications operating on top of the network
infrastructure. Therefore, the availability and capability of the test equipment that exists for the
network technology may also be a very important consideration. In the ideal situation, such test
equipment is able to observe all behavior of all network nodes, including network start-up and
recovery actions. The portability of the test equipment should also be considered, as such
equipment is often required to support flight-testing.

The no-interference guarantees of the test equipment may also need to be evaluated if it is to be
deployed in a flight test scenario. The ability to monitor the entire network behavior from
limited test inspection access points should also be considered. In some modern switched
technologies, such access is more difficult than in simpler buses. Hence, work in some newer
switched technologies is being performed to develop the network-wide controllability and
observability needed to test the maintenance of these new or more complicated networks, while

at the same time, trying to minimize the invasiveness and logistics complexity of connecting test
equipment to these networks.

A.7 REFERENCES.

A-1. Nyquist, H., “Certain Topics in Telegraph Transmission Theory,” Trans. AIEE, Vol. 47,

April 1928, pp. 617-644, Reprinted as a classic paper in: Proc. IEEE, Vol. 90, No. 2,
February 2002.

A-2. Shannon, C.E., “Communication in the Presence of Noise,” Proc. Institute of Radio

Engineers, Vol. 37, No. 1, January 1949, pp. 10-21, Reprinted as a classic paper in: Proc.
IEEE, Vol. 86, No. 2, February 1998.

A-3. United States Government General Services Administration, Federal Standard 1037C.

Telecommunications: Glossary of Telecommunication Terms, August 7, 1996.
http://www.its.bldrdoc.gov/fs-1037/

A-4. Driscoll, K., Hall, B., Koopman, P., Ray, J., and DeWalt, M., “Data Network Evaluation

Criteria Report,” FAA report DOT/FAA/AR-09/27, 2009.

 A-45/A-46

	Abstract
	Key Words
	Table of Contents
	List of Tables

