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EXECUTIVE SUMMARY 

This report deals with the main issues of using commodity memories in avionics, including 
safety-critical products. Because of the competitive nature of manufacturers to produce devices 
that have vast numbers (i.e., millions and possibly billions) of these memories, their quality can 
be suspect and their reliability and availability are likely to be less robust. This report explains 
the reason for the concern and investigates methods employed to ensure the reliability of the data 
stored in commodity memories. Four types of commodity memories are covered in this report to 
illustrate the nature of the issue. Double data rate memories and Not-AND flash memories are 
currently being used in avionics products, whereas toggle magnetoresistive memories and quad 
data rate memories are foreseen to be widely used by aerospace equipment manufacturers in the 
near future. This report provides a brief description of the technologies, manufacturing aspects, 
and the state-of-the-art defect management that is used during the manufacture of these 
technologies. 
 
Confidence in commodity memories is built not only from matching their type to the domain 
usage in the design phase but also by actively engaging with two key entities in the supply chain: 
the commodity manufacturer and the distributor. This engagement is required to access 
necessary supporting documentation and understand internal workings not otherwise accessible. 
A non-disclosure agreement is required, although it might not be sufficient on its own. 
 
Failure modes and failure mechanisms for the selected commodity memories are discussed to 
illustrate the concern. Failure modes in commodity memories are described by using both a 
black-box and grey-box model view and applying three levels of abstraction: functional, logical, 
and physical. This organization of information allows for the description of generic functional 
failure modes associated with writing, preserving, and reading data in a memory; description of 
failure modes associated with data flows; and refinement of failure mode analysis using physical 
characteristics. For each of the selected types of commodity memories, this report provides 
specific examples of functional failure modes applied to each of the data flows. Failures 
associated with the die and packaging are presented in this report. For each defect type, the 
impacted memory components, as well as the type of error (soft or hard) and the potential 
systematic impact at production batch level, are identified.  
 
Ensuring the reliability of these commodity memories is investigated through the existing fault 
mitigation techniques (e.g., Error Correcting Codes [ECCs]) embedded in these memories and 
the identification of additional internal or external fault mitigation techniques. ECC represent the 
typical built-in mitigation technique for each of the selected commodity memory types. The 
mitigation may be implemented by the manufacturer, user, or both. Little or no information is 
publicly available regarding the embedded ECC for three of the covered types of memory, 
reinforcing the earlier finding that the airborne electronic hardware (AEH) manufacturer should 
interact with the memory manufacturer to not only understand the existence of mitigation but the 
possible configurations and limitations as well. Issues with built-in mitigation techniques 
typically point to a lack of documentation or poor coverage of the AEH usage domain. 
Analyzing the effectiveness of the built-in mitigation techniques should be done with respect to 
the number of errors and type of triggering events the mitigation can handle. The analysis must 
cover all elements of the embedded mitigation. The approach can be theoretical or experimental, 
but in both cases sufficient information can be obtained only via the memory manufacturer.  



 

xi 

After the use of memory tests to reduce the likelihood of occurrences of data alteration, 
additional mitigation can be obtained through the use of external means, such as redundancy, or 
by enhancing the error detection and correction capability of the memory (or a combination of 
both). For each of the selected commodity memories, the report provides recommendations 
detailing the applicability of each technique.  
 
Finally, the report presents a series of recommendations to support the safety assurance of 
commodity memories in avionics products. The recommendations are organized by the supply 
chain selection and control, definition of usage domain, and management of manufacturing 
defects for each type of selected commodity memory. 
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1.  INTRODUCTION  

1.1  BACKGROUND 

Commercial-off-the-shelf (COTS) items are increasingly penetrating into both the commercial 
and the military segments of the aerospace market. RTCA standards, namely DO-254 “Design 
Assurance Guidance for Airborne Electronic Hardware” [1] and DO-178C “Software 
Considerations in Airborne Systems and Equipment Certification” [2], were developed with the 
issue of COTS assurance in mind. However, these standards do not recommend specific methods 
or objective criteria for COTS safety assurance and airworthiness. 
 
In a general context of airworthiness, the focus of this report is threefold: 
 
• Intended function (Title 14 Code of Federal Regulations Part [14 CFR] 2x.1301): 

component selection from a functional standpoint and design to meet the function 
contributing to this aspect. 

• Operating conditions (14 CFR 2x.1309): component selection from the point of view of 
characteristics and performance and environmental qualification of these components 
contribute to this aspect. 

• Safe operation (14 CFR 2x.1309): failure modes and failure mitigation of the selected 
components contribute to this aspect. Reliability considerations are integrated into the 
demonstration of achievement of safe operation. 

 
The research thrust on COTS Airborne Electronic Hardware (AEH) assurance methods addresses 
“safe operation” and supports the development of a comprehensive framework for COTS safety 
assurance. The framework includes: 
  
• The understanding of current and foreseen future use of COTS in AEH. 
• The description of safety issues and concerns. 
• The documentation of failure modes for these COTS and the relevance to AEH context. 
• The investigation of existing mitigation techniques and their effectiveness. 
• The development of objective criteria for determining the effectiveness of safety and 

airworthiness assurance methods for AEH integrating the COTS under consideration. 
 
Previous research under Authority for Expenditure (AFE) project 75 (COTS AEH Assurance 
Methods) documented 22 COTS issues and proposed a structure to address future COTS AEH 
assurance standards [3]. A continuation of the research on the identified issues with COTS is 
currently allocated in part to a supplement to AFE project 75 phase 3 research task order under 
the Software and Digital Systems (SDS) program, whose focus is commodity memories and 
embedded microcontrollers [4].  
 
This report is produced under the SDS program. It refines the more general COTS AEH 
assurance methods for the use of commodity memories. In the process of describing the COTS 
commodity memories in AEH, considerations of intended function and operating conditions are 
integrated into the discussion. 
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1.2  PURPOSE 

This report deals with the main issues of using commodity memories in avionics, including 
safety-critical products. Because of the competitive nature of the efforts by manufacturers in 
producing devices that have vast numbers (i.e., millions and possibly billions) of these 
memories, their quality can be suspect and their reliability and availability are likely to be less 
robust.  The report explains the reason for the concern and investigates methods to ensure the 
reliability of the data stored in commodity memories.  
 
Several types of commodity memories are covered in this report to fully illustrate the nature of 
the issue. They are currently being used or might be used in the near future by aerospace 
equipment manufacturers. For the selected commodity memories, failure modes and failure 
modeling are being discussed to illustrate the concern. Assuring the reliability of these 
commodity memories is investigated through the existing fault mitigation techniques (e.g., Error 
Correcting Codes [ECCs]) embedded in these memories and the identification of additional 
internal or external fault-mitigation techniques. Finally, the report presents a series of 
recommendations to support the assurance of commodity memories in avionics products. 
 
Disclaimer: 
 
In this report, we may state that some COTS components in which the primary target is the 
consumer electronics market exhibit a level of quality that does not meet AEH quality 
requirements, especially for safety-critical applications. This statement does not mean in any way 
that the manufacturers may be lax or incompetent. What is meant is that manufacturing and 
supply processes that are perfectly rigorous and appropriate for the consumer electronics market 
may not meet AEH requirements. 
 
2.  IDENTIFICATION OF COMMODITY MEMORIES FOR AEH PURPOSES 

This section contains introductory material, including descriptions of various types of 
commodity memories that are being used and might be used in the near future by aerospace 
equipment manufacturers. The description is set in a context for which the initial market of these 
memories is not the aerospace market, which has a direct consequence on the type of issues that 
can be encountered with these products (i.e., because the non-aerospace market controls this 
initial market, the aerospace industry does not have a great influence on the issues that will be 
mainly handled by that other industry). 
 
2.1  PROBLEM STATEMENT 

By definition, a commodity is a mass-produced, unspecialized product. The main market for 
commodity memories is consumer electronics, whose characteristics include: 
 
• A very large production volume. 
• A very high level of competition. 
• Pressure to achieve the shortest possible time to market. 
• A fast technology refresh cycle (i.e., short time lapse to the next generation). 
• A short market lifetime of consumer devices embedding memories. 
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As a consequence of the last two bulleted items above, the continuity of support for a given 
generation of commodity memory is limited. 
 
The level of quality of memories, although meeting relevant safety standards and regulations 
(e.g., ISO-2859-1 [5]), is mainly driven by trading considerations. In consumer electronics, the 
failure of a memory is likely to impact the end-users’ satisfaction level rather than their safety. 
 
This market context is quite different from the avionics market, for which safety is a major 
driving force. From consumer electronics market characteristics, AEH manufacturers could fear 
that the intrinsic competitive pressure may eventually result in a slightly lowered quality of the 
commodity production. This lower quality would still be fully compatible with consumer 
electronics safety standards, but it may not be adequate for avionics safety requirements. 
Therefore, the question is not whether commodity memories are of good quality but whether 
commodity memories have the level of quality adequate for AEH. 
 
2.2  SELECTED TYPES OF COMMODITY MEMORIES 

This section describes commodity memories selected for their current widespread use and their 
foreseen widespread use. The objective of this section is to provide a purposely short and 
simplified technical description sufficient to promote the understanding of the issues associated 
with the use of commodity memories in AEH and the subsequent discussion on failure mode and 
failure mitigation. Table 1 lists the commodity memories selected for this investigation along 
with their usage level from a market standpoint. 

Table 1. List of commodity memories selected for the research 

Memory Type Usage Level and Market 
DDR SDRAM Widely used in consumer electronics market 
QDR RAM Mainly used in industrial applications 
NAND FLASH Widely used in consumer electronics market 
MRAM Not yet widely used but may be in the near future 

DDR = double data rate; SDRAM = synchronous dynamic random access memories  
QDR = quad data rate; NAND = not-AND; MRAM = magnetoresistive random access memory 

 
2.2.1  Double Data Rate Synchronous Dynamic Random Access Memories 

Double data rate (DDR) synchronous dynamic random access memory (SDRAM) is present in 
force in consumer electronics devices. It represents a massive and very competitive market with 
a high production volume and growth rate. 
 
DDR SDRAMs are widely used in AEH as the main memory of almost all processors. They are 
also often associated with programmable logic devices (PLDs) and application-specific 
integrated circuits (ASICs) for building large memory areas that would not otherwise fit inside 
the PLD or ASIC. The wide use of DDR memories stems from their combining large capacity 
and high performance with relatively low cost. Because DDR memories are a critical type of 
memory for AEH, they require attention by the aerospace industry.  
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2.2.1.1  Technical Overview 

DDR memories are dynamic random access memories (DRAM): the storage element is made of 
a small capacitor that holds a binary datum (zero or one) corresponding to either a charged or 
discharged state. This technology enables the memory cells to be smaller than if they were 
implemented with only transistors. A smaller size allows for higher density, which is the primary 
reason for the popularity of DRAM. 
 
The DDR denomination simply refers to the data bus flow. The data bus transfers one datum on 
both the rising edge and the falling edge of the clock or two data in a single-clock period. The 
double rate only pertains to data and only at the external bus interface level. The rest of the die 
works at the clock rate, including internal data buses. To match the DDR, the internal data bus is 
simply twice as wide as the external data bus. 
 
Successive generations of DDR memories are designated as DDR1, DDR2, DDR3, DDR4, and 
so on. The difference between the successive generations mainly refers to the operating 
frequency, as the component architecture and internal operation do not change significantly. The 
clock frequency is regularly increased to improve data flow performance. The increases 
primarily affect the interfaces while keeping the increase in intrinsic speed of the memory cell to 
a minimum. The external growth of the data rate is obtained by simultaneously accessing a 
greater number of memory cells. For example, consider a memory array working internally at 
100 MHz: reading simultaneously 32 internal bits supports 8 bits at 400 MHz on the external 
bus, while reading simultaneously 64 internal bits supports 8 bits at 800 MHz on the external 
bus. Raising the clock frequency requires not only improvement on the silicon technology but 
also on the low-level electrical interface between the memory chip and the board. Examples of 
such improvements on the electrical interface include lower voltage range, automatic skew 
compensation, and line-termination management. Changing the electrical interface has non-
negligible consequences: successive generations of DDR memories are incompatible. 
 
2.2.1.2  Manufacturing Aspects 

As the memory capacity grows, the scale of the transistors and capacitors is reduced, as is the 
supply voltage. Producing capacitors that have both a small surface on the die and a capacitance 
that remains high enough to store a significant amount of electrical charge under a lower voltage 
is rather difficult. Each manufacturer has its own—and generally confidential—method for 
solving this problem. Sample solutions include implementing capacitors with vertical shafts (the 
surface of the capacitor being the surface of a cylinder) that take advantage of the third 
dimension to increase the area of the capacitor while maintaining a small footprint on the die. 
Furthermore, special materials can cause the surface of the shaft to be granular, which increases 
the useful area. Finally, internal charge pump mechanisms may be implemented to feed the 
capacitor with higher voltages than the chip’s supply voltage. 
 
Regardless of the realization, the solutions described above increase the risk of producing bad 
memory cells during the manufacturing process. On the other hand, rejecting a die for the sole 
reason that a single capacitor is defective would have a severe impact on the production yield. 
The following technique may be implemented to prevent the rejection of die with only a few 
defective cells: the memory design can include rows of cells additional to the number of rows 
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necessary to achieve the memory size as pointed out by the data sheet. During manufacturing 
tests, rows with defective cells are identified, and an internal mechanism reroutes the address of 
each defective row to a (good) spare row (e.g., by using thermal or laser fuses). This mechanism 
is kept confidential. Publicly available documents describe this method in general terms, but 
there is no mention of it in the available documentation from the manufacturers. It is mentioned 
in this report only as a likely implementation.  
 
A “good” DDR die is not necessarily a die without defects; rather, a die may possess defects for 
which a work around has been developed or for which compensation has been applied. 
 
2.2.1.3  Management of Manufacturing Defects 

Naturally occurring manufacturing defects are normally managed during the production process 
either by employing a workaround or by rejecting the dies that cannot be fixed. However, full 
testing of all memory cells of the die is more expensive than sampling tests or parametric tests. 
Therefore, one of the concerns is related to the potential risk that the amount of testing will be 
reduced to minimize the production testing costs. Even if testing is expensive, delivering 
components with poor quality certainly has a higher cost; indeed, in consumer electronics 
devices, a DDR memory is a critical component. A defect in a DDR memory chip generally 
prevents the equipment from working correctly. Moreover, since almost all systems perform a 
memory test at startup, a faulty DDR memory chip soldered on an electronic board would 
quickly be detected by the customer, who in turn would be unsatisfied. Therefore, it is unlikely 
that manufacturers intentionally deliver defective DDR memory chips to customers, who buy 
them in the tens of millions. 
 
However, defects may exist that are unlikely to be visible in consumer electronics devices but 
more likely to be visible in an industrial or avionics application. For example, consider the 
problem of bits flipped by intensive reading of the same row of a DDR memory. In common 
usage, in which a DDR memory is mainly accessed by software, such particular access 
sequences do not occur. However, in a specific application, such as a DDR memory connected to 
an ASIC, the repeated access sequence might occur in special cases. For memories intended to 
be used in consumer electronics applications, adding a production test dedicated to this issue 
might not be worthwhile. However, for memories intended to be used in industrial or avionics 
equipment of assurance level A, a full test is desirable because the correct behavior must be 
guaranteed for all access sequences. In general, the level of testing must be commensurate with 
the safety level required for operation of that device (e.g., along the lines of a system 
development assurance level, as shown in the DO-254 guideline document). 
 
The production tests and qualification process of the DDR memory chips are important factors 
for selecting a DDR memory for AEH. Consideration of the supply chain to support this 
selection is further discussed in section 2.3. 
 
2.2.2  Not-AND Flash Memories 

Not-AND (NAND) flash memories are present in most consumer electronic devices. They 
represent a highly competitive massive market with a significant volume production and growth 
rate. NAND flash memory technology evolves very rapidly. 
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NAND flash memories are used in AEH, where mass memory is needed, for example, in cockpit 
display equipment to store images of maps, in-flight management systems (FMS) to store 
navigation databases, and integrated modular avionics to store varied large databases for the 
hosted applications. NAND flash memories are popular because of their advantageously 
combining significant capacity with high integration and low cost. 
 
Because of wear, NAND flash memories require specific management in their use. For this 
reason, they are generally associated with a dedicated microcontroller that offers two services: 
 
• A standard interface to the main processor or PLD/ASIC that uses the mass memory 

independent of the evolution of the interface of the NAND flash memory chips 
themselves. This is particularly useful because NAND flash memory chip interfaces 
evolve quickly to incorporate more improvements to fit with the continuous increases in 
size and speed of the components. Examples of such standard interfaces are integrated 
drive electronics and serial advanced technology attachment interfaces. 

• The management of all tasks induced by the wear of the component. The evolutions of 
the wear management are embedded inside the microcontroller and do not impact the rest 
of the equipment. This is particularly valuable because NAND flash memory chips 
evolve quickly and wear management must evolve accordingly. 

 
The microcontroller can be separately purchased from the NAND flash memory chips and 
assembled on the board. Some manufacturers propose integrated solutions in which the 
microcontroller and NAND flash memory chips are integrated in a single chip (called a 
compound chip). One must keep in mind that integrated mass memory devices contain NAND 
flash memory chips. In this case, it is more difficult to have access to information about the 
actual embedded NAND flash memory chips, so particular attention must be paid to this point 
when selecting devices. Microcontrollers are not within the scope of the present document, so, 
therefore, only the NAND flash memory chips themselves will be addressed. 
 
2.2.2.1  Technical Overview 

NAND flash memories are flash programmable read-only memory (PROM). Non-volatile 
memorization is obtained by trapping electrons in a dedicated area near the gate of a metal-oxide 
semiconductor (MOS) transistor, which changes its characteristics (general principle). 
Programming and erasing consist of injecting or extracting electrons to or from the electron trap. 
 
Reading consists of driving the transistor and measuring the voltage at its output with an analog 
comparator. Depending on whether or not there are electrons in the trap, the voltage will be 
different. Injecting or extracting electrons to or from the electron trap requires voltage greater 
than the chip’s power supply. To generate these higher voltages, the chip contains charge pump 
mechanisms. 
 
Two main variants of NAND flash memory exist: single-level cell (SLC) and multi-level cell 
(MLC). The SLC variant works in a hybrid manner: the voltage at the output of the transistor can 
take only two values driven by the presence, or lack of presence, of electrons in the trap. Thus, a 
single transistor can store one bit of information. The MLC variant works within a multivaried 
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atmosphere. There may be four different amounts of electrons in the trap: empty, one-third full, 
two-thirds full, or full. The voltage at the output of the transistor can therefore take four different 
values, and a single transistor can store two bits of information. Another variant exists that uses 
eight levels, so that a transistor can store three bits of information. It is often referred to as triple-
level cell (TLC). This third variant is less frequently used than the two main variants described 
above because the TLC has significantly lower erase and write endurance. 
 
The advantage of the MLC variant, which makes it very popular, is that it provides twice the 
capacity for the same die area. The drawback of the MLC is that it requires much stricter control 
of the amount of electrons in the trap. The main consequence is that the MLC wears faster than 
the SLC. One of the causes of wear is that during programming of erasing, some electrons get 
caught near the trap and can no longer be removed. These stuck electrons create a bias on the 
voltage at the output of the transistor. A lower number of stuck electrons is necessary to create a 
false voltage on a four-level cell than on a two-level cell, and that critical number will therefore 
appear earlier for an MLC than for an SLC. Also, for similar reasons, the MLC is more sensitive 
to manufacturing defects than the SLC. 
 
An intermediate variant called “pseudo SLC” is proposed by some manufacturers. A pseudo SLC 
is a die that has been designed for MLC, so that each cell is able to take on four values but is 
internally underused: only the values “00” (empty) and “11” (full) are used among the four 
possible values of “00,” “01,” “10,” and “11.” This strategy allows the manufacturer to offer a 
chip with the same reliability as an SLC device while still using the same die manufacturing 
chain used for its MLC, allowing the company to save money. Nevertheless, one could imagine 
that on a given production line, the dies that are sold as pseudo SLC could be those MLC dies 
that failed the production test as 2-bit per cell but passed the test as 1-bit per cell. It could be a 
means for the manufacturer to cut their losses by selling these dies as half capacity-chips rather 
than rejecting them. This is conjecture, of course, but a safety approach must consider all cases; 
auditing the manufacturer is a key point. 
 
Finally, a new generation of NAND flash memory is emerging as a three-dimensional variant. In 
this variant, several layers of cells are stacked one on top of the other on the same die. This is 
different from having several dies stacked one on top of the other. The three-dimensional variant 
consists of a single die built in a one-shot process. This technology is too recent to have 
accumulated enough service experience, so it is not taken into account in this report. 
 
Two main sources produce defects in a NAND flash memory: manufacturing and wear. Wear 
occurs during erase, read, and program operations. There are two types of wearing effects: 
 
• A temporary effect: some bits will “dim,” possibly up to the loss of their information, but 

only the stored information is affected. The memory cell is intact and will work correctly 
at the next erase or program operation. 

• A permanent effect: some internal elements break and can no longer be used. These 
elements may be individual cells (or sets of cells) or elements common to several cells, 
such as an erasing mechanism (charge pump for instance). 
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Normally, reading only causes data dimming, which may result in data loss but not in permanent 
damage. 
 
2.2.2.2  Manufacturing Aspects 

NAND flash memories have a very high density and embed a very large number of cells. It is 
expected that some cells are defective at the end of the die-manufacturing process. Because of 
the very high volume and very competitive market, it is not desirable to reject a die simply 
because one or a few cells are defective. Therefore, dies shipped to customers actually contain 
defective cells. The component contains an internal table at a dedicated location in the memory 
array, which contains the list of the defective cells so that the users can manage them on their 
own. 
 
The situation in which a new product is expected to contain defects may be seen as beneficial for 
AEH because the manufacturers must provide facilities to handle these internal defects. 
Conversely, the percentage of defective chips that may be acceptable for consumer electronics 
might not be acceptable for AEH. 
 
2.2.2.3  Management of Manufacturing Defects 

As previously explained, NAND flash memories have initial defects in addition to the defects 
that will appear during the component life. All components that manage NAND flash memories 
will always include mechanisms (hardware or software, or both) to manage these defects. In 
addition, built-in facility assists in the management of defects: extra bytes dedicated to storing 
ECC are provided on the memory chip. The management of the ECC (computation, verification, 
and data correction) must be undertaken by the user. 
 
In addition, extra data bytes are provided on the die. Consider the following theoretical example 
for a 100 MB nominal capacity for which the die may actually host 110 MB of data cells. The 
user never uses more than 100 MB. During the life of the product, some datasets fail and become 
unusable. The user stops using the defective cells and begins to use some of the spare cells 
instead, thus maintaining a usable memory space of 100 MB. The memory chip must be replaced 
when the amount of working memory cells fall under the minimum required for the system to 
work correctly.  
 
The detection of defective data blocks is made at three distinct times: 
 
• Erase time: If the erase operation fails, the chip provides a status informing the user that 

the operation failed. The corresponding block should be considered defective. 
• Program time: If the write operation fails, the chip provides a status informing the user 

that the operation failed. The corresponding block should be considered defective. 
• Read time: When a set of data is read, the ECC must be verified by the user to check the 

integrity of the read data. If the ECC reports errors, the user may decide whether to carry 
on using this data block or declare it defective. The decision is user-defined and may rely 
for instance on the status of the ECC (e.g., number of altered bits) or on a counter that 
indicates how many times this block has reported ECC errors despite events, such as 
erasure or program cycles. 
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It is the responsibility of the user (consumer or AEH user) to maintain a list of the data blocks 
identified as defective. This list may itself be stored in the NAND flash memory, provided that 
enough care is taken, typically through redundancy. Management of the remapping of failed 
blocks versus spare blocks must be made by the user. 
 
Placing the above information in the context of AEH requirements, the following should be 
considered: 
 
• The ECC has a limited capacity in terms of number or erroneous bits that can be correctly 

detected. If there are too many faulty cells, the ECC will produce a false status. A 
concern should therefore arise when manufacturing quality unreported by testing leads to 
defective cells whose number exceeds the ECC capability. 

• If the cells wear too quickly, the life duration of the component will be too short with 
respect to AEH requirement (including an end-of-life event in flight). The defects 
appearing during the life of the component are not detected by quality control at delivery. 
A concern should therefore arise when the manufacturing quality process does not, or 
does, limit wear-endurance testing. 

 
These considerations tie to the selection of a reliable supply chain, as detailed in section 2.3. 
 
2.2.3  Quad Data Rate Memories 

Quad data rate (QDR) memories are a special type of static random access memory (SRAM). 
The QDR memory market is mainly an industrial one focused on the telecommunication domain 
for ground stations managing traffic routing. These memories seem to have been created 
specifically to address this purpose. Although the quality level required by telecommunication 
applications is not that of safety-critical applications, it is higher than that required for the 
consumer electronics market because a failure of one such ground-heavy station has greater 
financial impact than a failure of one personal device. From an AEH concerns point of view, 
QDR memories are less subject to risk than the types of memories previously discussed. Finally, 
QDR memories are generally not present in consumer electronics devices because of their higher 
price. Therefore, DDR memories are preferred in the consumer electronics market.  
 
QDR memories are used in AEH but not as widely as the other types of memories because their 
cost is much higher than DDR memories. They are used when very high throughput is required 
and a relatively low capacity (i.e., a few megabytes) is acceptable. Whenever possible, DDR 
memories are preferred because they are cheaper. For cases in which DDR memories do not 
offer the necessary throughput, QDR memories are preferred despite the added cost and lower 
storage capacity. 
 
QDR memories offer two advantages over DDR memories: 
 
• A separate data-in and data-out bus, allowing simultaneous read and write operations at 

different addresses 
• A low read latency—typically two clock periods instead of seven or more for the DDR 

memory—which allows much better performance for random accesses 
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QDR memories are mostly associated with PLD and ASIC because of their dedicated use and 
because their specific bus is generally not available on processors and microcontrollers. A typical 
application is network switch engines, for which frame management requires a high data 
exchange with buffer and configuration memories. Simultaneous read and write is an advantage 
because as much data need to be written to the buffers as to be read from them. Also, 
configuration memories (like routing tables) require random accesses and the low latency of the 
QDR memories is beneficial. 
 
2.2.3.1  Technical Overview 

The storage cell of a QDR memory is made only with complementary metal-oxide 
semiconductor (CMOS) transistors. Contrary to the other types of memories discussed in this 
report, there is no specific technology associated with QDR memories. What distinguishes them 
from other SRAM is their bus interface. 
 
The bus interface is comprised of two separate and independent data buses: a data-in port for 
write operation, and a data-out port for read operations. The buses can operate simultaneously. 
Each data port works at DDR on the same model as the DDR memory: data are transferred on 
both the rising edge and the falling edge of the clock, thus transferring two data words per clock 
period. Data are generally transferred by bursts of four data words, which then take two clock 
periods. The address and control bus is common to read and write, but address and control need 
to be stable for only one clock period—either for read or for write.  
 
Therefore, during two clock periods, the QDR memory is capable of: 
 
• Receiving a read address and receiving a write address (one clock period each). 
• Receiving four data words for write (two data words per clock period). 
• Providing four data words for read (two data words per clock period). 
 
These tasks are possible only if the adequate pipelining is employed. Moreover, being an SRAM, 
QDR memories have no notion of bank, row, column, or refresh like DDR memories. Only the 
address is necessary to make a read or write operation and the address bus is not multiplexed; 
rather, it carries the full address. It is possible to have a continuous data flow of two data words 
per clock period on both the read port and the write port, even if the addresses are random (i.e., 
not contiguous).  
 
2.2.3.2  Manufacturing Aspect 

The QDR memories use only CMOS transistors, like any SRAM. There is no specific 
manufacturing aspect. 
 
2.2.3.3  Management of Manufacturing Defects 

The QDR memories’ target is the industrial market, with the management of manufacturing 
defects expected to be rigorous. 
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2.2.4  Toggle Magnetoresistive  Random Access Memories  

Magnetoresistive random access memory (MRAM) is a special type of random access memory 
(RAM). It has the same characteristics as a RAM (random accesses, fast read and write accesses, 
no wear in use), but it is also non-volatile (the content is fully preserved when the power supply 
is cut off). The MRAM combines the advantages of RAM and PROM. The qualifier of “toggle” 
refers to the method used internally to manage memory cells. Toggle MRAMs are medium-range 
capacity memories, typically two megabytes per chip. 
 
Very few manufacturers produce toggle MRAM and some of them do so only for their internal 
usage, without selling them on the market. A significant part of the toggle MRAM market is 
dedicated to industrial applications, with toggle MRAM rarely found in consumer electronics. 
For AEH, only one manufacturer produces these memories. This is EVERSPIN, which recently 
granted licensing rights to one company. 
 
Toggle bit MRAM are used in AEH as non-volatile memory when both of the following 
conditions exist: a medium storage size is needed (typically a few megabytes) and fast random 
read and write operations are required. For large amounts of non-volatile data (hundreds of 
megabytes to gigabytes), toggle bit MRAM is not suitable because of the limited size of the 
chips. In this case, flash PROM is needed. However, when fast random read and write operations 
are required, flash PROM is not suitable because of its slow access time, especially for write 
operation, which additionally requires an erase operation. 
 
Toggle bit MRAM can replace the more classical technologies: 
 
• Electrically-erasable programmable read only memory (EEPROM): the parallel 

EEPROM market is decreasing. Therefore, EEPROM is not considered a good solution 
for future designs. 

• Non-volatile static random access memory (NVSRAM): NVSRAM is a combination 
component that contains an SRAM and a PROM on the same die. The user works only 
with the SRAM, thus enjoying the performance of an SRAM. At power up, the 
component automatically copies the contents of the PROM into the SRAM. At power 
down, the component automatically copies the contents of the SRAM into the PROM, 
thus providing the appearance of an SRAM that keeps its contents across power cycles.  

 
From the functional standpoint, NVSRAM and MRAM are similar. From the standpoint, 
NVSRAM combines two established technologies (SRAM and PROM), whereas MRAM uses a 
new technology (magnetic cells). 
 
2.2.4.1  Technical Overview 

Toggle MRAM uses the physical property of two materials: 
 
• A ferromagnetic material whose magnetic polarization can be changed electrically: once 

the polarization has been electrically set to a value, the material keeps it until another 
electrical action changes it. This denotes the toggle element. The change in magnetic 
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polarization allows for writing the information into the memory cell. The toggle property 
of the material provides data retention even after power off. 

• A second material whose electrical resistance changes depending on the magnetic field 
which passes through it. The second element is placed near the first one to be under the 
influence of its magnetic field. Measuring the electrical resistance of the second element 
allows for the information of the memory cell to be read. 

 
This system has several advantages: 
 
• Read and write operations are as fast and flexible as with RAM. 
• Data retention (unpowered) is as good as with PROM. 
• There is no wear out. 
 
The main limitation of the toggle MRAM comes from the method used to electrically change the 
magnetic polarization of the storage element. An electric current first generates its own magnetic 
field. This magnetic field, in turn, influences the toggle element and, depending on the electric 
current direction, changes the toggle element into one state or the other. If two memory cells are 
too close to each other, the magnetic field generated to toggle the first one may cause the second 
to toggle, because of proximity, as well. Therefore, the integration factor of toggle MRAM is 
limited: it is not possible to set the cells too close to one another. Because this limitation comes 
from physics of the method used to force the toggling, and not from the foundry, toggle MRAM 
using this method will not see a significant growth in size in the future. Other methods are under 
development for toggling that do not exhibit this drawback and therefore will allow higher 
integration (section 2.2.4.4). 
 
Despite the limited integration scale, writing into a cell may still influence a nearby cell, and, in 
rare cases, cause it to toggle, thus creating a soft error. For this reason, a toggle MRAM chip 
includes embedded ECC that allows for providing good data at the pins of the chip on read, even 
when an internal bit is altered. 
 
2.2.4.2  Manufacturing Aspect 

Although MRAM involves special materials, the fabrication process flow is the same as for 
standard CMOS RAM. It is even possible to embed toggle MRAM cells in an ASIC. The 
intrinsic limitation of the toggle MRAM integration may have an unexpected advantage from the 
point of view of manufacturing defects: as toggle MRAM cannot be scaled down, submicron 
foundries are not worth using. MRAM uses more conservative technologies, which can reduce 
the manufacturing efforts and risks. Moreover, the medium-capacity range (16 megabits)—when 
compared to the DDR memories or flash memories (gigabits)—advocates in favor of risk 
reduction. 
 
2.2.4.3  Management of Manufacturing Defects 

No public information is available about managing manufacturing defects (redundancy, 
remapping, or other). Components are delivered fully functional and with full capacity. 
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Embedded ECC seems to aim at mitigating write soft errors (WSEs) but not permanent 
manufacturing errors. 
 
2.2.4.4  Spin Transfer Torque Magneto-Resistive Random Access Memory 

Spin transfer torque (STT) MRAM belongs to the MRAM family. The difference between toggle 
MRAM and STT MRAM resides in the method used to change the magnetic polarization of the 
ferromagnetic element (section 2.2.4.1). The SST MRAM uses a quantum effect instead of an 
explicit magnetic field. This reduces the crossover between cells during writing and, therefore, 
allows for a much greater integration. 
 
SST MRAM technology is seen as possessing high potential for both non-volatile and simple 
memory, with capacity in the gigabits. The SST MRAM technology is still under development; 
prototypes exist, but to date there is no mass production. Were STT MRAM to achieve a density 
level greater than DDR memory, and with equivalent performance, it would likely take the lead 
in the memory market. Although there is not enough information available to include this 
technology in the scope of this report, it should be on the watch list for the coming years. 
 
2.3  SUPPLY CHAIN CONSIDERATIONS 

The issues described in the previous section point to the importance of properly selecting the 
commodity memory manufacturer. This section describes relevant elements in the selection 
process regarding the supply chain. For the purpose of this report, the supply chain is limited to 
the manufacturer and distributor (as shown in figure 1), both holding significant roles. 
Recommendations applicable to the supply chain are proposed in section 5. 
 

 

Figure 1. Composition of the supply chain for this report 

The avionics market represents a very small part of the commodity memories’ market. Avionics 
customers’ demands receive a relatively low priority in the eyes of the major memory 
manufacturers. However, this situation does not prevent avionics equipment manufacturers from 
obtaining the attention of the memory suppliers nor from acquiring high-quality components. 
The key is a careful and meticulous selection of the supply chain.  
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2.3.1  Memory Manufacturers 

This section focuses on specific characteristics relevant to the components’ supply for avionics 
applications. Several criteria distinguish the memory manufacturers: targeted market, rate of 
product upgrade, and available documentation. 
 
2.3.1.1  Targeted Market 

The first criterion pertains to the market that is targeted by the manufacturer. Three main cases 
can be distinguished: 
 
1. Case 1: Manufacturers that have a business model exclusively geared toward consumer 

electronics  
 
This kind of manufacturer should be avoided or is at least not highly recommended because its 
mission statement does not entail avionics requirements; as a result, there could be confidence 
issues associated, for example, with reliability or environmental qualifications. If a given 
memory component was provided solely by this type of memory manufacturer, this component 
should be replaced by another one in the design. However, if such a component is necessary, a 
possible workaround would be to perform complementary tests, such as burning or screening, on 
the component to increase the level of confidence in the component. These tests can be 
performed internally or in collaboration with a third party specialized company. 
 
2. Case 2: Manufacturers with a business model that is primarily geared toward consumer 

electronics but who also have an industrial range of products 
 
This case is more favorable than case 1. The components in the industrial range will be 
manufactured employing industrial quality standards. The risk of harmful effects from the 
consumer electronics market is lower. The most favorable case is when the manufacturer has an 
automotive range of products because the automotive market is a relatively high-volume market 
with a relatively high-quality set of requirements. This case also includes a safety domain, 
including rail, nuclear, and medical. 
 
3. Case 3: Manufacturers that have a business model primarily geared toward a specialty 

market that demands high integrity and continued support 
 
This is the best case because these manufacturers are not, or at least they are significantly less 
likely to be, subjected to the pressure of the consumer electronics market to compromise quality. 
 
2.3.1.2  Rate of Product Upgrade  

The second criterion pertains to the upgrade rate of the components. Component modifications, 
such as die revision (improvement), technology shrink, or component versioning (e.g., memory 
size or speed), can occur. Sometimes, the manufacturer’s strategy is to continuously offer the 
latest technology with the best available performance. This strategy often leads to negative 
results, such as short sale duration of products, rapid obsolescence, and a fast process shrinking 
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rate. The risk induced by this strategy is that the manufacturer might feel it is not worth investing 
more effort than necessary to increase the production reliability for such a short life cycle. 
 
Another drawback of this strategy, from an AEH point of view, is that the new technology has no 
service experience and may have intrinsic defects or weaknesses that are not yet known. 
Moreover, the strategy of being first to market may lead the manufacturers to create temporary 
revisions of the chips they sell, a fact about which the buyer is seldom properly informed 
regarding the chips’ temporary nature. 
 
As an example, consider manufacturers who sold an intermediate version of their chip by buying 
equivalent dies from another foundry (a competitor) and repackaged these dies into their own 
packages with their own references. This approach allows the manufacturer to be present on the 
market while its foundry ramps up the capability to produce its own dies. From a technical and 
commercial point of view, there is absolutely nothing wrong with the approach because the dies 
meet both quality and performance level. However, from the point of view of avionics 
requirements, for which traceability is a concern, this situation is undesirable. AEH 
manufacturers should therefore avoid such memory manufacturers. However, this is not always 
possible because the avionics market has its own goal to keep providing more performance at 
lower costs. Also, the interest of an avionics manufacturer may primarily stem from 
obsolescence issues. Well-proven technologies may sometimes be too limited to satisfy the 
performance requested by a given product. In this situation, particular attention shall be paid to 
the components, as detailed in section 2.3.1.3. Assiduous contact with the memory manufacturer 
can help AEH manufacturers to avoid the purchase of new memories that are being 
manufactured by second-hand manufacturers.  
 
However, other manufacturers rely on well-proven technologies and propose mature components 
with longer term production cycles. These manufacturers often take over components that were 
initially provided by the first type of manufacturer. When the first type of manufacturer ceases 
production (obsolescence), the second type commences manufacturing; as much as possible, this 
latter type of manufacturer should be preferred. 
 
2.3.1.3  Available Documentation About the Manufacturing Process 

A third criterion relates to the availability and extent of documentation. Some memory 
manufacturers provide documentation on their manufacturing flow, test flow, and qualification 
processes and results, whereas others do not. The more extensive the documentation, the higher 
the level of confidence in the product. This kind of documentation is generally not public since it 
contains intellectual property, but it may be available under a non-disclosure agreement (NDA). 
 
When selecting a manufacturer, the accessibility to manufacturing documentation is an important 
consideration. There are several major topics addressed by manufacturer documents: design, 
technology, manufacturing tests procedures, manufacturing tests results (statistics), qualification 
processes (including a description of the qualification tests), qualification reports (including the 
detailed test results), errata sheets, and white papers on continuity of support for obsolescence 
management. 
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2.3.1.3.1  Information About the Design 

Useful examples of this information include: 
 
• Information about the physical proximity of the memory cells on the die with respect to 

their logical proximity in the address space and data words. 
• Information about special internal functions, such as charge pumps, that does not appear 

in the data sheet. 
 
This information is confidential but may be obtained, at least partially, under an NDA. This 
information is generally very useful for analyzing risks and mitigation mechanisms. However, 
special care should be taken because some aspects of the design can change noticeably from one 
revision of the die to another. For example, memory can be produced in which the relative 
position of the cells on the die, versus their position in the data words, was significantly different 
in the successive revisions of the die. It was not a real design change, only a different type of 
routing—but for ECC consideration, it was an impacting change. Therefore, the relevance level 
of the design information must always be moderated by its validity in time.  
 
Some design elements may be key points for the memory manufacturer and will, therefore, 
remain stable across the successive revisions of the memory. For example, the memory 
manufacturer may have made the commitment to implement a built-in ECC mechanism with a 
tricky association between the physical cells and the logical bits of the ECC algorithm, so that 
the ECC is as efficient as possible with respect to the possible soft errors. In this case, if the 
layout of the cells changes from a die revision to another, the design of the ECC will change 
accordingly, and the ECC performance will remain unchanged. 
  
To summarize, the information about the design is extremely useful, but it must not be taken as a 
standalone piece of information. A discussion with the memory manufacturer is absolutely 
necessary to get the status of each important design choice of a given product and learn whether 
it is a long-term choice or simply a contextual one. 
 
2.3.1.3.2  Information About the Technology 

This information is highly confidential and generally not available to the AEH manufacturer. In 
general, the scheme is as follows: 
 
• The AEH manufacturer can enter into an NDA with the component manufacturer. 
• The component manufacturer has an NDA with the foundry. 
 
However, the scheme is not transitive: the component manufacturer cannot transmit the design 
information, the property of the foundry, to the AEH manufacturer. The foundry will not grant an 
NDA to the AEH manufacturer because the latter is not one of its direct customers. Even when 
the component manufacturer runs its own private foundry, the information is often considered as 
too sensitive and rarely provided. 
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2.3.1.3.3  Information About Manufacturing Test Procedures 

Although this information is essential for addressing most of the concerns within the scope of 
this report, detailed information is generally not available: first, it is considered highly 
confidential and, second, it pertains not only to the memory manufacturer but also to the foundry. 
There may be an advantage, as sometimes general information can be obtained. As a general 
rule, however, one cannot rely on the availability of this information. 
 
2.3.1.3.4  Information About Manufacturing Test Results 

Test results are mainly statistics on measured parameters and ratios of accepted, versus rejected, 
dies. By themselves, they may be very interesting with respect to the objectives of this report. 
However, once again, this information is rarely available because it is considered highly 
confidential and pertains not only to the memory manufacturer but also to the foundry. Finally, 
information about production yield ties to financial information and, therefore, is not disclosed. 
 
2.3.1.3.5  Information About the Qualification Process and Associated Report 

This information does not concern the whole production set but rather the characteristics of the 
component itself, measured by way of a limited number of components (generally several 
hundred). Qualification tests are different from production tests: 
 
• The aim of production tests is to check that the components are manufactured correctly. 

The result is binary (indicating either okay or not okay). 
• The aim of qualification tests is to check that the design and production chain provide 

chips that have the expected performance. The results have probabilistic values. 
 
The detailed qualification process and associated results contain a significant amount of useful 
information about the inside of the component, including elements of design that are not 
necessarily published in the data sheet. It may also indirectly provide information detailing on 
which parameters of the component the manufacturer focuses. Knowledge of the qualification 
process and the associated results surely support achieving higher confidence in the components. 
It is generally possible to obtain these documents (detailed process and report) under an NDA. 
 
To summarize, information on the detailed qualification process and associated results is a “must 
have” and should be obtained from the manufacturer. 
 
2.3.1.3.6  Errata Sheets  

Errata sheets are important documents. This is true not only because they are necessary for the 
board design, but also because they may provide a feeling for the maturity of the component. 
One of the questions of relevance within the scope of this report is whether time-to-market 
constraints can cause a component or design to not achieve sufficient maturity. This information 
can be inferred from the errata sheets. Most of the time, errata sheets are public documents, but 
sometimes they can only be obtained under an NDA. The component manufacturer should be 
asked about these. 
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2.3.1.3.7  Summary of Manufacturing Process Documentation 

Table 2 summarizes the availability of documentation from the commodity memory 
manufacturer and its usefulness with respect to confidence in the maturity of the product. 

Table 2. Summary of available documentation 

Documentation Focus General Availability Usefulness 
Design Partially under NDA Medium 
Technology No (IP* protected) — 
Manufacturing tests procedures No (IP protected) — 
Manufacturing tests results (statistics) No (IP protected) — 
Qualification process, including a description of the 
qualification tests Yes, under NDA High 

Qualification report, including the detailed test results Yes, under NDA High 
Errata sheets (not publicly available) Yes, under NDA  Low** 

* Intellectual property 

** The quality of the information in the errata sheets varies widely. Sometimes, it is not directly usable. The 
usefulness is thus marked low, although it is possible to find usable errata sheets—for example, to infer maturity 
based on the rate of errata publication. 
 
2.3.2  Distributors 

The fourth and last criterion relates to the role of the distributor. The distributor is a key agent in 
the supply chain, especially for components like commodity memories that are produced in very 
high volume―far greater than the volume of the avionics market. They are the link between the 
memory manufacturer and AEH manufacturer. As previously explained, an AEH manufacturer is 
generally not in a position to influence a memory manufacturer, but it may be the case for the 
distributor. Since the distributor concentrates the orders from its own multiple customers, not 
only from the avionics domain, the distributor is (through aggregated volume) a meaningful 
customer from the memory manufacturer point of view. This is the first reason to carefully select 
a distributor. 
 
On the other hand, the AEH manufacturer does not only buy memory from a given distributor, 
but may also buy a lot of other types of components. Moreover, the AEH manufacturer may be 
part of a bigger company, with activities other than AEH, which brings many components to the 
distributor. The AEH manufacturer is then a significant customer from the distributor point of 
view. This is the second reason to carefully select a distributor. 
 
Another key role of the distributor is to manage allocation. Memory manufacturers who produce 
high volumes of components adapt their production to the demand. The production is therefore 
divided into parts that are allocated in advance to the various customers. The role of the 
distributor is to obtain a part of the production for each of its customers. This is the third reason 
to carefully select a distributor. 
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When the demand exceeds, or simply reaches, production capacity, the best customers of the 
memory manufacturer may be served in priority order. The distributors, because of their sheer 
size, can secure a part of the production. 
 
Finally, the distributor may help the AEH manufacturer to obtain information from the memory 
manufacturer. This is the fourth reason to carefully select a distributor. The selection of a good 
distributor is almost as important as the selection of a good manufacturer. 
 
2.3.3  Summary 

The selection of an appropriate memory supply chain (i.e., a memory manufacturer and a 
distributor) is one of the key factors in controlling the level of quality of commodity memory. 
The present document provides technical information about various techniques that allow for 
managing issues stemming from the fact that commodity memory manufacturers primarily cater 
to the needs of consumer electronics. However, before managing the issues with technical 
solutions, the first step is to reduce the issues with the help of an appropriate supply chain. 
 
2.4  USAGE DOMAIN 

Another focal point of COTS usage in avionics is the component’s usage domain in the avionics 
equipment. Some components have several modes or options that can be selected via the design 
of the equipment (hardware or software configurations). A defect that is specific to a particular 
mode or configuration will quickly reveal itself if that mode or configuration is widely used. This 
defect will then be reported to the manufacturer who, in turn, will either fix the defect or at least 
document it in an errata sheet. Conversely, if the mode or configuration is rarely used, the defect 
may remain undetected and therefore not documented anywhere—and may ultimately cause 
unexpected erroneous behavior. 
 
Memory in general has limited possible modes and configurations, but nonetheless these are 
sufficient for a defect to arise. Such examples include the auto-precharge mode of the DDR 
memory or the erase suspend mode of a NAND flash memory. DDR memories and NAND flash 
memories must implement the full Joint Electron Device Engineering Council (JEDEC) 
specification [6], but it is possible that a particular mode or configuration specified by the 
JEDEC is not commonly used by the majority of the users of that memory. Memory 
manufacturers are generally well-informed about the most common usage of their component. 
The AEH manufacturer should therefore establish a solid line of communication with the 
memory manufacturer. The distributor also has a role to play in this communication. Moreover, 
it is recommended that AEH manufacturers employ the most commonly used modes and 
configurations to the maximum extent possible. The usage of the component in a consumer 
electronics context is beneficial. As the component is increasingly used by a significant number 
of users, the probability of detection of possible defects increases. 
 
Another facet of usage domain is the selection of one of the possible variants of a memory 
component. Associated to the same root part number, a component may have several variants, 
including: 
 
• Different speed grade. 
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• Different capacity (e.g., 512 Mb, 1 Gb, and 2 Gb). 
• Different data bus (e.g., with 8- or 16-bit). 
 
For the reason of common usage, the variant in which the production volume is significantly 
smaller than the other variant should, whenever possible, not be selected. Figure 2 shows a case 
of a favorable usage domain and one of a less favorable usage domain.  
 

Example of not very favorable usage Preferable usage when possible 

 

 

Figure 2. Comparison of favorable and not-favorable usage domains 

On the left-hand side, the AEH manufacturer usage domain falls in the minor usage category. 
The memory manufacturer may have spent a lower effort on the qualification tests for that usage 
because of the small volume of users. On the right hand side, the AEH manufacturer domain 
usage falls into the main domain usage. Qualification tests and in-use validation levels are 
higher. The selection of memories for which the AEH manufacturer domain usage falls within 
the main domain usage (i.e., in terms of users and focus of the qualification tests) is 
recommended. 
 
3.  FAILURE MODES AND FAILURE MECHANISMS  

3.1   DESCRIPTION OF FAILURE MODE TYPES IN COMMODITY MEMORIES 

This section discusses failure modes for the commodity memories selected in section 2.2.   
 
3.1.1  Issues With Commodity Memories Failure Mode Analysis 

COTS memories in general, and commodity memories in particular, should be studied at 
different breakdown levels [7]—namely, first as a black box and then, when necessary, as a grey 
box: 
  
• As a black box, the memory is considered from the point of view of its inputs, outputs, 

and transfer characteristics without any knowledge of its internal workings. 
• As a grey box, the description of the memory is refined down to internal blocks or 

intellectual property, which is then treated as a black box. This breakdown level is built 
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with fragmentary, non-contractual information, and potentially with information 
disclosed under an NDA. 

 
Note that the breakdown level called “white box” is generally considered inaccessible and 
useless for the understanding of failure phenomena: at this level, the amount of information is 
significant, and it can be very difficult to retrieve the useful elements. For example, the 
characteristics of a memory functional block are not easily extractible from a list of transistors 
and their characteristics. Nonetheless, when considering the production systematic failures, some 
manufacturer information at that level (down to the transistor) can be useful. This will be further 
addressed in the fault model and fault mitigation techniques discussion in sections 3 and 4. 
 
In turn, the breakdown levels can be considered at levels representing various abstraction layers. 
We identified three of these layers as relevant for the investigation of commodity memory 
assurance methods: the functional, logical, and physical layers [7, 8]. Figure 3 shows this model. 
Each layer can be accessed directly, depending on the level of abstraction requested by the 
description model. The vertical arrows in figure 3 represent the conversions between abstraction 
layers and not data flow. 
 

 

Figure 3. Three-layer model of a memory 

3.1.1.1  Failure Modes at Functional Abstraction Layer 

Although no applicative function can be defined for a stand-alone memory, the memory provides 
hardware functions, such as information storage (writing), information preservation, and 
information restitution (reading). The generic failure modes at the functional abstraction level 
are:  
 
• The hardware function’s inability to trigger (e.g., no information can be stored). 
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• The hardware function’s inability to stop (e.g., the reading tasks never end and the 
memory remains unavailable for other tasks). 

• The hardware function’s untimely triggering (e.g., a memory untimely triggers a read 
mode that stops a write command). 

• The hardware function’s untimely stopping (e.g., the abort of a write command). 
• The hardware function’s erroneous behavior (e.g., the modification of data written or 

read). 
 

Applying the failure modes listed above to the functions provided by the memory yields: 
  
• For information storage (writing): 
 

- The inability to store information 
- The inability to stop an information storage mode, which leads to memory being 

unavailable (e.g., memory is busy in write mode) 
- The untimely stopping of the information storage function (e.g., storage aborts) 
- The erroneous behavior of the information storage function (e.g., stored 

information is corrupted) 
 

• For information preservation: 
 

- The inability to trigger the information preservation function (e.g., preservation 
never starts) 

- The untimely stopping of the information preservation function (e.g., preservation 
stops after some delay) 

- The erroneous behavior of the information preservation function (e.g., 
information is corrupted during information preservation) 

 
These three functional failure modes can be summarized as “inability to preserve 
information.”  
 

• For information reading: 
 

- The inability to read the information 
- The inability to stop the information read mode, which prevents memory storage 

(e.g., memory is busy in read mode) 
- The untimely stopping of the read function (e.g., read abort) 
- The erroneous behavior of the information read function 
 

3.1.1.2  Logical Abstraction Layer 

This level considers the flow of information that transits on component interfaces at a logical 
level. A typical flow is data_out. The flow states are precisely defined and consequently a 
complete failure model can be derived.  
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A failure of a write operation has no immediate visible effect; however, the effects will be visible 
later, through a read operation, for example. In this case, the write operation is an input flow with 
no output flow that can bear several failure modes. One way to overcome this property of 
memories and attribute a failure mode to a write operation is to establish that every write 
operation in a logical layer has an output in a functional layer; this output is described in the 
form of an information_stored flow. This stored information can be checked during testing and 
truly corresponds to an output when the stored information is abstractly assimilated as an output 
of memory. In this framework, figure 4 (adapted from [7, 8]) shows the several possible 
behaviors that a transmitted message can exhibit when it is sent to or from a memory and carries 
informational content.  
 

 

Figure 4. Tree of possible failure modes 

The three groups of behaviors shown in figure 4 are: 
 
1. Correct message sending 
2. Failure mode of message sending itself 
3. Failure of message sending relative to the other messages 
 
These groups are generic and should be tailored to the different messages related to memory 
output: information stored through write operation, data_out through read operation, and status 
reading through status request (whose applicability depends on the type of memory). 
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Case 1. The message sent can be correctly delivered to memory. In this case, the information it 
contains can either: 
 
• Case 1.1. Be correct (e.g., the information is correctly written in memory, data_out is 

correctly read from memory) or 
• Case 1.2. Be corrupted in three different ways: 
 

- Case 1.2.1. The information transitions to a forbidden value. Forbidden values 
occur when logically admissible values are separated from all reachable values by 
some additive criteria. In memory, this type of corruption does not happen as a 
memory-stored bit of information, but it can appear in a serial link, like Ethernet, 
where 8-bit to 10-bit encoding is applied. Some failures of this encoding may then 
produce forbidden 10-bit values, and the encoded message cannot be interpreted 
by the receiver. This condition will not be considered hereafter. 

 
- Case 1.2.2. The information transitions to an erroneous value. Contrary to the 

transition to a forbidden value, the transition to an erroneous value provides 
admissible information at the memory’s functional layer. The information will be 
delivered through read request to the memory controller. This transition does not 
presume the existence of a higher level mitigation (e.g., external ECC, 
consistency check at the applicative layer level) that could detect the erroneous 
behavior of the memory. For a write operation, the information stored is 
transitioned to an erroneous value; for a read operation, an erroneous data_out 
value is transmitted. 

 
- Case 1.2.3. The information cannot transition to the requested value. For a write 

operation, the information already stored in memory cannot be replaced by a new 
value. The information remains stuck in some state. For a read operation, data_out 
may remain stuck at a value in the output level of the memory (output levels of a 
memory generally contain an SRAM buffer permitting data preparation and fast 
transfer). 

  
Case 2. The message can be incorrectly sent by itself: 
 
• Case 2.1. Lost message is in general not applicable to memory because output flows can 

always be interpreted as bits of information. Therefore, the transition failure mode will 
be considered instead. 

• Case 2.2.1. Delayed transfer of message is a degraded mode occurring when the 
operation takes more time than specified. It could occur if the remapping of addresses on 
spare cells is not compliant with the datasheet. In the case of a write operation, it can 
lead to a memory that is unable to receive another order for some time because it is kept 
busy by the write operation. In the case of a read operation, this failure mode results in a 
delay in the transmission of data_out. 

• Case 2.2.2. Early transfer of message is another type of degraded mode that is more 
remote and whose effect can be severe in some cases. If a memory has response times 
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significantly different from its specification, the memory controller may not be able to 
accept the read message and this message can be lost. 

• Repeated up to babbling. This mode does not really apply to memory because memory 
is not a passive component. It does not send messages per se; rather, it presents data on 
its output bus. But it is the memory controller that decides to pick up the data when it 
wants. Even if the memory presents a lot of extra data, it will have no effect because the 
controller will not capture them. 

 
Case 3. The message can be incorrectly sent with respect to other messages, which typically 
leads to an abnormal sequence of sent messages (case 3.1). This mode can affect data_out. 
 
3.1.1.3  Physical Abstraction Layer 

This level includes such physical characteristics as voltage, current levels, timing, and sizing. 
This abstraction layer can be used to refine the failure modes at logical levels and point to some 
errors in white box approaches. 
 
3.1.2  Detailed Analysis of the Selected Memory Families 

3.1.2.1  DDR Memories 

Four major types of operations are performed on DDR memories (figure 5): 
  
• Write operation with two variants: with pre-charge (called write_autoprecharge) and 

without pre-charge (write). Both types of the write operation send data and an address. 
They result in an “information stored” state in the functional layer. 

• Read operation with the same types of variants as for the write operation. Both types of a 
read operation send an address, which results in “data_out” emitted. 

• Refresh operation with two variants: initiated or self-refresh. 
• Load_register that allows for configuring some key parameters in the DDR memory, in 

particular timings. 
 
At a black box level, only two flows are relevant: information stored and data_out emitted. The 
logical layer failure modes previously described are applicable to each of these flows. To explore 
the causes of these failure modes, an abstract block diagram of a typical DDR memory is useful, 
as shown in figure 5. 
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Figure 5. Simplified DDR memory block diagram 

3.1.2.1.1  Failure Modes on “Information Stored” Flow 

Per the logical failure model described in section 3.1.1.2, the only failure modes that can occur 
on information stored are transition of information to an erroneous value (case 1.2.2) and 
inability to transition to requested value (case 1.2.3). Both will result in erroneous data being 
stored and, ultimately, in erroneous data being transferred to the DDR memory controller 
through data_out flow: 
 
The transition of information to an erroneous value can be caused by: 
 
• A command interpreter block manifesting an erroneous command (e.g., a read command 

becoming a write command), a delayed command (e.g., misfit of internal pipeline length 
due to intrinsic obstruction of pipeline), or an erroneously stored configuration (e.g., 
misfit of internal pipeline length due to corruption of configuration register). 

• A coding block manifesting erroneous data (e.g., due to erroneous timing of coding) or an 
erroneous address. 

• A storage block manifesting a loss of refresh (e.g., because of a non-application of 
initiated refresh command), flip value in time (e.g., because of internal perturbation or 
external perturbation, current leakage), or flip value on access (e.g., due to failure of the 
automatic rewrite after a destructive read). 

 
The inability to transition to a requested value can be caused by either: 
 
• A command interpreter block manifesting an erroneous command (e.g., misfit of internal 

pipeline length due to corruption of configuration register). 
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• A storage block manifesting a “stuck-at” value. 
 
3.1.2.1.2  Failure Modes on Data_out Flow 

Data_out can face more failure modes, all leading to erroneous data transferred to the DDR 
memory controller. 
 
The transmission of an erroneous data_out value can be caused by either: 
 
• A decoding block that can corrupt data during decoding (e.g., a failure of a sense 

amplifier). 
• A command interpreter block manifesting an erroneous or delayed command acquisition, 

an erroneous address acquisition, or an erroneous configuration acquisition. 
 

The inability to transition to a requested value can be caused by a decoding block manifesting a 
stuck-at data_out value. 
 
The delayed transfer of information can be caused by a decoding block, through which data_out 
suffers erroneous timing: in read operation, the DDR memory controller awaits data within a 
certain time window. If data arrive outside of the window, the effect will be erroneous data. 
 
The early transfer of information can be caused by the command interpreter with the same 
scenario as that for delayed transfer of information. In this case, the failure can be caused by an 
erroneous configuration because waiting times are defined to better interlace operations. 
 
The abnormal sequence of sent messages can be caused by the command interpreter being faced 
by an erroneous sequencing of commands, itself resulting from a bad interlace of commands. 
 
All these failure modes can be discovered from the failure model of section 3.1.1.2 and analyzed 
through a qualitative failure modes and effects analysis (FMEA). This FMEA remains qualitative 
because production systematic failures are not probabilistic (appendix C). 
 
3.1.2.2  NAND Flash Memories 

A write operation in a flash PROM is different from that of a write operation in RAM. In a flash 
PROM, once a data bit is written, it cannot be rewritten with a different value. A special 
operation called “erase” is necessary before the bit can be written again. Because the erase 
operation is much longer than the write operation, an erase operation typically erases a greater 
set of bits, or sector, in a single operation, whereas a write operation can be applied individually 
on smaller sets of bits. For NAND flash memory, the erase operation typically works on sectors 
of 128 kilobytes, whereas the write operation typically operates on sets of two kilobytes, called 
pages. 
 
Erase and write operations are quite slow, from hundreds of microseconds to milliseconds; 
therefore, a NAND flash memory contains status registers for the memory controller to know 
when the operation is finished. Major operations that can be realized on a NAND flash memory 
include several types of read, erase, write, copy (i.e., internal duplication of data), status read, 
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and some controls (e.g., reset operation). Figure 6 shows the simplified block diagram of a 
NAND flash memory. 
 

 

Figure 6. Simplified NAND flash memory block diagram 

3.1.2.2.1  Failure Modes on “Information Stored” Flow 

Per the logical failure model described in section 3.1.1.2, the only modes that can occur on 
information stored are transition of information to an erroneous value (case 1.2.2) and inability to 
transition to a requested value (case 1.2.3). Both will result in erroneous data being stored and, 
ultimately, in erroneous data being transferred to the NAND flash memory controller through 
data_out flow. 
 
The transition of information to an erroneous value can be caused by: 
 
• A command interpreter block manifesting an erroneous command (e.g., a read command 

becoming a write command) or a delayed command (e.g., misfit of internal pipeline 
length due to intrinsic obstruction of pipeline). 

• A coding block manifesting erroneous data (e.g., due to erroneous timing of coding) or 
erroneous address. 

• A storage block manifesting a flip value in time due to internal perturbation (e.g., 
component wear out). 
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The inability to transition to a requested value can be caused by: 
 
• A command interpreter block manifesting an erroneous command (e.g., misfit of internal 

pipeline length). 
• A storage block manifesting a “stuck-at” value. 
• A failure of the erase operation, which will later prevent the write operation from 

succeeding. 
 
3.1.2.2.2  Failure Modes on Data_out Flow 

Data_out flow can face more failure modes, all leading to erroneous data transferred to the 
NAND flash memory controller. 
 
The transmission of an erroneous data_out value can be caused by: 
 
• A decoding block that can corrupt data during decoding (e.g., a failure of a sense 

amplifier). 
• A command interpreter block manifesting an erroneous or delayed command acquisition 

or erroneous address acquisition. 
 
The inability to transition to a requested value can be caused by a decoding block manifesting a 
stuck-at data_out value. 

 
The delayed transfer of information can be caused by a decoding block, through which data_out 
suffers erroneous timing: in read operation, the NAND flash memory controller awaits data 
within a certain time window. If data arrive outside of the window, the effect will be erroneous 
data. 
 
The early transfer of information can be caused by the command interpreter by way of the same 
scenario as that for delayed transfer of information.  
 
The abnormal sequence of sent messages can be caused by the command interpreter being faced 
by an erroneous sequencing of commands, itself resulting from a bad interlace of commands (as 
with early transfer of information). 
 
3.1.2.2.3  Failure Modes on Status 

The transition of information to an erroneous value can be caused by a command interpreter 
block manifesting an erroneous, or delayed, command acquisition. 
 
The inability to transition to a requested value can be caused by the status logic when a status 
register manifests a stuck-at value. 
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3.1.2.3  QDR Memories 

Compared to DDR memories and NAND flash memories, QDR memories are very simple to 
operate. Only two operations can be realized (write and read) that result in “information stored” 
and “data_out,” as shown in figure 7. 
 

 

Figure 7. Simplified QDR memory block diagram 

3.1.2.3.1  Failure Modes on “Information Stored” Flow 

Per the logical failure model described in section 3.1.1.2, the only modes that can occur with 
information stored are transition of information to an erroneous value (case 1.2.2) and inability to 
transition to requested value (case 1.2.3). Both will result in erroneous data being stored and, 
ultimately transferred to the QDR memory controller through data_out flow. 
 
The transition of information to an erroneous value can be caused by: 
 
• A command interpreter block manifesting an erroneous command (e.g., a read command 

becoming a write command) or a delayed command (e.g., misfit of internal pipeline 
length due to intrinsic obstruction of pipeline). 

• A coding block manifesting erroneous data (e.g., due to erroneous timing of coding) or an 
erroneous address. 

• A storage block manifesting a flip value in time due to internal perturbation. 
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The inability to transition to a requested value can be caused by: 
 
• A command interpreter block manifesting an erroneous command (e.g., misfit of internal 

pipeline length). 
• A storage block manifesting a “stuck-at” value. 
 
3.1.2.3.2  Failure Modes on Data_out Flow 

Data_out can face more failure modes, all leading to erroneous data transferred to the QDR 
memory controller. 
 
The transmission of an erroneous data_out value can be caused by: 
 
• A decoding block that can corrupt data during decoding. 
• A command interpreter block manifesting an erroneous or delayed command acquisition 

or erroneous address acquisition. 
 
The inability to transition to a requested value can be caused by a decoding block manifesting a 
stuck-at data_out value. 
 
The delayed transfer of information can be caused by a decoding block, through which data_out 
suffers erroneous timing: in read operation, the QDR memory controller awaits data within a 
certain time window. If data arrive outside of the window, the effect will be erroneous data. 
 
The early transfer of information can be caused by the command interpreter by way of the same 
scenario as that for delayed transfer of information.  
 
The abnormal sequence of sent messages can be caused by the command interpreter being faced 
by an erroneous sequencing of commands, itself resulting from a bad interlace of commands (as 
with the early transfer of information). 
 
3.1.2.4  Toggle Magnetoresistive Random Access Memories 

The toggle MRAM is similar to the QDR memory from the standpoint of the possible operations 
it can realize (write and read) that result in “information stored” and “data_out,” as shown in 
figure 8. 
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Figure 8. Simplified toggle MRAM block diagram 

3.1.2.4.1  Failure Modes on “Information Stored” Flow 

Per the logical failure model described in section 3.1.1.2, the only modes that can occur on 
information stored are transition of information to an erroneous value (case 1.2.2) and inability to 
transition to a requested value (case 1.2.3). Both will result in an erroneous datum being stored 
and, ultimately, in an erroneous datum being transferred to the MRAM memory controller 
through data_out flow. 
 
The transition of information to an erroneous value can be caused by: 
 
• A command interpreter block manifesting an erroneous command (e.g., a read command 

becoming a write command) or a delayed command (e.g., misfit of internal pipeline 
length due to intrinsic obstruction of pipeline). 

• A coding block manifesting erroneous data (e.g., due to an erroneous timing of coding) or 
an erroneous address. 

• A storage block manifesting a flip value in time due to internal perturbation. 
 

The inability to transition to a requested value can be caused by: 
 

• A command interpreter block manifesting an erroneous command (e.g., misfit of internal 
pipeline length). 

• A storage block manifesting a “stuck-at” value. 
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3.1.2.4.2  Failure Modes on Data_out Flow 

Data_out can face more failure modes, all leading to erroneous data transferred to the MRAM 
memory controller. 
 
The transmission of an erroneous data_out value can be caused by: 
 
• A decoding block that can corrupt data during decoding. 
• A command interpreter block manifesting an erroneous or delayed command acquisition 

or an erroneous address acquisition. 
 
The inability to transition to a requested value can be caused by a decoding block manifesting a 
stuck-at data_out value. 
 
The delayed transfer of information can be caused by a decoding block, through which data_out 
suffers erroneous timing: in read operation, the MRAM memory controller awaits data within a 
certain time window. If data arrive outside of the window, the effect will be erroneous data. 
 
The early transfer of information can be caused by the command interpreter by way of the same 
scenario as that for the delayed transfer of information.  
 
The abnormal sequence of sent messages can be caused by the command interpreter being faced 
by an erroneous sequencing of commands, itself resulting from a bad interlace of commands (as 
with the early transfer of information). 
 
3.2  FAILURE MECHANISMS FOR COMMODITY MEMORIES 

3.2.1  Introduction 

In general, failures observed in relation to manufacturing processes are not associated with 
probabilities. However, this statement should be moderated in some cases. Even if die production 
processes are increasingly more reliable, they remain limited because market pressures foster the 
development of new technologies (e.g., fin-shaped field effect transistors). This dynamic can 
produce two types of process dysfunctional behaviors: 
 
• Process failures causing the produced commodity memory to be outside of its 

specification. This kind of process failure impacts whole sets of chips and is, in general, 
detected during testing. The faulty chips are rejected, even for the customer market, 
unless the defect does not affect the consumer electronics usage domain. 

• Process imperfection causing the occurrence of weaknesses in the die that render the 
memory more sensitive to environmental stresses. These stresses can amplify the 
weaknesses up to failure (e.g., thermal amplification of electro-migration [EM]) or 
directly cause a failure because the weakness lowers the resistance of the die. This is the 
case when a lower threshold voltage (Vth) increases the sensitivity to neutrons so that the 
probability of occurrence of single event upset (SEU) or multi-bit upset (MBU) increases. 
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To identify the most adapted mitigation mechanisms, it is important to know which defect can be 
generated by the applied process. These failures can be characterized in terms of: 
 
• Localization: do these failures impact one bit or multiple bits? 
• Permanency: are these failures permanent, intermittent (i.e., hard errors), or transient (i.e., 

soft errors)? 
• Systematic character: do these failures impact only some memory in a manufacturing 

batch or all memories in the batch? 
 
In a very simplified view, a device manufacturing process can be separated into two steps. The 
first step, called front end, corresponds to the generation of a die, whereby devices are patterned 
in the semiconductor wafer, interconnected through conductor tracks, and wherein wafers are 
tested. A second step, called back end, corresponds to wafer dicing into dies and dies packaging 
to produce the final components. Both steps can produce failures. Front end failures mainly 
correspond to process limit behavior and, therefore, are generally revealed with time. Back end 
failures are generally revealed early in the life of the product. 
 
As stated in section 2, commodity memory has a good quality level even if AEH requirements 
can be higher. Their reliability is contingent on the constant race between the regular progress in 
manufacturers’ design and processes and the reduction of technological nodes that entail new 
sources of process variability.  
 
3.2.2  Die Failures 

The increasing variability in devices from die to die and within one die (due to process, voltage, 
and temperature variations) becomes a major concern when proceeding further with technology 
scaling. As feature size decreases, extensive variation and wear-out occur. Process variations 
arise during manufacturing of the integrated circuit (IC) and affect both transistors and 
interconnect. The following subsections detail the specific concerns. 
 
3.2.2.1  Process Variation 

Two classes of process variations exist [9, 10]: 
 
• Inter-die variations affecting all devices (transistors) of a die in a homogeneous way 
• Intra-die variations creating physical heterogeneity across the die  
 
Process variations stem from different sources and have systematic or random aspects. The 
growth of intra-die variations directly affects the yield and performance of manufactured chips; 
they have become a serious concern [11, 12]. Process variations have also been shown to 
exacerbate the degradation of devices [13, 14]. 
 
3.2.2.1.1  Random Dopant Fluctuation and Line-Edge Roughness 

Random dopant fluctuation (RDF) and line-edge roughness (LER) are process imperfections (see 
figure 9). 
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Figure 9. Primary sources of process variation: RDF and LER [15] 

RDF is a process variation that may cause a failure because technology scaling drives a decrease 
of dopant atoms in the depletion region (channel of the transistor) [16]. This fluctuation in the 
number of dopant atoms in the transistor channel results in variations in the Vth of the device. 
Even two identical transistors with the same number of dopant atoms can each possess a 
different Vth because of their positions in the channel. Because RDF is inversely proportional to 
the device area, SRAM cells, which are usually designed with the minimum transistor geometry 
available, are intrinsically the most susceptible to this type of variation. Relative variation can 
reach approximately 50% of Vth in advanced technologies (i.e., available COTS devices with 
technology smaller than 45 nm).  
 
The gate patterning process step introduces a non-ideal gate edge; this imperfection is referred to 
as LER [17]. LER impacts directly on Vth variation, following a Gaussian distribution, and is 
inversely proportional to the gate width of the transistor. The impact of LER when changing the 
device dimension from W1 to W2 on σVth is illustrated with the following equation: 
 
 

2 1| 1 2 |/
th thV W V WW Wσ σ=  (1) 

 
LER is caused by the change in the shape of the gate along the channel-width direction, as shown 
in figure 9. Controlling LER variations is extremely difficult because the variations do not scale 
with technology. Improvements in the lithography process do not reduce LER.  
 
LER directly affects Vth variation and is inversely proportional to the gate width of the transistor 
(mainly from 50 nm technology node and below). A slight variation in channel width will 
introduce large variations in Vth, as shown in figure 10. As a result, the problem can become 
critical for devices such as memory cells that are extremely susceptible to Vth mismatch. 
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Figure 10. Combined effect of LER on Vth variation 

Effects of RDF and LER are, in general, permanent; they are hard errors. RDF and LER can 
randomly impact several memory cells on the die. If one transistor suffers from RDF or LER, the 
neighboring transistors may still be good. 
 
3.2.2.1.2  Random Telegraph Noise  

Random telegraph noise (RTN), or random telegraph signal (RTS), is a random fluctuation in the 
device drain current that causes variation in Vth. This is explained by the trapping and de-
trapping of channel carriers at the oxide interface, as shown in figure 11. The fluctuation in drain 
current is caused by the change in the number of carriers as well as the changes in surface 
mobility induced by the trapped charges in the gate dielectric [16]. 
 

 

Figure 11. RTN Vth variation caused by trapping and detrapping charges in the channel 
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Both RTN and RDF arise because of discreteness in charges. However, RTN differs from RDF 
because it is a time-dependent phenomenon in which fewer charges are involved. Technology 
scaling increases RTN because of the reduction in the number of channel carriers. The impact of 
RTN on Vth variations can be estimated according to the following equation:  
 

 
1th RTN

eff eff ox

qV
W L C

∆ =  (2) 

 
where q is the elementary charger; Leff and Weff are the effective channel length and width, 
respectively; and Cox is the gate capacitance per unit area. The equation shows that Vth variation 
is inversely proportional to device area and can become a serious concern for highly scaled 
technologies and a critical problem for SRAM cells. Figure 12 shows that Vth variation because 
RTN has a non-Gaussian distribution with a long tail, which is a critical concern related to RTN. 
 

 

Figure 12. Distribution of Vth fluctuation due to RTN 

RTN is linked with the transistor’s functioning and dimensions. Effects of RTN are, in general, 
permanent, causing a hard error. RTN can impact all the transistors on the die and, therefore, all 
memory cells on the die. 
 
3.2.2.1.3  Other Sources of Variation 

RDF, LER, and RTS are currently dominant sources of process variations, but other sources exist 
that may become relevant for future technologies. The list below is a non-exhaustive 
enumeration of other sources of variation. 
 
• Variation of oxide charges: Interface charges can also cause Vth variations that may be 

significant with the recent adoption of high-K metal gates (high permittivity metal gates). 
Effects can be transient, become intermittent, and end as permanent. This mechanism can 
impact several memory cells randomly on the die. Of note, if one transistor is affected by 
this mechanism, the neighboring transistors may still be good. 
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• Mobility fluctuation: Variations in a transistor’s drive current can be caused by mobility 
fluctuations. Mobility fluctuations can arise from any of several complex mechanisms, 
including fixed oxide charges and doping or inversion layer. Effects of this mechanism 
are, in general, permanent, causing hard errors. Several memory cells can be randomly 
impacted on the die. Of note, if one transistor is affected by this mechanism, the 
neighboring transistors may still be good.  

• Gate oxide thickness variation: Oxide is a few atoms thick (typically 4 or 5 atoms). Any 
variation in oxide thickness affects several electrical parameters, in particular Vth. Effects 
of this mechanism are permanent. This mechanism can impact several memory cells 
randomly on the die. Of note, if one transistor is affected by this mechanism, the 
neighboring transistors may still be good. 

• Channel width variation: Because of lithography limitations, transistor channel width also 
varies, similar to LER variations. Width variations can cause Vth variations, but as the 
width is 2–4 times larger than the length, its impact on Vth is smaller than the impact due 
to length variation. Effects from this mechanism are, in general, permanent, causing hard 
errors. Several memory cells can be randomly impacted on the die. Of note, if one 
transistor is affected by this mechanism, the neighboring transistors may still be good. 
  

The sub-wavelength lithography is the primary reason for LER and several other effects causing 
geometrical variations inside the devices [18]. The discrete distribution of dopants in the 
transistor channel is another important factor, especially in advanced technologies (smaller than 
45 nm) due to the decreasing number of dopant atoms. As process variability impacts the 
electrical parameters of the transistors, it will also impact the behavior of the transistors 
regarding wear-out degradation mechanisms. 
 
Note that the repeated use of “several memory cells” to qualify the implied damage is related to 
the absence of relevant results from studies that would otherwise allow for a more precise 
determination of the impact. To the authors’ knowledge, the number of impacted cells is an 
unknown factor. 
 
3.2.2.2  Device Degradation and Wear-out 

During their useful life, ICs are affected by different degradation mechanisms such as hot carrier 
injection (HCI), negative bias temperature instability (BIT), and time-dependent dielectric 
breakdown (TDDB), which are shown in figure 131.  

                                                 
 
1 Figure 13 shows 65 nm technology. However, the technology size has no impact on the degradation mechanisms. Therefore, the figure remains 
relevant for the smaller technologies discussed in this report. 
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Figure 13. Wear-out phenomena localization (65 nm IC cross section) 

These degradation mechanisms can shift the properties of electronic devices and thereby affect 
the circuit performance [18, 19]. This process does not directly cause the associated faults, but it 
can increase the rate of occurrence of these degradation mechanisms. 
 
• BTI is a phenomenon that causes a drift in the Vth of CMOS transistors. Even if the 

underlying physics is still not completely understood, the effect is believed to be the 
consequence of a degradation of the silicon-dielectric interface with the creation of 
electron/hole traps [20, 21]. The effects of BTI are partially recovered when the applied 
stress is reduced or removed. Therefore, BTI effects can be intermittent or permanent. 
BTI affects several memory cells. 

• TDDB causes the formation of conductive paths through the dielectric, mainly in the gate 
oxide of devices (especially dramatic in high-K oxides), but also on inter-level dielectrics 
[22, 23]. It manifests itself as an increase in leakage currents through the gate oxide of 
devices (soft-breakdown) and can eventually lead to an oxide failure (hard-breakdown). 
If the phenomenon occurs because the gate oxide is of poor quality, all transistors can 
potentially be affected. If it occurs between metallization layers, then it can affect 
common parts. The phenomenon increases with voltage and temperature. Effects are 
intermittent at first and then become permanent. 

• HCI occurs when carriers gain sufficient energy to be injected into the gate oxide [24]. 
Defects can be created at the oxide interface or within the oxide. Charge trapping induced 
by this mechanism results in a degradation in drive currents and a decreased switching 
frequency rather than a hard functional failure. The phenomenon leads to a progressive 
degradation of the transistor’s performances up to permanent failure.  

• EM describes a failure mechanism experienced by the interconnect [25]. The mass 
transport of conductor metal atoms in the interconnect leads to a thinning over time of the 
metal lines and an increased resistance. If the metal atom depletion or pile-up is 
important, EM can also cause an open circuit or short between adjacent lines. The scaling 
of interconnect dimensions has a negative effect on the EM lifetime [26]. This 
mechanism impacts only a few transistors on the die. It can therefore affect only a few 
memory cells or common parts on the die. Its effects are permanent.  
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• Stress-induced voiding (SIV) is the formation of voiding in interconnects induced by the 
mismatch of the thermal expansion coefficients in the die’s different layers [27, 28]. The 
risk increases with technology scaling. This mechanism impacts only a few transistors on 
the die. It can therefore affect only a few memory cells or common parts on the die. Its 
effects are permanent. 

 
A device’s time to wear out or lifetime depends not only on the IC technology but also on the 
environment, such as temperature, supply voltage, operating frequency, or clock duty cycle. All 
could accelerate the failure mechanisms and reduce the device lifetime. 
 
3.2.3  Package-Related Failures 

IC assembly is the first processing step after wafer fabrication. Its primary objective is to enable 
ICs to be connected with the rest of the system. Figure 14 shows the first level package. 
 

 

Figure 14. First level package [29] 

Electronic packaging provides: 
 
• Mechanical robustness, which ensures the mechanical rigidity of the component. 
• Environmental protection against moisture, contaminants, and mechanical stresses. 
• Heat dissipation, whereby heat produced by the component is evacuated. 
• Signal and power distribution of the packaged die to the system via electrical connections 

between the die and the board. 
 
Package-related failures group all failures not directly linked to the die. These failures invalidate 
one of the previous functions: 
 
• Mechanical robustness is affected by delamination. 
• Environmental protection is affected when moisture and contaminants penetrate through 

the molding material or when mechanical stresses propagate. 
• Heat dissipation may be degraded. 
• Power distribution and signals may be lost; both signal and power are affected by short-

circuit. 
 

Several technologies are implemented to achieve the different functions, for example: 
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• The connection of the die with the printed circuit board (PCB) is generally realized 
through ball grid array (BGA) in the case of memories. 

• The connection of the die to the substrate can be done on or over the substrate (flip-chip).  
• The electrical connection between the die and the substrate (for electrical continuity) can 

be realized through bonded wires, micro-balls, etc. 
 
Figure 15 shows a simple example of packaging with BGA, die over the package substrate, and 
bonded wire connections. 
 

 

Figure 15. View of a package 

Failure mechanisms are considered applicable for different technologies of packaging. Where a 
mechanism is specific to a certain technology, it is mentioned in the description below. 
 
The basic constituents of a simplified packaging identified in figure 15 are: 
  
• The package substrate, which achieves electrical, thermal, and mechanical continuity. It 

can suffer from: 
 

- Delamination between the die and its package substrate.  
- Moisture penetration at the interface between the package substrate and the 

molding material. 
 

• The molding material, which it ensures thermal dissipation and protection against 
mechanical stresses. It can suffer from: 
  
- A polymerization defect that renders the molding material aggressive against the 

die.  
- Emission of α particles: the package can contain some radioactive contaminants 

(uranium or strontium) that emit α particles. This source of failure has been well-
covered by preventative and corrective measures implemented by the 
semiconductor industry. It is also the case that the interaction of neutrons with 
boron dopant creates α particles; that has also been circumvented. These 
phenomena are considered controlled and only minor issues, except in cases of 
process failure. 
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• The passivation mineral film, which ensures the protection against moisture and 
contaminants penetration because the molding material generally cannot be considered 
watertight. It can suffer from: 
 
- Contamination, which can affect the Vth of die gates. 
- Differential dilatation or thermal coefficient expansion (TCE) mismatch between 

the molding material and the protection film, which can lead to cracking of 
passivation film, causing potential penetration of moisture or corrosion of metallic 
layers (in particular when aluminum is used). 

- Silicon-nitride-based passivation film transfers mechanical constraints to the die 
[30] and can contribute to an SIV failure mechanism. 

 
• The bonded wires, which connect the die to the package substrate. They can suffer from: 

 
- Wire liftoff (including ball-bond and wedge-bond lifting), for which major causes 

are poor bonding or bonding pad contamination. This is specific to bonded wire. 
- Wire breakage: major causes are poor bonding or stress from molding material. 

This is specific to bonded wire. 
 
• Solder balls, which connect package substrate to the board (pins, balls, etc.). They can 

suffer from open circuits. 
 
Table 3 links the basic constituents of a simplified package with the functions of the package and 
allows for mapping of the constituent failure mechanisms and failure modes of the package 
functions. 

Table 3. Relationship between package constituents and package functions 

 Constituents 

Package 
substrate 

Molding 
material 

Passivation 
mineral 

film 

Bonded 
wires 

Solder 
balls 

Fu
nc

tio
ns

 Mechanical robustness X X    
Environmental protection  X X   
Heat dissipation X X X X X 
Signal and power distribution X   X X 

 
Several of the preceding failures develop at interfaces between the simplified package 
constituents. This is the case, in particular, for the following: 
  
• Delamination of the die from the package substrate 
• Moisture penetration at the interface between the package substrate and the molding 

material 
• TCE mismatch, which causes either the occurrence of a fracture anywhere on the die (die 

cracks) or non-conformances to electrical specifications 
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These phenomena are, in principle, controlled within the nominal process and can be created 
only in the case of process failure. Because they involve common parts of the memory, these 
failure mechanisms generally impact the complete component and lead to permanent failures. 
This is not the case, however, for α radiation, which leads to soft errors on a single gate, 
impacting a memory cell or a common part. 
 
3.2.4  Synthesis Tables of Die Defects and Defects Induced by Packaging 

Table 4 provides the synthesis tables of die defects and defects induced by packaging, and table 
5 provides synthesis of memory defects induced by packaging. 
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Table 4. Synthesis of die defects 
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Random dopant 
fluctuation  

- Several memory cells randomly on the die 
- Common parts 

Hard No 

Line edge roughness  - Several memory cells randomly on the die 
- Common parts 

Hard No  

Random telegraph 
noise  

- All memory cells 
- Common parts 

Hard 
/soft  

 No  

Oxide charges 
variation 

- Several memory cells randomly on the die 
- Common parts 

Soft,  
then  
hard  

 No  

Mobility fluctuation - Several memory cells randomly on the die 
- Common parts 

Hard   No  

Gate oxide thickness  - Several memory cells randomly on the die 
- Common parts 

Hard   No  

Channel width 
variation 

- Several memory cells randomly on the die 
- Common parts 

Hard  No  

Bias temperature 
instability  

- Several memory cells randomly on the die 
- Common parts 

Hard  No  

Time-dependent 
dielectric breakdown  

- One memory cell randomly on the die 
- Common parts 

Hard  No  

Hot carrier injection  - Several memory cells randomly on the die 
- Common parts 

Soft,  
then  
hard  

 No  

Electro-migration  - Several memory cells randomly on the die 
- Common parts 

Hard   No  

Stress-induced 
voiding  

- Several memory cells randomly on the die 
- Common parts 

Hard  No  

(*) = a “yes” answer means that the default can be generated only by a failure of the process, leading to an impact on 
all the memory components of the production batch. If the answer is “no,” the failure is generated by a variation in 
the process and impacts components randomly. 
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Table 5. Synthesis of memory defects induced by packaging 
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Die delamination - All memory cells 
- Common parts 

Hard No 

Wire Liftoff  - All memory cells 
- Common parts 

Hard No 

Wire Liftoff or Wire 
Break  

- All memory cells 
- Common parts 

Hard No 

Aggression of 
bonding by molding 
material 

- All memory cells 
- Common parts 

Hard Yes 

Alpha particle 
radiation 

- Several memory cells randomly on the die 
- Common parts 

Soft Yes 

Contamination of 
passivation mineral 
film  

- Several memory cells randomly on the die 
- Common parts 

Hard Yes 

TCE mismatch 
between molding 
material and 
passivation mineral 
film and crack of 
passivation mineral 
film 

- All memory cells 
- Common parts 

Hard No 

Transfer of 
mechanical 
constraints to the die 
by passivation 
mineral film 

- All memory cells 
- Common parts 

Hard No 

(*) = a “yes” answer means that the default can be generated only by a failure of the process, leading to an impact on 
all the memory components of the production batch. If the answer is “no,” the failure is generated by a variation in 
the process and impacts components randomly. 
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4.  MITIGATION OF FAILURE MODES 

4.1  EMBEDDED MITIGATIONS 

This section identifies potential issues with built-in fault-mitigation techniques (e.g., error 
detection and correction [EDC]) and their adequacy with respect to the commodity memory’s 
failure modes. 
 
Failure-mode mitigation techniques for commodity memories are of two types: 
 
• Techniques addressing manufacturing defects apply to defects that are present and 

detected at the time of manufacturing. 
• Techniques addressing defects occurring while in use apply to permanent failures or hard 

errors (e.g., memory wear out) and to transitory failures or soft errors (e.g., bits that 
unexpectedly change state during normal use of the memory). 

 
For memory, mitigation techniques can be categorized into two classes: 
 
• Physical redundancy (e.g., presence of spare areas, with remapping of a spare area at the 

address of a faulty area) 
• EDC 
 
Both classes have to be taken into account. For a NAND flash memory, repeated read accesses to 
a memory page can cause the nearby page to dim, possibly to the point of flipping, which is a 
soft error. Conversely, repeated write accesses to a memory page can cause it to wear out, which 
is a hard error. Memory manufacturers’ qualifications take into account both soft errors and hard 
errors in the computation of the failure rate. 
 
The mitigation techniques may be: 
 
• Fully implemented by the manufacturer: 

 
- The mitigation is transparent to the user. 
- The component internally manages the mitigation. 
- The performance (here the available size) is the same for all components and is 

constant in time. 
 
DDR may be such an example: at manufacturing time, faulty rows may be remapped on spare 
rows; this would be invisible from outside of the component. 
 
• Fully implemented by the user: 

 
- The users implement their own mitigation technique(s). 
- The component does not implement any support for mitigation. 
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- There is no example of this case for the memories considered in this report, at 
least for manufacturing defects. However, this situation exists for SEU 
management in DDR memories, for which the user must implement the complete 
solution, including the management of an ECC mechanism and the addition of 
extra chips to store ECCs. 

 
• Partially implemented by the manufacturer and user: 

 
- The users implement their own mitigation techniques. 
- The component provides facilities to support the implementation of the 

mitigation. 
- The performance may be slightly different from one component to another and 

may vary in time. 
- NAND flash memory is such a typical example: the component contains extra 

space for storing ECCs and for replacing sectors that wear out in use. 
 
Table 6 summarizes the mitigation techniques used for the memories addressed in this report. 

Table 6. Summary of mitigation per memory type 

Memory Mitigation of Manufacturing 
Defects 

Mitigation of Hard 
Errors 

Mitigation of Soft 
Errors 

DDR 

No public information. 
Possibly fully performed by 
the manufacturer through 
redundancy and remapping. 

No public 
information. 
Likely none. 

No public information. 
Likely none. 

NAND 
FLASH 

Manufacturer plus user. 
Redundancy provided by 
component but managed by 
user. 

Manufacturer plus 
user. 
Redundancy provided 
by component but 
managed by user. 

Manufacturer plus user. 
Space provided by 
component for ECC but 
ECC managed by user. 

QDR Not specified. Component is 
delivered fully functional. 

No public 
information. 
Probably none. 

None. See note.  

MRAM Not specified. Component is 
delivered fully functional. 

None. Data sheet 
specifies infinite 
number of read/write 
cycles. 

Fully by the 
manufacturer with 
embedded ECC. 

 
Note: QDR memory contains extra data bits for storing parity bits, or ECCs, to be managed by 
the user. However, they are not claimed to be specifically targeting possible intrinsic soft errors 
of the component. Rather, they are included as a means to mitigate the whole data path (e.g., 
processor, ASIC, connectors, buffers) against issues such as SEU, electromagnetic compatibility 
issues, and signal integrity. 
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4.1.1  Embedded Mitigation in DDR Memories 

No public information is available in the manufacturers’ documentation about embedded 
mitigation of production failures. A possible mitigation is the remapping, at manufacturing time, 
of some faulty rows to spare rows of cells. This remapping is transparent to the user. This 
mitigation, when it exists, is reliable because all the cells that are used in the delivered 
component are working cells. Nevertheless, because no public information is available, it is not 
possible to analyze the impacts of such mitigation in this report. 
 
Instead, the following concerns are raised, but they should be taken in a generic sense. A 
possible impact of the above mitigation could be a slightly longer timing when accessing a 
remapped row. Even if it is the case, the timing would still comply with the component’s data 
sheet. Indeed, if the mitigation is implemented, it is likely applied on a significant number of 
dies; otherwise, it is not worth implementing. As previously discussed, it is unlikely that a 
manufacturer delivers a significant number of components that are not compliant with their 
specification. 
 
Another possible impact might be a change of the overall component reliability, depending on 
whether the mitigation is implemented or not, for instance, when on-die fuses are involved. 
However, this impact must be absorbed in the component’s reliability characteristics provided by 
the manufacturer. 
 
The impact of the presence of defective cells in the chip may depend on the nature of the defect. 
From a logical point of view, defective cells are never accessed because their address is 
remapped to other cells. They have no functional impact. From an electrical point of view, it is 
not possible to conclude whether there is a risk that defective cells cause internal electrical issues 
because no information is available. Whereas the defective cells are never activated after the 
implementation of the mitigation, their impact is a constant that can be detected by a production 
test. 
 
To summarize, the unavailability of public information does not allow for suspecting a risk 
associated with manufacturing defects mitigation inside DDR memory components. 
 
4.1.2  Embedded Mitigation in NAND Flash Memories 

NAND flash memory represents an interesting case study because it is notorious for containing a 
significant number of defective cells, even for a new component. The presence of defective cells 
is, however, under control and is therefore not considered an obstacle for their use in safety-
critical applications. During the life of the component, additional defective cells will appear 
because of the component wearing out in use. 
 
Manufacturing defects are not an issue because they are considered standard. The 
implementation of solutions to address this situation are also standard. The component itself does 
not include any mitigation techniques. The mitigation is entirely implemented by the user, 
outside of the component. NAND flash memory includes spare memory cells providing storage 
elements that the external mitigation mechanism can use to store mitigation-purpose data, such 
as ECCs or wear counters. As the mitigation is implemented outside of the component, it can be 
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controlled by the AEH manufacturer. This situation is therefore more favorable to the AEH 
manufacturer. 
 
4.1.3  Embedded Mitigation in QDR Memories 

No public information is available in the manufacturers’ documentation regarding embedded 
mitigation of production failures. QDR memory generally offers extra data bits with respect to 
the standard data word width: common QDR data widths are 18, 36, and 72 bits, whereas 
common QDR data word widths are 16, 32, and 64 bits. 
 
An average of one extra bit per byte is available. In the QDR documentation, these extra bits are 
presented as storage space for ECC bits, managed by an external ECC mechanism. Based on the 
above configuration, no internal mechanism is likely to be implemented to mitigate 
manufacturing defects. 
 
4.1.4  Embedded Mitigation in Toggle Magnetoresistive RAM 

No public information is available in the manufacturers’ documentation regarding embedded 
mitigation of production failures. The component is not subject to wear out. The component 
includes an embedded ECC mechanism dedicated to the mitigation of internal soft errors, called 
WSEs, which may naturally occur during the normal usage of the component. Writing into an 
MRAM cell may cause an adjacent cell to flip. Although this phenomenon is very rare, it does 
exist. The internal ECC mechanism is intended to mitigate this type of cell corruption. When the 
corrupted cell is later read, the ECC mechanism will provide the correct value of the cell on the 
data bus (i.e., the value it had before the alteration caused by an adjacent write). Public 
documentation that is available does not, however, explain whether WSEs concern only cells that 
have a manufacturing weakness or all cells. 
 
Finally, it is not possible to determine from the available documentation whether the internal 
ECC is a mitigation of manufacturing defects or a need of the technology. 
 
4.2  POTENTIAL ISSUES WITH EMBEDDED MITIGATION TECHNIQUES 

The effectiveness of a mitigation technique is highly dependent on its adequacy with respect to 
the defects it mitigates. As internal mitigation techniques are implemented by the component 
manufacturers themselves, a technique-defect match is highly likely. 
 
Potential issues with embedded mitigation techniques are of two types: 
 
• They are often very poorly documented; therefore, even if they are effective, it is difficult 

to appreciate their effectiveness. 
• They might mitigate only a subset of the potential defects, typically the defects most 

likely to be revealed in the most common usage of the component in consumer 
electronics. If the usage made in an AEH is different, some potential defects might not be 
mitigated (see usage domain in section 2.4). 
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Finally, embedded mitigations that are present in the component may have been implemented for 
mitigating soft errors that naturally occur during the normal usage of the component rather than 
for mitigating permanent manufacturing defects. Some manufacturing defects may be diminished 
by these mitigations, as well, as side effects, and, therefore, the behavior of the component is 
correct, but these permanent defects may prevent the mitigation of soft events. Consider, for 
example, an ECC mechanism correcting a single bit error. The mitigation is intended to correct 
transient errors during normal usage that have a sufficiently low probability of occurrence for a 
single bit correction to be adequate. If a memory cell is permanently failed because of a 
manufacturing defect, the ECC will correct it and the memory will work as intended, but if a soft 
error occurs in the same word, then it will not be corrected and the memory will provide 
erroneous data. 
 
4.3  EFFECTIVENESS OF EDC MITIGATION TECHNIQUE 

This section describes how to analyze the effectiveness of the EDC mitigation technique.  
 
4.3.1  Overview of EDC Technique 

An ECC mechanism is more than a mere mathematical algorithm. An ECC mechanism is made 
up of several elements [31]: 
 
• A physical element that stores redundancy data (i.e., the ECC). This element is 

implemented with dedicated memory cells. For embedded mechanisms, these extra cells 
are located inside the memory chip, but, in general, they may be located in another chip. 

• A mathematical algorithm comprised of three parts. The formula that allows for 
computing the ECC from the data at write time, the formula that allows for computing the 
syndrome from the read data and the read ECC at read time, and the formula that allows 
for computing the diagnostic from the syndrome. 

• A decision strategy implemented as a decision tree. The decision tree is used to determine 
the action to be performed depending on the diagnostic. The decision strategy is not a 
mathematical formula but a design choice made by the user. 

• An action logic. For example, a logic block building a corrected value plus a multiplexor 
that allows for replacing the read value by the corrected value and a status register or a 
pin that signals the detection / correction of an error. 

 
The diagnostic supported by the mathematical algorithm provides several pieces of information: 
 
• The presence of an error (yes/no) 
• The number of altered bits 
• The localization of the error (position and value) 
 
Note that when too many bits are altered, some or even all of these pieces of information may be 
wrong. 
 
The decision tree directs which action has to be taken according to the information given by the 
mathematical diagnostic. Below is an example of a decision tree: 
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• If there is no error, then do nothing. Data_out will be data_read and no error will be 

reported. 
• If there is one error, then apply the correction proposed by the diagnostic. Data_out will 

be corrected and no error will be reported. 
• If there are two or more errors, then perform only error reporting. Data_out will be 

data_read with a non-correctable error reported. 
 
An ECC mechanism always manages the alterations of the data bits and the alteration of the ECC 
bits. When dealing with the ECC mechanism, the set {data + associated ECC} must be 
considered. The number of bits of the ECC depends on the algorithm. Some algorithms have a 
better ratio of the number of data bits over the number of ECC bits when the number of data bits 
is greater. The Hamming algorithm is such an example, as the number of ECC bits is in log2 of 
the number of data bits. For this reason, some atomic data words are sometimes gathered in a 
single set {DATA+ECC}. For example, four 16-bit data words may be gathered in a set {64 data 
bits + 8 ECC} of a Hamming algorithm. 
 
Note that all these elements contribute to the performance of the ECC mechanism and not only 
the mathematical algorithm. In particular, the decision tree plays a significant role.  
 
4.3.2  Effectiveness of an ECC Mechanism 

4.3.2.1  Effectiveness With Respect to the Number of Errors 

The effectiveness of an ECC mechanism is rigorously defined by a status table that indicates 
which action is taken and which effect results from the action for each number of actually altered 
bits in the set {data + associated ECC}. The status is okay (OK) when either the output data is 
correct or reported as incorrect (i.e., reported as a non-correctable error); otherwise, the status is 
not okay (NOK). The most relevant information in the table is, therefore, the status. The action 
and result are only complementary information and are optional. 
 
Table 7 provides an example of a status table for a commonly used mitigation mechanism based 
on a Hamming algorithm, with a decision tree that favors the correction and reporting of non-
correctable errors. 
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Table 7. Example of ECC status table 

Number of 
Actually Altered 

Bits in 
{DATA+CODE} 

Mathematical 
Diagnostic 

Action Chosen 
by the Decision 

Tree 
Actual Result Status 

0 No error None Output data is correct OK 

1 Single error 
 + position Correction Output data is correct OK 

2 Double error Signaling of 
non-correctable 

Output data is wrong 
but a non-correctable 
error is reported 

OK 

3 
Single error 
 + position 
(see note) 

Correction 
Output data is wrong 
but the mechanism 
claims that it is correct 

NOK 

More than 3 Any one of the 
three above. 

Any one of the 
three above 

Output data is wrong 
but the mechanism 
may claim that it is 
correct 

NOK 

 
Note: in this case, the mathematical diagnostics are wrong because they point to a single error; 
however, there are, in fact, three errors. 
 
The Hamming algorithm provides a good correction only when there is a single altered bit. When 
three bits are altered, the algorithm is confused and yields a false diagnostic of a single error. The 
decision tree then attempts to correct the error, which is useless because the algorithm is not able 
to do so. It signals that the data are correct, which is not true, then creates undetected erroneous 
data. The final effectiveness of this mechanism may be summarized as follows: 
 
• With one or two altered bits, the status is OK. 
• With three or more altered bits, the status is NOK. 
 
Similar mechanisms with a different decision tree (e.g., no correction but only error reporting), 
or with a different panel of action (e.g., no error reporting), will have different effectiveness 
levels. For example: 
 
• With no correction and only error reporting: 

 
- With one, two, or three altered bits, the status is OK. 
- With 4 or more altered bits, the status is NOK. 
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• With correction and no error reporting: 
 
- With one altered bit, the status is OK. 
- With two or more altered bits, the status is NOK. 

 
4.3.2.2  Effectiveness With Respect to Real Events 

Alterations of memory cells are caused by physical events. In the simplest case, a physical event 
alters only one memory cell. Then the effectiveness of the mitigation mechanism with respect to 
real events is the effectiveness of the mechanism with respect to a 1-bit alteration. 
 
Physical events may alter several cells, either at one time or through accumulation of events over 
time. In this case, the position of the altered cells is very important for two reasons: 
 
• Depending on whether the altered cells are included or not in the same set 

{DATA+CODE}, the mechanism will detect a different number of altered bits and 
implement a different response. 

• When several bits are altered inside a same set {DATA+CODE}, the algorithm may have 
a different behavior, depending on the relative position of the altered bit inside the set 
{DATA+CODE}. 

 
The knowledge of the relationship between the real events and the number and position of the 
altered memory cells is a key factor for the determination of the effectiveness of the mitigation 
mechanism with respect to these events. 
 
Another factor is the accumulation in time. Each time a set {DATA+CODE} is written, it 
becomes free of alteration (except if writing is one of the altering events). If several events can 
alter cells in the same set {DATA+CODE} between two successive refreshes of that set, the 
ECC mechanism will see a different number of altered bits and have a different response. The 
accumulation factor varies according to: 
 
• The event rate, which depends on the environment and characteristics (immunity against 

the environment) of the component. 
• The time between successive refreshes of the data, which depend on system 

characteristics. 
 
The accumulation factor is contingent on the characteristics of the component (immunity), but it 
does not depend on the characteristics of the ECC mechanism. Therefore, although the 
accumulation factor is relevant for system consideration, it will not be taken into account in the 
sections dedicated to ECC mechanisms in this report. 
 



 

54 

4.3.3  Methods for Analyzing the Effectiveness of a Real ECC Mechanism 

4.3.3.1  Effectiveness With Respect to the Number of Errors 

4.3.3.1.1  Theoretical Approach 

The best method for acquiring knowledge of all the internal elements of the ECC mechanism 
should include: 
 
• The physical element that stores the ECC: where it is located (i.e., inside or outside the 

component) and how many ECC bits are associated with how many bits of data. 
• The mathematical algorithm. 
• The decision tree. 
• The actions performed. 
 
It is absolutely necessary to be cognizant of all of these elements. In particular, the knowledge of 
the sole algorithm is not sufficient because the decision tree and related actions also play an 
important role. Once all the elements are known, the status table previously described can be 
built and the effectiveness of the mechanism can be rigorously established. 
 
4.3.3.1.2  Experimental Approach 

The experimental approach consists in voluntarily altering bits, observing the result, and 
establishing the status OK/NOK of that result. The method is multi-stepped: 
 
• First, create all possible 1-bit errors in a set {DATA+CODE}: 

 
- If the status is always OK, then continue with 2-bit errors in step 2. 
- If the status is NOK at least once, then stop at this step. 

 
• In step 2, create all possible 2-bit errors in a set {DATA+CODE}: 

 
- If the status is always OK, then continue with 3-bit errors in step 3. 
- If the status is NOK at least once, then stop at this step. 

 
• Step 3 and beyond: carry on with increasing the number of altered bits until the status is 

NOK at least once. Typically, wrong output data not reported as wrong will eventually 
occur. 

 
Because the method is exhaustive, the measured effectiveness is reliable, even if the internal 
elements of the mechanism are not known. The experimental approach is possible only if the 
creation of all possible alterations can be controlled for each number of bits until the status 
becomes NOK. 
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4.3.3.2  Effectiveness With Respect to Real Events 

As explained in section 4.3.2.2, the main factor is the relationship between the real events and 
the number and relative position of the altered cells with respect to the ECC mechanism. This 
relationship depends on internal characteristics of the chip, such as the layout of the cells or the 
number of cells that may be altered by an event. 
 
This information can be obtained only from the manufacturer. 
 
4.3.3.3  Application to a Real Component 

As stated throughout this paper, nothing can be achieved without key information being provided 
by the manufacturer: 
 
• Information about the ECC mechanism itself. 
• Information about the number and relative position of the altered cells with respect to the 

ECC mechanism for each type of event. 
 
The first step is to acquire this vital information. Some portion of information is public, but most 
of the time an NDA will be required to access the required information. Once the information is 
retrieved, the methods given in sections 4.3.3.1 and 4.3.3.2 are applied. 
 
4.3.4  Application to the Selected Commodity Memories 

4.3.4.1  DDR Memories 

No public information is currently available on the presence of regarding embedded ECC 
mechanism in DDR memory, at least up to the DDR3 series. Many microprocessors that target 
the industrial market and that have a DDR memory interface implement both an internal ECC 
mechanism and a larger data bus that allows for adding an extra DDR memory to store the ECCs 
of the processor’s internal ECC. Industry-standard processors of the industrial market do not rely 
on potential ECC mechanisms embedded inside the DDR memory chips. 
 
4.3.4.2  NAND Flash Memories 

NAND flash memories are intended for use with external ECC mechanisms. There is no 
embedded ECC mechanism in NAND flash memory. 
 
4.3.4.3  QDR Memories 

No public information is currently available on the presence of an embedded ECC mechanism in 
QDR memory. As QDR memory generally comes with extra data bits intended for use with 
external ECC mechanisms, it is likely that no embedded ECC mechanism is implemented in a 
QDR memory. 
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4.3.4.4  Toggle Magnetoresistive  Random Access Memory 

Toggle MRAM has embedded ECC mechanisms, as indicated in publicly available 
documentation. These ECC mechanisms are able to correct one altered bit. This information is 
useful but not complete. The public documentation does not provide enough details about the 
ECC to allow a complete analysis of the effectiveness of the ECC mechanisms, as described in 
sections 4.3.3.1 and 4.3.3.2. However, extra information might be obtained with an NDA. 
 
Also, the public documentation does not state whether the aim of the ECC is only to manage 
write soft events or additionally to fix possible manufacturing defects (limited to a small number 
of cells). Once again, extra information might be obtained with an NDA. 
 
4.3.4.5  Summary: Availability of the Information for the Selected Memories 

The real case of the four selected memories shows that public documentation provides very little 
information about internal ECC mechanisms. However, extra information might be available 
with an NDA. AEH manufacturers should attempt to obtain this information. 
 
Confidential information cannot be used in the safety documents of the AEH because it could be 
disclosed to third persons, but it may be used internally to secure better confidence in the 
purchased memories and final equipment. 
 
4.4  INTERNAL OR EXTERNAL FAULT MITIGATION TECHNIQUES OTHER THAN 
BUILT-IN SOLUTIONS 

Two main avenues exist to address issues stemming from possible manufacturing defects in a 
memory set: 
 
1. Reducing the probability of occurrence for potential data alteration 
2. Detecting and correcting the potential data alteration 
 
These two approaches are not exclusive and may be advantageously combined. 
 
4.4.1  Reducing the Probability of Occurrence of Data Alteration 

The likelihood of information alteration due to manufacturing defects can be reduced by: 
 
• Increasing the level of quality of the purchased commodity memories. 
• Performing memory tests at runtime. 
• Implementing redundancy. 
• Relocating data in a more reliable memory (i.e., not in a commodity memory). 
 
4.4.1.1  Increasing the Level of Quality of the Commodity Memory 

An increase is linked to the careful selection of the supply chain and additional tests performed 
after the component has been delivered by the manufacturer. 
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To describe this concept, below is a real-life example of complementary tests performed by an 
AEH manufacturer on a Not-OR (NOR) flash memory. In AEH equipment, a NOR flash 
memory is used for dynamic data storage. Software applications can write to the NOR flash 
memory at any time during flight. The component being considered is dedicated to this usage 
with the aim of performing logging; in this context, small data messages are saved and will 
remain available after power off. The reasons that led to the choice of a NOR flash memory for 
this usage are historical. Since the advent of NAND flash memories, NOR flash memories have 
no longer been used as dynamic storage components. Although data sheets still exhibit high 
performances in terms of erasing and writing endurance (i.e., achievable number of erasing 
cycles before the component fails because of wear-out), a high number of erase cycles is no 
longer a common usage for NOR flash components. When the original component became 
obsolete, a new component, compatible with the original, had to be used to replace it. Two 
candidates existed for the new component: one component had the same reference (but with a 
different die revision) with a simple technology shrink (e.g., from 110 nm to 90 nm), whereas the 
other component was functionally equivalent but with a more recent die design. 
 
Because the usage of the NOR flash component in the equipment was no longer within the 
common usage domain of a NOR flash memory, it was decided to perform in-house tests on 
erasing endurance. A test bench was built to measure the erasing endurance of the two 
candidates. The test bench consisted of actual avionics boards to be representative of a real 
component environment. Testing erasing endurance requires thousands of test hours, so 
preliminary tests were first performed to quickly get a rough idea of the performance by 
including erasing cycles on sectors of a few components. Figures 16–18 are an extract of the 
results of the preliminary tests. The first diagram corresponds to the original component. The 
second diagram is the same reference with the simple technology shrink, and the third diagram is 
the equivalent component with a new die design. The vertical axis represents the erasing time, 
and the horizontal axis represents the number of erasing cycles. The horizontal red line is the 
maximum time allowed. 
 

 

Figure 16. Erasing endurance for original NOR flash memory 
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Figure 17. Erasing endurance for the same reference with simple technology shrink option 

 

Figure 18. Erasing endurance for the new die design option 

The same reference with a simple technology shrink option has a slightly different behavior than 
the original component but is very similar and fulfills the requirement (horizontal red line) over 
300,000 cycles. The compatible component with new die design option stopped working at 
approximately 100,000 cycles, which is not sufficient for the considered AEH equipment. Note 
that the new die design is not a bad design; it is simply a design that is optimized for the new 
market demand criteria (such as memory size) rather than for erasing endurance, which is no 
longer a market demand for NOR flash memory. 
 
The same reference with a simple technology shrink has therefore been selected as the sole 
possible candidate. After the selection, an intensive erasing test has been performed on every 
sector of a greater set of components. The test was run over a 1-year period (continuously: 24 
hours a day, 7 days a week) to get a sufficient number of erasing cycles. The test measured the 
erasing times and writing times. Several criteria, such as the statistical dispersion of the values 
between sectors of the same component and between components, absolute maximum values (all 
sectors of all components), and slope of the curves, were defined to characterize the results.  
 
Finally, after more than 1 year of intensive tests, it was established that the measured 
characteristics of the candidate replacement component were good enough for it to be accepted 
as a replacement of the original component (from the erasing endurance standpoint). 
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4.4.1.2  Performing Memory Tests at Runtime 

Runtime memory tests are performed during the operational usage of the electronic module. This 
is contrary to manufacturing tests, which are carried out only once for each step of the electronic 
module manufacturing: memory chip manufacturing (die, packaging), board manufacturing, and 
computer assembly. Runtime memory tests may be performed at the initialization time of the 
electronic module (e.g., after power on) or periodically as a background task. They can be 
implemented by hardware or software. 
 
Runtime memory tests are useful because they can detect defects that were not present at the 
time of manufacturing but appear during the life of the electronic module. The main objective of 
runtime tests is to detect common random failure, but they may help detect manufacturing 
defects that reveal themselves only after certain usage time or randomly (i.e., not at each access). 
 
Performing runtime memory tests is not without issues. These tests are intrusive and time- 
consuming. They monopolize the memory and destroy its current contents because they write 
test patterns. 
 
4.4.1.2.1  Memory Tests at Initialization Time of the Electronic Module 

At the initialization time of the electronic module, the intrusive aspect of the test is generally 
acceptable and, therefore, exhaustive testing is generally possible. 
 
Because memory tests at initialization time are typically already performed for reliability reasons 
(e.g., detection of common random failure), there is no additional work per se for commodity 
memories. Eventually, these existing tests may be tuned to specific potential manufacturing 
defects that have been identified for the commodity memories used in the electronic module. 
 
4.4.1.2.2  Memory Tests Performed in the Background 

Performing memory tests as a background task is more difficult. The temporal aspect of the 
memory test can be managed. The impact on performance of a test is predictable and shall be 
taken into account during the design phase (i.e., the possible amount of tests is bounded by the 
product performance requirements). However, the fact that the test destroys the current content 
in the memory’s locations being tested is an issue. Several approaches may be used to manage 
this issue; they are detailed in the following subsections. 
 
4.4.1.2.2.1 Saving and Restoring the Contents of the Locations Being Tested 
 
In this approach, a free memory area of the same size as the target area for the test is tested first. 
Because the memory area is free, the destructive nature of the memory test has no impact on the 
content. If this test fails, it is not possible to carry on, and a sanction on the memory must be 
taken. If this test passes, the content of the area to be tested is copied onto the free area. Then, the 
area targeted for the test is tested. If the test fails, the data located in the faulty memory locations 
must be considered to be erroneous and a sanction must be taken. If the test passes, then the data 
are restored from the free area to the original area and are considered to be good. 
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This method works fine for hard errors but will generally fail to detect soft errors. 
 
4.4.1.2.2.2 Performing a Reduced Test That Is Not Destructive 
 
In this approach, instead of writing a test pattern into the area to be tested, the test only performs 
read operations to detect whether or not the memory locations are good. The pass/fail status of 
the test depends only on the values that are read from the memory. 
 
This method requires having a method to know whether or not the current contents of a memory 
location are good. This method may be the implementation of redundancy or the implementation 
of an EDC mechanism. 
 
When the contents of a memory location are determined to be bad, the corresponding data must 
be considered to be erroneous and a sanction must be taken. If the method showing the memory 
contents are bad also provides a value that is likely the good value, then the memory location 
may be updated with this value. This process is called “scrubbing.” 
 
Scrubbing works fine for both hard errors and soft errors and is less intrusive than the save-test-
restore method previously described. However, it is less reliable—regardless of the method used 
to detect bad memory contents—because there will always be some alteration schemes that will 
not be detected. For example, for any EDC mechanism, there is a threshold on the number of 
altered bits that can be correctly detected. If the number of altered bits is greater than the EDC 
threshold, the EDC is defeated and may report that the data are correct or propose a wrong value 
for updating. Even redundancy may yield an incorrect mitigation if, for instance, a defect has an 
impact on several memory locations and redundant data are located in these memory locations. 
 
Nevertheless, even with a limited efficiency, this method remains interesting to use. In particular, 
scrubbing reduces the accumulation of alterations in the same word over time, which in turn 
reduces the risk that the number of alterations becomes greater than the maximum number that 
the EDC is able to manage. 
 
4.4.1.2.2.3 Performing a Test Only in Test-Dedicated Free Areas 
 
In this approach, a test is performed only on a set of memory areas that are dedicated to testing. 
These memory areas are free, contain no operational data, and are fully tested with a background 
task. If errors are reported, the memory component, as a whole, is considered to be no longer 
reliable and a sanction must be taken. 
 
This method is less intrusive and requires no extra mechanism, such as an EDC or redundancy. 
However, it does not directly check operational data; it only performs two checks: 
 
• A sampling test among the set of memory cells of the component 
• A test of internal common parts of the memory component, such as charge pumps 
 
If the test fails for one or several of the tested memory cells, the component is not wholly bad. 
As it is not possible in general to identify the relationship between the faulty memory locations 
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and other memory locations or common parts, the sanction must be to declare the whole memory 
component as no longer usable. 
 
The efficiency of the sampling test depends on (1) the ratio between the amount of tested 
memory cells and the amount of operational memory cells and (2) the rate at which the 
background task performs the tests. Because the background processing has an impact on the 
operational performance, the ratio and the rate cannot be very high in practice. The best situation 
is when the time taken by a background test is naturally compatible with the system’s real-time 
performance. If not, either the system requirement or the design may be adjusted (e.g., to require 
a less time-consuming test) according to the preferred approach. 
 
Moreover, the effectiveness of the test on the common parts may be difficult to estimate without 
having a precise knowledge of the design. For instance, a test in a DDR memory bank area can 
efficiently test the row buffer of the bank. The banks are specified in the component’s datasheet; 
therefore, test coverage is under control. One the other hand, charge pumps are common parts 
that are not specified in the component’s documentation. If there is a single charge pump for the 
whole memory component, the test will verify it, but if there are several pumps, it is possible that 
one of the pumps will not be used at all by the tested memory locations. 
 
In summary, assessing the efficiency of testing performed only on test-dedicated free areas 
requires information about the design of the memory component. Unfortunately, such 
information is almost never available and, therefore, it is extremely difficult to appreciate its 
coverage rate. This method is considered very difficult, even impossible, to properly implement 
so that its application is significantly limited. 
 
4.4.1.2.3  Example 

Consider a computer with a processor (with its private memory) and two identical field 
programmable gate arrays (FPGAs) F1 and F2 (i.e., two instances of the same component), each 
one having its own private memory. The two ASICs manage the computer interfaces with the 
aircraft (e.g., ARINC 429). Each ASIC manages half of the aircraft interfaces (package pin 
numbers, for instance) and they are independent on the board. Consider the following examples 
of memory failures detected by a runtime test: 
 
• Failure of a memory location in the private memory of the processor detected at 

initialization time. At initialization time, there is enough time to rerun the test, at least on 
the faulty memory location, to determine whether it is a hard failure or a soft failure. For 
a hard failure, the OS may set the computer in a halt mode. The computer may stay in 
that mode until the next aircraft power supply cycle (off-on). For a soft failure, a second 
test would return a “good” status and the memory would be considered correct; a 
message may be logged into the BITE log and the init phase may carry on normally. 

• Failure of a memory location in the private memory of the processor detected during 
operational execution (in flight). During operational execution, there is, in general, no 
time to rerun the test. The OS may perform a computer shutdown followed by a restart. 
Before shutdown, the OS stores the reason for the shutdown in a safe location. At restart, 
the memory will be tested again. If the status of the memory test is good, the computer 
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will restart normally; otherwise, it will fall into a halt mode until the next aircraft power 
cycle. 

• Failure of a memory location in the private memory of one of the two ASICs. The OS 
may disable all of the I/O attached to that ASIC to force them into a safe state from the 
aircraft point of view, log a BITE message, and then carry on working with only half of 
the I/O. This is a degraded mode. 

 
The above solutions are examples. The system specification and computer specification would 
indicate if they are possible and suitable, and if other solutions are possible. 
 
4.4.1.3  Using Redundancy 

In this section, only manufacturing defects whose effects are neither permanent nor identical in 
all dies are considered. Permanent defects or defects identical in all dies are mitigated by other 
means than redundancy. This section addresses the use of redundancy itself and section 4.4.1.3.8 
discusses the recovery of a correct value from altered data. 
 
4.4.1.3.1  General Considerations About Redundancy 

Redundancy is used as a means to reduce the probability of occurrences of data alteration due to 
manufacturing defects. In general, a redundant element does not contain any new information. 
The term redundancy is used in this report to indicate that data are directly duplicated; it is 
different from an encoded redundancy, such as the ECC in EDC mechanisms. 
 
Because the defects discussed in this report are not systematic, if we consider N memory 
locations L the probability, P(LN), of all locations having a defect is much lower than the 
probability, P(Lj), of a single memory location, j, having a defect. Therefore, if specific 
information is copied in several memory locations instead of a single location, the probability of 
this information being altered in an unrecoverable manner because of a manufacturing defect is 
lowered.  
 
If the presence of defects in memory locations are independent events, then P(LN) = P(Lj)N. In 
practice, some manufacturing defects may impact several memory locations at one time; 
therefore, such independent hypotheses cannot be used. Furthermore, it is very difficult or even 
impossible to obtain quantitative information about the relationship between memory locations 
and manufacturing defects. 
 
The following subsections provide more detail regarding the efficiency of using redundancy. 
 
4.4.1.3.2  Options to Implement Redundancy 

Redundancy can be implemented in several ways. Because of the arguments given in section 
4.4.1.3.1, it is difficult to quantitatively evaluate the efficiency of each redundancy option. 
However, it is possible to compare one option against the others, at least qualitatively. 
 
The main options for implementing redundancy are to duplicate data using: 
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• Several locations in the same physical memory component. 
• One location in several identical memory components, with no selection criteria. 
• One location in several identical memory components but sourced from different 

manufacturing batches (e.g., based on date codes). 
• One location in several equivalent memory components (e.g., several DDR memory 

components) but sourced from different manufacturers or implementing different 
technologies. 

• One location in several memory types (e.g., a DDR and SRAM). 
 
The greater the disparity in the locations, the better the effect—but also the harder the 
realization. Note that “identical” assumes that the memory components have the same reference 
for their manufacturer, whereas “equivalent” points to compatible characteristics supporting 
swapping. 
 
Of course, several options can be advantageously combined, but we limit the analysis to 
individual options. The characteristics of each combination of options are easy to infer from the 
characteristics of the individual options in the combination.  
 
Table 8 summarizes the main advantages and drawbacks of the possible redundancy options that 
are detailed in the following subsections. 
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Table 8. Main advantages and drawbacks of redundancy options 

Option Main Advantage Main Drawback 
Several locations in the same 
physical memory component 

This option is the easiest to 
implement. It retains the 
performance of the original 
memory as if there was no 
redundancy. 

If some manufacturing defects 
can simultaneously alter 
several locations, it may be 
hard to find a set of locations 
immune to these defects. 

One location in several 
identical memory 
components, with no selection 
criteria 

This option is easy to 
implement, especially when 
the electronic module memory 
is naturally made of several 
memory components. It is 
more robust to manufacturing 
defects that simultaneously 
alter several locations in a 
single component. 

If the electronic module 
memory is naturally made of a 
single component, it 
dramatically increases the cost 
(area, power consumption, 
etc.). It is vulnerable to 
manufacturing defects that can 
impact several dies of a batch 
in the same way. 

One location in several 
identical memory components 
but sourced from different 
manufacturing batches 

This option is more robust to 
manufacturing defects that can 
impact several dies of a batch. 

This option is, in all 
practicality, too hard to 
implement. 

One location in several 
equivalent memory 
components but sourced from 
different manufacturers or 
implementing different 
technologies 

The probability of having a 
manufacturing defect at the 
given locations in several 
heterogeneous memory 
components is lower than for 
all the other options listed. 

This option is usable only 
when such heterogeneous 
memory components are 
already present in the 
electronic module, typically in 
two independent module 
memories. 

One location in several 
memories of different types 

The probability of having a 
manufacturing defect at the 
same location in such different 
components is the lowest of 
all. 

This option may decrease the 
performance in terms of data 
flow and latency. 

 
4.4.1.3.3  Redundancy Via Several Locations in the Same Memory Component 

This option for redundancy is easy to implement because it does not require extra hardware and 
it retains the performance of the original memory. A fairly small reduction in performance is 
attributable to the data duplication process itself, which requires more read and write cycles for 
the same data. 
 
The main limitation is linked to the fact that it is not always possible to determine exactly which 
set of memory locations of a given component can be altered by a single manufacturing defect. 
This knowledge requires reliable information about the internal structure of the memory 
component, which is generally not available. Nevertheless, some fundamental aspects of the 
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architecture are explicitly specified in the component’s datasheets and can be taken into account 
to increase the degree of confidence in the efficiency of the redundancy. 
 
For example, DDR memories include several banks known to have a high degree of relative 
independence by principle (e.g., each DDR memory bank has its own row buffer). If the 
redundant data is stored in another bank than the original data, access to the redundant data will 
not use the same physical row buffer than for accessing the original data. 
 
The same principle can be applied to NAND flash memory, which is split into sectors: the 
redundant data should be stored in another sector than the original data. Then, a manufacturing 
defect affecting a given sector will not impact both the original data and the redundant data. 
 
For other internal elements (such as charge pumps) that are not specified, it is not possible to 
avoid the risk of a defect in these elements impacting both the original and the redundant data.  
 
In conclusion, although the option of several locations in the same memory component is not 
perfect, it must not be disregarded; this option can be implemented at a low cost (in terms of 
resources and performance) and provides a positive effect. 
 
4.4.1.3.4  Redundancy via Several Identical Memory Components With No Selection Criteria 

This option takes advantage of the natural presence of several memory components in the 
electronic module memory. 
 
Consider a 32-bit data word to be protected and a 32-bit memory made of four 8-bit memory 
components. The data can be stored four times: one time in its original form and three redundant 
times with its bytes reordered. Call “A”, “B”, “C”, and “D” the four bytes of the 32-bit data word 
{ABCD}.  
 
Table 9 provides one instantiation among many possibilities for storing the 32-bit data word 
several times in the 32-bit memory. The memory location at address 0 contains the data value in 
its natural format (the original data), whereas the other three memory locations contain the 
redundant data stored in another format. If any one of the four memory components has a 
manufacturing defect that alters its contents in one or several of its four addresses, because of 
redundancy, the correct value of the data is not lost. 
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Table 9. Example implementation of redundancy using existing memory components 

Storage 
address 

(MSB2) 
Memory chip #3 Memory chip #2 Memory chip #1 (LSB3) 

Memory chip #0 
0 A B C D 
4 B C D A 
8 C D A B 
12 D A B C 

 
In table 10, memory chip #2 has a manufacturing defect that causes its location at address 0 to 
not work correctly. The value at said location, the byte “B,” is thus corrupted. The memory 
location at address 4 in the memory chip #3 contains a copy of the value “B,” which is used to 
avoid losing the original data {ABCD}. 

Table 10. Example use of redundancy using existing memory components 

Storage 
address 

(MSB) 
Memory chip #3 Memory chip #2 Memory chip #1 (LSB) 

Memory chip #0 
0 A B C D 
4 B C D A 
8 C D A B 
12 D A B C 

 
The method to distinguish the altered bytes from the correct bytes is discussed in section 
4.4.1.3.8. A single redundant word at address 4 would be enough for a failure in the sole chip #2, 
whereas the presence of three redundant addresses allows for mitigating a larger number of 
failures. 
 
This method greatly improves reliability whereas requiring no additional hardware and retaining 
the performance of the original memory. Similar to the method of using several locations in the 
same component, the only small loss of performance in memory access comes from the data 
duplication process itself, which requires more read and write cycles for the same data, and 
simple data transformation. 
 
This method is very attractive when a module memory is naturally made of several memory 
components. 
 

                                                 
 

2 Most Significant Byte 
3 Least Significant Byte 



 

67 

4.4.1.3.5  Redundancy via Several Identical Memory Components From Different Batches 

This option improves on the efficiency of the preceding method, but it is extremely hard to 
implement. Manufacturing batches are generally not well identified, except by the date code. A 
date code, however, is much less precise than a batch identification because it covers an entire 
week of manufacturing, which involves several production batches. Moreover, commodity 
memory is subject to allocation in the supply chain. It may be impossible to select components 
by date code and control the date codes of the purchased components. 
 
Mitigating manufacturing defects through redundancy cannot rely on such a method because is 
its feasibility cannot be guaranteed. Therefore, this method cannot be used. 
 
4.4.1.3.6  Redundancy via Memory Components From Different Manufacturers or Technologies 

For this option, dissimilar memory components are considered within the same module memory. 
Avoiding the use of the same manufacturer’s product references mitigates the possibility of a 
common failure affecting all these products. For example, this could encompass a 32-bit wide 
memory made of four 8-bit memory components of the same type (e.g., four DDR memories) but 
produced by different manufacturers or implementing different technologies. If dissimilar 
memory components are housed in separate homogeneous module memories, the situation is that 
described in section 4.4.1.3.7. An example of this arrangement would be two independent 32-bit 
module memories, each one being homogenous, but the memory components of one module 
memory would be different from the components of the other. 
 
Although this option seems attractive, its drawbacks are significant. First, mixing different 
components in the same module memory (e.g., the four 8-bit memory components of a 32-bit 
wide module memory) is a bad design because it violates the common usage recommended by 
the manufacturers. Indeed, manufacturers design and test their components with the assumption 
that they would be associated with identical ones. Mixing manufacturers or technologies is not a 
foreseen situation from a manufacturer’s point of view and it may not work. For example, the 
peaks of current caused by a given memory component when used may be perfectly supported 
by the nearby identical components on the same bus because they were designed accordingly, 
but they may disturb a component designed with a different reference. 
 
Second, the number of possible choices of a manufacturer or technology for a given memory 
component is often very limited for an AEH electronic module. Therefore, using several 
manufacturers or technologies already employed at system level for the same memory function 
in the same electronic module can jeopardize the ability to fulfill a requirement of dissimilarity 
between two electronic modules (e.g., between primary and secondary flight control computers). 
 
This method should not be used. 
 
4.4.1.3.7  Redundancy via Several Memories of Different Types 

Duplicating information in several memories of different types—such as a DDR, an SRAM, an 
internal RAM of a microcontroller, or an FPGA—provides the best robustness against 
manufacturing defects. Even if the different memories are produced by the same foundry, their 
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internal structures are different enough for the effects of manufacturing defects to be 
uncorrelated. 
 
Individually, each memory type may have the same amount of defect, but as the defects between 
types are not correlated, the probability, P(LN), of all the N copies being altered by a 
manufacturing defect is close to the probability of one copy being altered, P(Lj), to the power of 
N. 
 
This option is particularly attractive when several types of memory are already present in the 
electronic module. The implementation of duplicated information in different memories then 
represents an opportunity. 
 
The main drawback of this option may be a reduction in the memory performance. Indeed, in a 
given context, different types of memories generally have different performances. Using 
heterogeneous memory storage will provide the performance of the memory type in use for 
which the performance is the lowest. Furthermore, if the usage of several memory types is done 
only for redundancy purposes, the same drawback as detailed in section 4.4.1.3.6 applies: the 
ability to fulfill a requirement of dissimilarity between two electronic modules may be 
jeopardized. 
 
This method is attractive only when different memory types are, by design, present in the 
electronic module. 
 
4.4.1.3.8  Detecting Alterations and Restoring the Correct Data 

The simplest way to detect the alteration of data is to compare the value of all the redundant 
memory locations. If they are not equal, then an alteration has occurred. If there are two or more 
redundant copies of the data (for a total of three or more instances of the data), a majority vote 
can be used to determine what is most likely the good value. 
 
Another method is to combine redundancy with ECC in a manner for which each memory 
location has its own ECC. Among the memory locations containing instances of the same data, 
those for which the EDC reports no error on reading are considered correct. This method is 
useful when an EDC is already present in the electronic module, for instance when it is provided 
by a processor for its RAM. This criterion can replace the majority vote. It allows for the use of a 
single copy of the data (for a total of two instances of the data) instead of a minimum of two 
copies of the data (for a total of three instances of the data). 
 
Mixing redundancy and EDC is further detailed in section 4.4.3.  
 
The choice between reporting only that an alteration occurred and trying to fix the alteration (i.e., 
compute a value that will be considered as correct) is the user’s responsibility and driven by the 
electronic module requirements. 
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4.4.1.4  Relocating in a More Reliable Commodity Memory 

With this option, the data are not duplicated; rather, they are located in a “more reliable” memory 
instead of in the commodity memory. Here, the expression more reliable is to be understood 
within the relative context of this report; such a memory may be one which is not a commodity 
memory and does not suffer from the highly competitive market of the commodity memories, 
but it may also be another commodity memory with a stronger EDC. This approach cannot be 
implemented for the complete dataset—otherwise, there would be no commodity memory at all. 
But it may be used on a limited amount of critical data. 
 
This option is particularly attractive when a more reliable memory is already present in the 
electronic module. The relocation of a piece of information in a different memory is then, 
accordingly, an opportunity. 
 
If the usage of a second, more reliable memory type is done only for mitigation purposes (which 
leads to the addition of an extra component different from the other ones), the same drawback as 
detailed in section 4.4.1.3.6 applies: the greater the number of different components in each 
module, the more difficult to fulfill a requirement of dissimilarity between two electronic 
modules. 
 
4.4.2  EDC 

This report covers characteristics of the EDC or algorithms that are visible to the end user, but it 
does not dwell, intentionally, on the details of the algorithms because this information would, by 
its sheer volume, obfuscate the main focus of this investigation. Rather, the reader is directed to 
[31] for information regarding ECC and EDC algorithms. 
 
This section addresses EDC mechanisms that are external to commodity memory components. 
Embedded EDC mechanisms are discussed in section 4.1. Additional information regarding EDC 
that is useful in the context of commodity memory includes: 
 
• EDC on-the-fly versus EDC per block: what are the differences? Which one is the most 

appropriate depending on the situation? 
• COTS EDC versus custom EDC: are COTS EDCs always usable? 
• EDC improvement: what are some of the techniques to improve EDC in the context of 

commodity memories? 
 
Section 4.5 complements this information by indicating how to apply the techniques presented in 
this section to commodity memories. 
 
4.4.2.1  EDC On-the-fly Versus EDC Per Block 

A given EDC mechanism can be used in two ways: on-the-fly or per block. 
 
With EDC on-the-fly, an ECC code is computed or checked for each data word individually each 
time a data word is written into the memory or read from the memory. This way provides a very 
good granularity and allows for fast random access to the data words, but it requires that the 
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EDC mechanism be very fast to not jeopardize the performance. Only hardware EDC 
mechanisms can achieve the necessary computation speed. 
 
With EDC per block, an ECC code is computed or checked for an entire block comprised of 
several data words and not for each word individually. The amount of data words may be either a 
characteristics of the algorithm or simply a design decision. For example, cyclic redundancy 
code (CRC) mechanisms support blocks of any size. This approach implies that data words 
cannot be easily accessed randomly. Access to given data requires the reading of the full block in 
which it is contained, both for read and write operation. However, the constraint on computation 
and checking time of the ECC is lessened because the access to an entire block already induces a 
high latency, the EDC’s total computation time is averaged over the size of the data block, and 
the EDC computation may sometimes be performed in parallel with data transfer. EDC per block 
may be realized by hardware or software. 
 
A close relationship exists between the amount of computation an EDC requires and the 
feasibility of using this EDC on-the-fly or only per block. EDC mechanisms based on parity 
require a relatively low amount of computations. Examples of algorithms used in such EDC 
mechanisms include: 
 
• Hamming algorithms, also called single error correction, double error detection 

(SECDED) 
• Simple byte per byte parity, which can detect a single error in each byte 
  
Conversely, EDC mechanisms based on polynomial divisions generally require a huge number 
of computations. Examples of algorithms used in such mechanisms are Bose-Chaudhuri-
Hocquenghem (BCH) algorithms, commonly used for NAND flash memories; Reed Solomon 
algorithms, commonly used in optical disks; and CRC algorithms, commonly used in serial 
interfaces (e.g., Ethernet). 
 
Note that the simplest of EDC mechanisms based on polynomial divisions may be implemented 
in such a way that it finally leads to a small amount of computations by making simplifications. 
For example, a Reed Solomon algorithm working on 4-bit symbols can be implemented with 
look-up tables instead of explicit polynomial divisions, which leads to a simple and efficient 
implementation. Therefore, the delineation between a small and large number of computations 
does not strictly align with the distinction between parity-based algorithms and polynomial 
division-based algorithms. 
 
EDC mechanisms based on polynomial division generally offer better performance in terms of 
detection and correction than mechanisms based on parity but at the price of a higher complexity. 
 
The amount of computation required by a given EDC mechanism drives the way it can be used: 
EDC mechanisms requiring a small amount of computation can be used on-the-fly and can 
individually protect each data word in the memory. For example, a Hamming-based EDC is 
commonly used in modern microprocessors to individually protect each data word of their 
attached DDR memory. Typically, an 8-bit Hamming ECC is associated with each 64-bit data 
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word of the DDR memory. This ECC is stored in an additional and dedicated DDR memory 
component. 
 
EDC mechanisms requiring a large amount of computation can be used only to protect blocks of 
data, so that the latency induced by the ECC computation or checking is averaged over the size 
of the data block. For example, an EDC mechanism based on a BCH code is commonly used for 
each page (typically 2 kB) of NAND flash memory components. The BCH algorithm involves 
complex computations that could not be done on-the-fly on a DDR memory, but the computation 
time on a 2 kB block is acceptable compared to the intrinsic access time of the NAND flash 
memory. 
 
4.4.2.2  COTS EDC Versus Custom EDC 

Two cases need to be distinguished: 
 
• Case 1: the commodity memory is controlled by a custom component. 
• Case 2: the commodity memory is controlled by a COTS component. 
 
4.4.2.2.1  Case 1: Commodity Memory Controlled by Custom Component 

Such a custom component may be an FPGA, an ASIC, or a system on chip. In this case, a 
custom EDC mechanism must be implemented according to the need, and there is no specific 
constraint apart from the intrinsic constraints of the custom component (e.g., amount of logic 
cells available, timing performance). 
 
The EDC is generally implemented by the hardware of the custom component. An EDC per 
block performed by software is also possible, depending on the context. 
 
4.4.2.2.2  Case 2: Commodity Memory Controlled by COTS Component 

Many COTS components that interface with a commodity memory themselves provide EDC 
mechanisms. For example, most modern microprocessors and microcontrollers interfacing with 
DDR or NAND flash memory provide their own embedded EDC mechanisms. 
 
When a COTS EDC exists and complies with the need, it can be used like any other COTS 
function. When no EDC is provided by the COTS, or when an EDC is provided but does not 
comply with the need (regardless of the reasons), and it is not possible to select another COTS 
with a suitable EDC, a custom EDC mechanism must be implemented. 
 
Note that it is possible to associate a COTS EDC and a custom EDC (section 3.2.3). The 
situation is slightly different depending on whether the COTS EDC is an EDC on-the-fly or EDC 
per block, as detailed in the following subsections. 
 
In the next two subsections, the discussion pertains to a COTS EDC external to the memory 
(e.g., a COTS PowerPC microprocessor that directly interfaces with DDR memory via a 64-bit 
bus). The microprocessor implements a Hamming-based on-the-fly EDC with an 8-bit ECC to 
protect 64 bits of data. The ECC is stored in an additional DDR memory. The EDC’s order is a 
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SECDED capable of single-bit correction and two-bit error detection over the total 72 bits (64 
bits of data and 8 bits of ECC). In some situations, the SECDED performance is considered 
insufficient. However, finding another microprocessor with a higher performance EDC is 
practically impossible because almost all microprocessors implement the previously mentioned 
EDC. Therefore, in practice, the solution is to add a custom EDC. Sections 3.2.2.2.1 and 
3.2.2.2.2 discuss this situation. 
 
4.4.2.2.2.1 On-the-Fly COTS EDC 
 
The original situation is described in figure 19, where a COTS EDC is present but does not 
satisfy the needs, so that a custom EDC must be added. 
 
A practical example of this situation involves DDR controllers: microprocessors typically 
implement a Hamming-based on-the-fly EDC. 
 

 

Figure 19. Original configuration of a COTS and module memory 

Several solutions exist to add a custom EDC, including: 
 
• Inserting a custom component between the COTS and the module memory. 
• Adding a custom component on the bus between the COTS and the module memory. 
• Adding an EDC per block accessing the data in a way other than through the COTS 

memory bus. 
 
The configuration of inserting a custom component between the COTS and the module memory 
is shown in figure 20 and is the most favorable from the EDC standpoint because the custom 
EDC will be able to perform both detection and correction, if needed, and with any algorithm. It 
is even possible to add an extra memory component dedicated to ECC. 
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Figure 20. Custom on-the-fly EDC inserted between the COTS and module memory 

This option is not always feasible. In particular, its implementation is not possible with DDR 
memory for two reasons. First, the DDR clock frequency is high, generally higher than 200 MHz 
and, therefore, higher than the 400 MHz data rate. This leads to a short clock period (e.g., less 
than 2.5 nanoseconds for data) and, therefore, timing constraints that are too high. It is not 
possible to insert an asynchronous component between the COTS and DDR memory that would 
compute or check the ECC within a single clock cycle. Second, the COTS DDR memory 
controller is designed to be directly connected to the DDR memory component and it expects to 
interface with the exact pipeline levels of the DDR memory component, as defined in the JEDEC 
standard [32]. An intermediate custom component between the controller and memory, which 
would insert pipeline levels to have enough time to manage the EDC, would be incompatible 
with the controller. 
 
The configuration of adding a custom component on the bus between the COTS and module 
memory is shown in figure 21, wherein the custom on-the-fly EDC manages its own private 
memory component storing its ECC. The custom EDC snoops all accesses made by the COTS 
component. When the COTS writes into memory, the custom EDC captures a copy of the data 
written by the COTS, computes an ECC, and writes it into its private ECC memory. When the 
COTS reads, the custom EDC captures a copy of the data provided by the memory, reads the 
corresponding ECC (same address) from its private ECC memory, performs ECC checking, and 
reports an error status in case of mismatch via an appropriate implementation-dependent 
mechanism. 
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Figure 21. Custom on-the-fly EDC inserted on the bus between the COTS and module 
memory 

The disadvantage of this option compared to the previous one is that the custom component can 
no longer perform on-the-fly correction; it can only perform detection. It may be possible to 
perform delayed correction: the custom component can compute a corrected value and make it 
available for an external agent (the COTS or another component) via a channel other than the 
memory bus. On reception of the error report provided by the custom component, the external 
agent retrieves the corrected value from the custom component. Nevertheless, delayed correction 
is not always compatible with the electronic module implementation because the incorrect value 
that has already been injected in the COTS may have caused undesirable effects from which 
there is no recovery. 
 
The advantage of inserting a custom component in a parallel branch (figure 21) compared to 
inserting a custom component in the series (figure 20) is that the custom component is less 
intrusive on the COTS memory bus. However, the presence of the custom component on the bus 
may still jeopardize the signal integrity of the bus. For example, DDR memory buses have severe 
constraints regarding impedance match and, therefore, this option should not be used for this 
memory because there is no guarantee it will work correctly post-insertion. This solution could 
more likely induce a failure than mitigate the potential manufacturing defect in the commodity 
memory for which it was introduced. 
 
The configuration of inserting a custom component between the COTS and the module memory 
is shown in figure 22, wherein the custom per block EDC is attached to the internal bus of the 
COTS. This internal bus is the internal extension of the board memory bus. 
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Figure 22. Custom per block EDC inserted on the internal bus of the COTS component 

For example, if the COTS is a processor and the EDC per block is made by software, the 
processor core performs the computations and the processor core receives the data via the 
internal data bus, which is physically different from the memory bus on the PCB. The EDC per 
block may be performed by software or by hardware, as most appropriate.  
 
Because an EDC per block does not have the same characteristics as an EDC on-the-fly, this 
option is not equivalent to the original COTS EDC. 
 
4.4.2.2.2.2 Per Block COTS EDC 
 
This situation may seem simpler than for an on-the-fly EDC because it is always possible to add 
an extra ECC per block to the data, in addition to the original ECC of the COTS EDC. In some 
cases, however, this addition requires specific care. The simplest case is when a configuration of 
the COTS allows for disabling the COTS EDC and inserting the custom ECC at the same place 
as the COTS ECC. In this case, the total amount of {data + ECC} remains the same and 
everything works the same. Figure 23 shows the original configuration. Figure 24 shows the 
custom per block ECC that replaced the COTS ECC. 
 

 

Figure 23. Original configuration of a memory with COTS per block EDC 
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Figure 24. Custom per block ECC replacing COTS ECC 

When this simple swap is not possible, the custom per block ECC must be disguised as data 
words, from the COTS standpoint (figure 25). 
 

 

Figure 25. Custom per block ECC added as extra data 

This method does not jeopardize the custom EDC, but it may jeopardize the management of the 
data. Consider, for example, data organized by sets of 512 bytes with a COTS ECC computed on 
each set, then consider that the custom ECC is 32-bit (4 bytes). The high-level agent (either 
hardware or software) that manages data expects to have exactly 512 bytes of data per set. If a 
custom ECC is added inside the 512 bytes set, the set now contains only 508 bytes of true data 
plus 4 bytes of custom ECC. Although it is of no concern to the COTS component, the high-level 
agent now faces sets of 508 bytes instead of 512 bytes, which may be incompatible with its 
internal data management protocol. An example of such a situation is a NAND flash memory 
being used as a solid-state disk. Disk managers expect 512 bytes per sector and will not work 
with 508 bytes per sector. 
 
The solution is to compute the custom ECC on a larger dataset than the dataset of the COTS 
ECC so that the custom ECC, when disguised as data, appears only once per functional dataset 
instead of once per physical dataset (i.e., dataset from the COTS EDC’s point of view). 
 
In the previous example, the custom ECC would be added once for a whole file instead of once 
per disk sector. The disk manager will then be able to properly handle the splitting of files along 
512-byte disk sectors and only a higher level manager (at file level instead of sector level) will 
have to deal with the custom ECC. This example shows that adding a custom per block EDC to 
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an existing COTS per block EDC may sometimes be quite complex and requires careful 
implementation. 
 
4.4.2.3  Enhancing EDC Performance 

The mathematical properties of a given EDC algorithm are frozen with the algorithm itself. 
Flexibility lies in the application of these algorithms. Enhancement of a given EDC mechanism’s 
efficiency can be achieved by: 
  
• Using a higher performance algorithm (for custom EDC only). 
• Taking benefit of a specific context. 
• Associating several EDC mechanisms. 
 
Mixing EDC and redundancy also enhances the global EDC performance. 
 
4.4.2.3.1  Using a Higher Performance Algorithm 

This solution only applies to custom EDC. 
 
Using a higher performance algorithm has a cost, in terms of the amount of computation, 
execution time, and width of the ECC, which may be incompatible with the electronic module 
performance constraints. The potential issue of incompatibility is especially relevant for on-the-
fly EDC. Therefore, enhancement of the EDC algorithm always has a limit. 
 
Per-block EDC mechanisms offer more flexibility because they may be applied selectively on 
subsets of data (e.g., critical data) instead of being applied on all data. The extra cost induced by 
algorithm enhancement of a per-block EDC can therefore be compensated by using it only on 
selected data, whereas a simpler EDC is used for the rest of the data. 
 
4.4.2.3.2  Taking Benefit of a Specific Context 

When searching for an EDC solution, the context in which the EDC will be used must be 
carefully considered. Specific contexts may allow for improving the performance of an EDC 
mechanism either by reducing the amount of computation normally required or increasing its 
detection or correction performance. 
 
As these optimizations are context-dependent, it is not possible to give general rules. 
Nevertheless, examples can be given to illustrate specific situations. 
 
Example 1 (favorable context)―presence of several memory components instead of a single one: 
 
In this report, defects are not correlated from one chip to another (section 3), so the probability 
that alterations occur simultaneously in two or more chips at the same address is much less likely 
than the occurrence of an alteration in a single chip at that address. The occurrence of alteration 
in several chips at the same address is often considered as negligible with respect to safety 
requirements. For completeness, below is an example substantiating this fact. 
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Consider two memory components, M1 and M2, within the same memory module. They have 
the same reference and the same size of N memory locations (a memory location is the set of bits 
that are accessed atomically at the same address). Consider the situation wherein n1 memory 
locations are altered in M1 and n2 memory locations are altered in M2, with N being a large 
number and n1 and n2 being very small compared to N. 
 
Notations used in this example: 
 
• n = max(n1, n2). 
• K is the total number of combinations of the possible positions of the n1 alterations in M1 

and n2 alterations in M2. 
• C is the number of combinations wherein at least one address is an alteration in both M1 

and M2. 
 
 K = N!/n1!(N- n1)! * N!/n2!(N- n2)! (3) 
 
where “!” represents the factorial mathematical function. The number of combinations in which 
there is no alteration at a same address in M1 and M2 is: 
  

 E = N!/ n1!(N- n1)! * (Nn1)!/n2!(N-n1-n2)! (4) 
 
The number of combinations in which there is at least one alteration at a same address in M1 and 
M2 is: 
 
 C = K-E = [N!N!(N-n1-n2)! - N!(N-n1)!(N-n2)!] / [n1!n2!(N-n1)!(N-n2)!(N-n1-n2)!] (5) 
  
 C/K = [N!(N-n1-n2)! - (N-n1)!(N-n2)!] / [N!(N-n1-n2)!] (6) 
 
When N is large and (n1, n2) are very small, C/K varies as n2/N. To avoid complex mathematical 
statements, consider N = 106 and n1 = n2 = 2. The value of 2 is chosen to simplify the writing of 
the equation rather than to be representative of a real case. 
 
 C/K(N, 2, 2) = [N!(N-4)! - (N-2)!(N-2)!] / [N!(N-4)!] (7) 
 
Knowing that N! = N(N-1)(N-2)(N-3)(N-4)! and (N-2)! = (N-2)(N-3)(N-4)!,   
 

C/K(N, 2, 2) = [N(N-1)(N-2)(N-3)(N-4)!(N-4)! - (N-2)(N-3)(N-4)!(N-2)(N-3)(N-4)! ] /  
 [N(N-1)(N-2)(N-3)(N-4)!(N-4)!] (8) 
 
then, by removing the common factor (N-2)(N-3)(N-4)!(N-4)!:           
 
 C/K(N, 2, 2) = [N(N-1) - (N-2)(N-3)] / N(N-1) (9) 
 
which is equivalent to: 
 
 C/K(N, 2, 2) = [N2 - N - (N2 -5N +6) ] / (N2 - N) (10) 
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so finally: 
 
 C/K(N, 2, 2) = [4N - 6] / (N2 - N) (11) 
  
When N is a great number, 4N-6 ≈ 4N and N2 - N ≈ N2, then C/K varies like 4/N. With N = 106, 
C/K ≈ 4.10-6. 
 
In other words, if P(2,2) is the probability to have two memory locations altered in M1 and M2 
(at any place), then the probability that there is at least one alteration at the same address in M1 
and M2 is P(2,2) * 4.10-6, which is several orders of magnitude lower. 
 
The generalized formula is that C/K varies like n2/N. 
 
C is very small compared to K, which is the reason the occurrence of an alteration at the same 
address in both M1 and M2 is generally considered negligible. Finally, the AEH equipment’s 
requirements provide probability thresholds for undetected erroneous events; these thresholds 
will determine whether the occurrence of an alteration at the same address in both M1 and M2 
will be neglected, or not, for that module memory in that equipment. 
 
This consideration may improve the actual efficiency of an EDC mechanism, especially when 
the algorithm is sensitive to the position of the altered bits in the data or ECC words. It may also 
simplify the amount of computation required by an algorithm by eliminating some configurations 
of alteration, therefore allowing the use of the EDC as an on-the-fly EDC instead of only per 
block.  
 
In an extreme case, the EDC performance may be sufficiently enhanced to allow successful 
detection and correction of a defect that alters all the bits in one chip. This kind of EDC is 
sometimes called “ChipKill” in the literature. This situation is obviously very interesting, but it is 
possible only in specific favorable contexts because it requires a larger number of memory chips 
dedicated to ECC than common for EDC. 
 
Example 2 (favorable context) – number of ECC bits compared to number of data bits: 
 
Consider the example of a 16-bit memory component used to store data and electronic module 
requirements that impose the use of an EDC with an extra memory component to store its ECC. 
The design will naturally add an identical memory component for the ECC providing 16 bits. 
Algorithms such as Hamming algorithms have a fixed number of ECC bits for a given number of 
data bits, specifically 6 ECC bits for 16 data bits. Therefore, it will not take advantage of the 16 
available bits. Conversely, other algorithms, such as BCH or Reed Solomon algorithms, have a 
variable number of ECC bits for a given number of data bits. These algorithms will be able to 
better benefit from the 16 available ECC bits. Moreover, the fact that the number of ECC bits is 
equal to the number of data bits is a favorable situation for some algorithms because it leads to a 
bijection between the data and the ECC so that a number of computations in the algorithms can 
be simplified. 
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When both favorable conditions occur, the advantages described in examples 1 and 2 can be 
combined. 
 
4.4.2.3.3  Associating Several EDC Mechanisms 

Several EDC mechanisms, in general two, may be associated to increase the overall 
performance. However, this association must be carefully defined; otherwise, the opposite effect 
may be achieved. 
 
In particular, only one of the associated EDC mechanisms should be allowed to perform data 
correction, whereas the others should perform only detection. Indeed, for any EDC mechanism, 
there is always a set of alterations that defeats the EDC and leads the EDC mechanism to 
perform a wrong correction. In this case, the EDC reports that the data it provided are good, but 
they are in fact erroneous because the correction was wrong. Different EDCs have, in general, 
different sets of such pathological alterations; therefore, if several EDC mechanisms are allowed 
to perform corrections, the resulting set of alterations leading to erroneous data reported as 
correct is the union of the sets of each EDC. This situation is clearly unfavorable. 
 
The most common association of EDC mechanisms is on-the-fly EDC with per block EDC. For 
example, an on-the-fly Hamming-based EDC may be associated with a per block CRC. The 
Hamming-based EDC can successfully correct a single bit alteration in each data word but is 
defeated by alteration of more than two bits within the same data word. The CRC is unable to 
perform data correction but can successfully detect alteration of a significant number of bits, for 
instance 32 bits, whatever their positions within the data words. The compound EDC created 
from the association of these two elementary EDCs can successfully correct one altered bit per 
data word and successfully detect 32 altered bits anywhere in the data block; its performance 
exceeds that of each EDC when considered individually. 
 
In the above example, the Hamming-based EDC is most certainly realized by hardware, whereas 
the CRC may be performed by software. The two EDCs in association may therefore be realized 
by different means and will not necessarily be located in the same place. 
 
Another example of EDC association is the RAID5 protocol used in redundant arrays of 
independent drives (RAID). This technique is commonly used for hard disk drives, but it can 
also be applied to a commodity memory—either RAM or read-only memory. For example, 
consider a 32-bit-wide module memory made of four 8-bit memory components, with an extra 
fifth memory component added for EDC purposes and a dataset of 4 kB to be stored in this 
module memory. The dataset can be achieved by gathering four blocks of 1 kB each (each block 
thus has a different content). A fifth block is added and contains the byte-to-byte exclusive 
logical OR (XOR) of the four blocks: byte (n) of extra bloc = byte (n) of block 0 XOR byte (n) 
of block 1 XOR byte (n) of block 2 XOR byte (n) of block 3. Finally, each of the five blocks is 
individually protected by a CRC. Figure 26 shows the RAID5 principle applied to commodity 
memory. 
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Figure 26. Example of RAID5 principle applied to commodity memory 

When a data word needs to be read, the block containing the data (e.g., block #2) is read as a 
whole and its CRC checked: 
 
• If the CRC is correct, the data are considered to be correct and can be used as they are. 
• If the CRC is incorrect, the content of block #2 is considered to be altered. Then, the 

other four blocks containing data are read (blocks #0, #1, and #3), the extra block 
containing the XOR is read, and all four remaining CRCs are checked. 
 
- If the four CRCs are correct, block #2 is updated with the byte-to-byte XOR of 

blocks #0, #1, #3, and the extra fifth block. This operation restores the original 
content of block #2. Finally, the requested data are retrieved from the corrected 
block #2. 

- If one of the four CRCs is incorrect, the alteration is considered to be 
unrecoverable. 

 
When a data word needs to be written, the data are written into their corresponding block (e.g., 
block #2). The CRC of the updated block #2 is computed and stored. The extra fifth block is 
updated by computing the XOR of the four data blocks with the updated version of block #2. 
 
The first level of EDC is the XOR of the blocks, which is nothing but a simple parity. The 
second level of EDC is the CRC applied on all blocks, including the block containing the XOR. 
Neither the parity nor the CRC alone can perform error correction. Individually, they can only 
perform error detection. Through the association of the two mechanisms, however, error 
correction is possible. 
 
Note that the failure management solution depends on the AEH equipment specification or 
design choices and is not specific to memory failure. For example, knowledge of the allowable 
degraded modes influences the viability of the proposed solution using the RAID5 redundancy. 
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4.4.3  Mixing Redundancy and EDC 

Redundancy and EDC are two different approaches of mitigation. The former aims at reducing 
the occurrence of information alterations whereas the latter aims at reducing the impact of the 
alterations. These two approaches can be easily and beneficially combined: 
 
• The EDC can be the means by which altered instances of the information are identified 

by using the detection capability of the EDC. 
• The redundancy can be the means to retrieve the good value of the information, with 

better capability than that of the EDCs. 
 
The efficiency of an EDC mechanism does not only rely on its algorithm but also on its decision 
tree. For a given algorithm, a decision tree that performs only detection with no attempt at 
correction will produce less erroneous status than a decision tree that also performs correction. 
Therefore, using redundancy to retrieve the good value relieves the EDC of this task; the EDC 
performing only detection yields a better performance (through less erroneous status). 
 
For example, a Hamming-based EDC configured to only report errors without attempting to 
correct data can successfully detect three altered bits. When associated with redundancy, the 
final mechanism can successfully correct three altered bits. Without redundancy, the same 
Hamming-based EDC configured to also attempt to correct data will provide undetected 
erroneous data in the case of three altered bits, which leads to a lower performance. 
 
The previous example discusses a means to improve the performance of an EDC that is already 
capable of correction of data alterations. However, association of redundancy and EDC can also 
provide a capability of correction, whereas the EDC itself does not have this capability. For 
example, a block of data may be duplicated and each instance of the block may be protected by a 
CRC. A CRC has a powerful detection capability but no correction capability at all. If an 
alteration occurs in some but not all instances, the CRC status will allow for determining which 
instance of the block is not altered, and this block will be selected as the good data. Without 
redundancy, that same CRC-based EDC will not allow for retrieving the good data. 
 
4.4.4  Summary of Fault Mitigation Techniques With Respect to Identified Memory Fault Types 

Table 11 gives a summary of the mitigation techniques described in this report with their 
efficiency against specific types of memory defects. Note that this table is simply a summary, 
and the indication “yes” or “no” is only a summarized status. The corresponding section provides 
the detailed information. The column “common parts” refers to internal functional elements that 
are common to several memory cells, such as charge pumps. It does not include trivial common 
elements, such as power supply rails, whose failure would prevent the chip from working. 
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Table 11. Summary of mitigation techniques versus fault types 

Section 
of report Mitigation Soft 

error 
Hard 
error 

Single 
bit 

Multiple 
bit 

Common 
parts Notes 

4.4.1.2   Memory test no yes yes yes yes 1 
4.4.1.3.3   Redundancy in a single chip yes yes yes no no 2, 3 
4.4.1.3.4   Redundancy in several chips yes yes yes yes yes – 
4.4.2.3   EDC enhancement yes yes yes yes yes – 

Note 1: Runtime memory tests are possible for RAM but not for non-volatile memories. 
Note 2: Generally speaking, redundancy in a single chip cannot mitigate multiple bit errors, but in some cases it is 
possible. 
Note 3: Generally speaking, redundancy in a single chip cannot mitigate common part failures, but in some cases it 
is possible . 
 
4.5  IDENTIFICATION OF NEEDED IMPROVED EDC MITIGATION TECHNIQUES 

This section covers the mitigation techniques described in section 3 that are most appropriate for 
the types of commodity memories being investigated. 
 
The very first effort must focus on reducing the probability of defects. If the selected commodity 
memory for a given electronic module still presents risks compared to non-commodity memory, 
the following considerations should be taken into account. 
 
The improved EDC mitigation techniques described in this report cannot all be applied in all 
cases because they induce constraints on the electronic module that may be incompatible with 
the module requirements, especially where performance is concerned. Moreover, certain 
techniques are more appropriate for certain types of commodity memories than for others. This 
section identifies the appropriate solutions depending on the context. 
 
4.5.1  Classification of Information According to Criticality 

In almost all cases, the more powerful the EDC, the stronger the negative impact on the 
performance. Therefore, in general, it is not possible to apply the most powerful EDC 
mitigations to all data. 
 
The first step when considering EDC or redundancy mitigation is to classify the sets of data 
according to how critical they are with respect to the safety requirements. Furthermore, the 
classification must be done with very few levels. For example, consider a two-level classification 
sorting critical data from non-critical data, or a three-level classification sorting data as highly 
critical, critical, and non-critical. The higher the criticality, the higher the protection required. 
The above levels are based on a generic appreciation; they are not based on absolute criteria. The 
appreciation could be different for each situation depending on usage of the data with respect to 
safety requirements. The definition of the levels and their characteristics should be established on 
a case-by-case basis, taking into account the users. 
 



 

84 

A two-level classification will be considered using “non-critical” and “critical” sorts. A typical 
example of a difference between protecting non-critical data and protecting critical data is the 
use of on-the-fly EDC for all data (both critical and non-critical) and the addition of a per-block 
EDC only on critical data. 
 
When applying the recommendations in this report, readers will need to adjust the text to their 
actual case. 
 
4.5.2  Improved Mitigation Techniques for DDR Memories 

DDR memories are selected not only for their high capacity but also their high throughput. Thus, 
EDC mechanisms that dramatically reduce the data throughput are not suitable for DDR 
memories. Moreover, the DDR memory electrical interface imposes very strict constraints; 
therefore, it is not possible to add an external EDC mechanism to a DDR memory bus. 
 
For DDR memories, the first step is to use an on-the-fly EDC mechanism embedded in the 
component that contains the memory controller. If the memory controller is inside a COTS and 
implements an EDC, then it can be used as is. If the memory controller is a custom component, 
an EDC mechanism must be designed such that the EDC performance is compatible with the 
electronic module requirements. 
 
The most commonly used EDCs for DDR memories are Hamming-based EDCs because they 
offer a good compromise between EDC performance and impact on the DDR performance. They 
require a single extra memory component for ECC storage, and the ECC computations are easy 
to implement with good timing performance. Almost all COTS DDR memory controllers use 
Hamming-based EDCs. In custom memory controllers, other EDCs can be considered, such as a 
Reed Solomon mechanism. In practice, for on-the-fly EDC, Reed Solomon mechanisms are 
limited to 4-bit symbols. 
 
Depending on the efficiency of the on-the-fly EDC, a complementary mechanism may be added. 
For example, a Reed Solomon mechanism able to successfully detect and correct any alteration 
in a single component of the module memory has sufficiently high performance in itself. 
Therefore, no extra mechanism is needed. 
 
For DDR memories, redundancy is a good option to improve on an on-the-fly EDC: 
 
• DDR memories allow easy random access to the memory location, so a fine-grain 

redundancy, down to individual data words, can be implemented. 
• DDR memories are naturally split into significantly independent subsets called banks, 

which provide a relative isolation between the several instances of redundancy; also, the 
location of data words within the different banks is fully under control. 

 
Per-bloc EDC mechanisms are also a good option to improve on an on-the-fly EDC because 
DDR memory is very efficient when reading or writing blocks of data. Typically, non-critical 
data will be protected only by the on-the-fly EDC, whereas critical data may also, if needed, be 
protected by an additional mechanism. 
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A wide panel of solutions exists to improve EDCs for DDR memory. 
 
4.5.3  Improved Mitigation Techniques for NAND Flash Memories 

NAND flash memory supports only block data transfers (for both read and write). It is not 
possible to perform random access to single data words. Therefore, only per block EDC can be 
used for NAND flash memory. 
 
The presence of a non-negligible number of initial manufacturing defects in NAND flash 
memory and, later, of defects due to wear, is standard. The usage of per block EDC is also 
standard for NAND flash memory. 
 
NAND flash components include native memory space to store an ECC in addition to the 
memory space dedicated to user data. Although the storage space for the ECC is always present, 
its size may vary depending on the component. The characteristics of the writing and erasing 
protocols of the NAND flash memory and wear-out aspects are such that the ECC can only be 
stored in this dedicated storage space. Consequently, the size of the storage space may be a 
limitation for ECC capabilities. However, as defects are expected, the size of the storage space 
dedicated to ECC is determined by the manufacturers to fit the need of a given NAND flash 
component. For example, the need is estimated by the manufacturer as a market-dependent 
compromise between lifetime and price. The lifetime is related to aging as a function of the 
number of read/write cycles. The presence of an EDC and the performance of the EDC are 
directly related to the number of read/write cycles. 
 
As NAND flash memory wears out, the efficiency of the EDC mechanism has a direct influence 
on the lifetime of the devices using a specific NAND flash memory: when wear has created more 
defects than the EDC can manage, the NAND flash memory is no longer usable and the device 
itself will no longer work. Therefore, the efficiency of the EDC is a concern and even a selling 
point for both the memory manufacturer (in terms of amount of storage space dedicated to ECC) 
and the COTS NAND flash controller (in terms of EDC performance). 
 
NAND flash memory offers few options for defects mitigation, but the standard mitigations 
adequately cover the need. Common EDC mechanisms used for NAND flash memory are based 
on BCH or Reed Solomon algorithms, which offer high detection and correction performance. 
Sometimes, customization is added. When NAND flash memory is connected to a custom 
component, an EDC mechanism will be implemented. When NAND flash memory is connected 
to a COTS component, the native EDC of the COTS is generally a good mitigation solution. 
 
In practice, mitigating NAND flash manufacturing defects relies on only a single per block EDC 
mechanism, which stores its ECC as the dedicated storage space of the NAND flash memory 
component. Adding an extra per block EDC mechanism is possible, provided that the 
corresponding ECC is stored, along with the data it protects, in the storage space dedicated to 
data in the NAND flash memory component. For example, a CRC may be computed on a set of 
data words and stored after the data as extra data. The set of data words will be spread on several 
physical pages of the NAND flash memory, each page having its own ECC stored in the 
dedicated space. The user CRC will be stored like ordinary data among the other data. The user 
decides what to do in case the mitigation methods disagree. In the previous example, the CRC 
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has a higher detection capability than the ECC, so that if the EDC’s correction is wrong, the 
CRC detects it and the data will be declared erroneous. 
 
Redundancy is not appropriate for NAND flash memory, except when the redundant instances 
are located in different components. NAND flash memory requires wear leveling. Wear leveling 
must continuously move data words from one page to another and one block to another. 
Therefore, the redundant instances of the data words may become located close to one another 
(e.g., in the same block or even in contiguous pages in the same block). In this case, they may be 
impacted by the same defect. Moreover, accessing a page influences the next pages, as it causes 
them to dim. Therefore, if the redundant instances located in the same memory component 
become close to one another, the advantages of redundancy are negated. 
 
Most of the time, the native EDC mechanism of the NAND flash controller is a good solution to 
mitigate NAND flash manufacturing defects. 
 
4.5.4  Improved Mitigation Techniques for QDR Memory 

Common data words used in digital electronics are multiples of 8 bits: 8-bit, 16-bit, 32-bit, and 
64-bit. The data bus width of QDR memory is multiples of 9 bits: 18-bit, 36-bit, and 72-bit. It is 
common usage in QDR memory to use a parity-based on-the-fly EDC that individually protects 
each data word in memory, with 1 parity bit for each byte. Note that although parity bits are 
commonly used, from the hardware standpoint, all bits of a QDR memory are equivalent. For 
example, an 18-bit-wide QDR memory can indifferently be used with 16 bits of user data and 
two bits of parity, or with 18 bits of data with no parity. 
 
Using a QDR memory is considered less risky than using a DDR memory (section 2.2.3), and the 
common EDC based on a simple byte-per-byte parity may be considered sufficient to mitigate 
possible manufacturing defects. 
 
With AEH equipment for which SEU is a concern, SEU will probably be a dominating factor 
over manufacturing defects for implementing additional mitigation. If additional mitigation is 
desired, the very strict constraints imposed by the QDR memory’s electrical interface must be 
factored in exactly as for DDR memory. In particular, it is not possible to add an external EDC 
mechanism on a QDR memory bus. 
 
Using an on-the-fly EDC more powerful than simple parity is possible, but it will require more 
bits for the ECC. QDR memory components have a high number of pins because there is a 
separate data bus for read and write, and the address bus is not multiplexed. Therefore, it is 
sometimes not possible to add an extra QDR memory component dedicated to storing the ECC. 
There is an opportunity to employ a Hamming-based EDC with a 72-bit wide QDR memory: 64 
bits are used for the data and 8 bits for the Hamming ECC with a single QDR memory 
component. 
 
For QDR memory, redundancy is also a good option to improve on the basic parity EDC because 
QDR memory allows easy random access to the memory location: redundancy can be 
implemented with a fine granularity down to individual data words. 
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Per block EDC mechanisms are also a good option for improving EDC efficiency because QDR 
memory is very efficient when reading or writing blocks of data. 
 
The per-byte parity commonly used with QDR memory seems sufficient to mitigate 
manufacturing defects. Consideration of SEU will probably drive the addition of stronger EDC 
rather than the risk of manufacturing defects. QDR memory supports a wide panel of mitigations. 
 
4.5.5  Improved Mitigation Techniques for MRAM 

MRAMs are less risky than the other types of memory because they are not widely used in 
consumer electronics and employ a technology close to the standard CMOS technology. 
Furthermore, they embed an internal EDC mechanism capable of correcting internal soft errors 
(one bit per data word). 
 
The need for an additional mitigation technique to address manufacturing defects associated with 
a commercial pressure is low. Moreover, MRAMs are SEU immune; therefore, no extra EDC 
mechanism is needed based on SEU considerations. 
 
Regarding the mitigation techniques described in this report, MRAMs have the following 
characteristics: 
 
• Their interface bus is a simple asynchronous parallel bus with no specific timing or 

electrical constraints. 
• They allow random access to individual data words. 
 
MRAMs are therefore compatible with all the mitigation techniques listed in section 3, with the 
exception of the memory test at module initialization because MRAMs are persistent memories. 
 
Taking into account the above elements, the following approach may be considered: 
 
• No need to add an external on-the-fly EDC. 
• A scrubbing mechanism may be implemented, with the following caveat: as write 

operations themselves can create soft errors, scrubbing must be done with a low period; 
otherwise, it would create the opposite effect. 

• Information identified as critical may be protected by a per block EDC (e.g., CRC). 
 
MRAMs do not require a significant effort for manufacturing defects mitigation. 
 
4.5.6  Summary of Improved Mitigation Techniques for Selected Commodity Memories  

The very first effort must focus on reducing the probability of defects. If the selected commodity 
memory for a given electronic module still presents risks compared to non-commodity memory, 
the approach listed in table 12 must be considered. 
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Table 12. Summary of improved mitigation per memory type 

Commodity 
Memory Type Approach to Improve Mitigation 

DDR • Perform memory tests. 
• Use an on-the-fly EDC. 
• Depending on the performance of the on-the-fly EDC, add a per block 

EDC or redundancy for critical data. 
NAND flash • Use commonly existing per block EDC. 

• If needed, add a per block EDC for critical data. 
QDR • Perform memory tests. 

• Use commonly existing parity-based EDC. 
• If needed, add a per block EDC or redundancy for critical data. 

MRAM • No need for improved mitigation. 
• If needed, add a per block EDC or redundancy for critical data. 

  
5.  RECOMMENDATIONS AND FINDINGS 

5.1  SUMMARY OF FINDINGS 

This report focuses on four types of commodity memory currently widely used or foreseen to be 
widely used in the near future: DDR memory and NAND flash memory in the former category 
and QDR memory and toggle MRAM in the latter. For each memory, a short technical 
description supports the description of the main causes of manufacturing defects and commonly 
employed methods to manage these defects. Confidence in all these types of memory is built not 
only from matching the type to the domain usage in the design but also by actively engaging 
with two key entities in the supply chain: the commodity manufacturer and the distributor. This 
engagement is required to access necessary supporting documentation and understand internal 
workings not otherwise accessible. Therefore, an NDA is a must have. See table 2 for the 
summary of available documentation. 
 
Failure modes in commodity memory are described by using both a black-box and grey-box 
model view and applying three levels of abstraction: functional, logical, and physical. This 
organization of information allows for the description of generic functional failure modes 
associated with writing, preserving, and reading data in a memory; description of failure modes 
associated with data flows; and refinement of failure mode analysis using physical 
characteristics. This report provides specific examples of functional failure modes applied to 
each of the data flows, for each of the selected types of commodity memories in section 3.1.2. 
 
Regarding mitigation of failure modes, this report focuses on ECCs as a built-in mitigation 
technique for each of the selected commodity memory types, external mitigations by EDC and 
redundancy, and a combination thereof. The mitigation may be implemented by the 
manufacturer, the user, or both. For three types of memory out of four, little or no information is 
publicly available on the embedded ECC, reinforcing the earlier finding that the AEH 
manufacturer should engage with the memory manufacturer to understand not only the existence 
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of mitigation but the possible configurations and limitations. Issues with built-in mitigation 
techniques typically point to a lack of documentation or poor coverage of the AEH usage 
domain. Analyzing the effectiveness of the built-in mitigation techniques should be done with 
respect to the number of errors and type of triggering events the mitigation can handle. The 
analysis must cover all elements of the ECC: the physical storage of ECCs, ECC algorithm, 
decision tree, and actions to be performed. The approach can be theoretical or experimental but, 
in both cases, sufficient information can be obtained only via the memory manufacturer. 
Additional mitigation can be obtained by the use of memory tests, redundancy, or selection of 
enhanced EDC. The following recommendations detail the applicability of each to the selected 
memories. Table 6 summarizes the type of mitigation for each of the selected commodity 
memories. Recommended approaches to improve the mitigation effectiveness for each of the 
selected commodity memories are summarized in table 12. The application of additional 
mitigations via memory tests, redundancy, and enhancement of the native EDC is summarized in 
table 13.  
 
5.2  RECOMMENDATIONS 

The following recommendations are based on the findings in this report. Each recommendation 
is formatted according to the template shown in table 13. 

Table 13. Template for recommendations 

Identifier Title 
Description 
Rationale and reference to the section of the report 

 
5.2.1  Supply Chain Selection and Control 

Commodity 
Memories  
Rec-1. 

Supply chain selection 
Commodity memory procurement supply chain should be considered as a 
whole: that is, the manufacturer and distributor.  
Section 2.3   

 
Commodity 
Memories  
Rec-2. 

Supply chain evaluation 
The supply chain should be evaluated on its reactiveness and relevancy in 
answering customer questions (possibly under a non-disclosure agreement). 
Section 2.3   

 
Commodity 
Memories  
Rec-3. 

Supply chain traceability 
The supply chain should be able to trace the source of their dies (possibly 
under a non-disclosure agreement). 
Section 2.3   
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Commodity 
Memories  
Rec-4. 

Manufacturer selection (market) 
Manufacturers that have business models primarily geared toward a specialty 
market demanding high-integrity and continued support should be favored. 
Section 2.3   

 
Commodity 
Memories  
Rec-5. 

Manufacturer selection (continued support) 
Manufacturers maintaining production, even when products are not, or are no 
longer, new should be favored. 
Section 2.3   

 
Commodity 
Memories  
Rec-6. 

Technical documentation procurement 
The customer should obtain the following documentation from the memory 
manufacturer: 

• Qualification process, including a description of the qualification tests 
• Qualification report, including the detailed test results 

See section 2.3   
 
5.2.2  Careful Definition of Domain Usage 

Commodity 
Memories  
Rec-7. 

Usage domain definition 
The Airborne Electronic Hardware manufacturer should define the usage 
domain of the commodity memory. This usage domain should be covered by 
the targeted usage domain of the memory manufacturer. 
Section 2.4   
The targeted usage domain benefits from tests by the memory manufacturer 
and from in-service experience reported by other users. 

 
5.2.3  Management of Manufacturing Defects 

Commodity 
Memories  
Rec-8. 

Criteria for selection of redundancy technique 
The following information should be considered to select the most suitable 
redundancy technique: 

• Localization, permanency, and systematic character of failure 
mechanisms associated with the memory technology (when this 
information is available). 

• Classification (e.g., critical or not) of data to be protected. 
• Presence on the board of several memory components of the same 

type. 
• Presence on the board of memory components of different types. 
• Presence of particular memories especially reliable or embedding 

strong mechanisms. 
Section 4.4.1.3   
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Commodity 
Memories  
Rec-9. 

Criteria for selection of EDC technique 
The following criteria should be considered to select the most suitable EDC:  

• Localization, permanency, and systematic character of failure 
mechanisms associated with the memory technology (when this 
information is available) 

• Classification (e.g., critical or not) of data to be protected 
• Real-time constraints and possibility to apply on-the-fly EDC without 

degradation of performances—or, at worst, with acceptable 
degradation of performance 

• Integrity constraints and suitability to apply per block EDC 
Section 4.1   

 
Commodity 
Memories  
Rec-10. 

Combination of mitigation techniques 
When a single mitigation technique (e.g., EDC, redundancy) does not meet 
the mitigation objective, a combination of mitigation techniques should be 
considered. 
Section 4.4.3   

 
Commodity 
Memories  
Rec-11. 

EDC evaluation  
The effectiveness of the EDC mechanism should be evaluated via a status 
table indicating which action is taken and which effect results from the action, 
for each number of actually altered bits in the set {data + associated ECC}. 
Section 4.3   

 
5.2.4  Particular Safety Mechanisms for DDR Memories 
 
Commodity 
Memories  
Rec-12. 

Suitable mitigation techniques for DDR memory 
The following mitigation techniques should be considered as suitable for 
DDR memory: 

• Runtime memory test 
• On-the-fly EDC 
• Depending on the performance of the on-the-fly EDC, addition of a 

per block EDC or redundancy for critical data 
Section 4.5.2   
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5.2.5  Particular Safety Mechanisms for NAND Flash Memory 
 
Commodity 
Memories  
Rec-13. 

Suitable mitigation techniques for NAND flash memory 
The following mitigation techniques should be considered suitable for NAND 
flashes memories: 

• Existing per block EDC  
• If needed, addition of an extra per block EDC for critical data 

Section 4.5.3   
 
Commodity 
Memories  
Rec-14. 

Management of NAND Flash EDC 
Custom EDC should comply with the manufacturer’s prescription on the EDC 
mechanism. 
Section 4.3.4.2   

 
Commodity 
Memories  
Rec-15. 

Wear leveling 
The customer should implement a wear leveling policy. 
Sections 4.3.4.2  and 4.5.3   
Wear leveling precludes to many sectors being dimmed and thus avoids an 
uncontrolled overflow of EDC capacities.  

 
5.2.6  Particular Safety Mechanisms for QDR Memories 
 
Commodity 
Memories  
Rec-16. 

Suitable mitigation techniques for QDR memories 
The following mitigation techniques should be considered suitable for QDR 
memories: 

• Runtime memory test 
• Parity-based EDC 
• If needed, addition of per block EDC or redundancy for critical data  

Section 4.5.4   
 
5.2.7  Particular Safety Mechanism for MRAM 
 
Commodity 
Memories  
Rec-17. 

Suitable mitigation technique for MRAM 
The following mitigation technique should be considered suitable for MRAM: 

• If needed, addition of per block EDC or redundancy for critical data 
Section 4.5.5   
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APPENDIX A—GLOSSARY 

This report uses the following definitions of memory-related technical terms and architectures. 
Note that these terms have been introduced following discussions with packaging specialists. 
 
• Chip: 

 
Synonym of die. 
 

• Component: 
 
The complete component embedding the die in a package. 
 

• Die: 
 
The piece of semiconducting material constituting the integrated circuit. 

 
• Device: 

 
Elementary structures such as transistors, capacitors, etc. 

 
• Electronic module: 

 
Electronic module, or simply module, where there is no ambiguity, refers to a part of an 
Airborne Electronic Hardware manufacturer’s equipment that contains electronic 
components. An electrical module may be a mezzanine card, an electronic board, a set of 
related electronic boards, a computer, etc. 
 

• Interconnect: 
 
Metal layers connecting the devices within the die. 

 
• Module memory: 

 
Module memory refers to a set of one or several memory components that make a 
physical and functional memory inside an electronic module. Consider in figure 24 an 
electronic module containing a microprocessor with a memory data bus of 64 bits, plus 
an 8-bit ECC, and the processor memory is physically made up of nine 8-bit wide 
memory chips—eight chips for the data and one chip for the ECC. The set of the nine 
chips is called a module memory: it makes up a physical and functional memory set 
inside the module. If the same module also contains an application-specific integrated 
circuit (ASIC), which has a 32-bit external memory interface, and the ASIC external 
memory is physically made of two 16-bit memory chips, the set of these two memory 
chips is also called a module memory, which is different from the first example. 
Although the 11 memory chips (nine plus two) are located in the same electronic module, 
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they make two separate module memories because the nine processor memory chips and 
the two ASIC memory chips have different functional roles. 

 
Note that the term “module memory” should not be confused with the commonly used term 
“memory module.” The latter designates a removable electronic board that contains memory 
components. In the example in figure A-1, if the nine memory components in the processor are 
gathered on a removable electronic board, it is both a memory module and a module memory, as 
shown in figure A-2. If the processor memory is made up of 18 memory components instead of 
nine (two sets of nine components wired in parallel and with two separate component selects) 
gathered in two memory modules of nine components, the set of the two memory modules makes 
up a single module memory, as shown in figure A-3. 
 

 

Figure A-1. Memory modules within an electronic module 
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Figure A-2. Difference between module memory and memory module 

 

Figure A-3. Module memory made up of two memory modules 
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The following definitions of failure-related terms are used in this report: 
 
• Hard error: 

 
A hard error implies that the affected element is definitively broken, regardless of the 
effects. 
 

• Intermittent effect: 
 
An effect that is sometimes present, sometimes absent, with no limit in time. 
 

• Permanent effect: 
 
An effect that is continuous in time. 
 

• Soft error: 
 
A soft error means that the affected element currently exhibits a bad behavior but is not 
broken and will resume working after being refreshed. 
 

• Transient effect: 
 
An effect that exists only for a limited duration (it will exist again only if it is 
subsequently triggered again). 
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APPENDIX B—NAND AND NOR FLASH MEMORIES 

The differences between Not-AND (NAND) and Not-OR (NOR) flash memories: 
 
NAND and NOR flash memories use the same physical principles for data storage. The 
difference between NAND and NOR flash memories resides mainly in the arrangement of the 
MOS transistors used to build the memory array. The NAND flash memories are not related to 
NAND gates. The name comes from the fact that when you look at a block diagram of the 
memory cells array, the arrangement of the MOS transistors that build the memory cells looks 
like the arrangement of the MOS transistors in a NAND gate. The same exists for the NOR flash: 
the MOS transistors that build the memory cells looks like the arrangement of the MOS 
transistors in a NOR gate. 
 
The arrangement of the transistors in NAND flash memory allows a better integration level than 
the arrangement in the NOR flash memory. In return, it is harder to access individual cells with 
the NAND arrangement than with the NOR arrangement. With the NAND arrangement, a read 
access naturally has access to a group of cells, whereas the NOR arrangement provides 
individual access with better performance. 
 
Because of these characteristics, NAND flash memory is used when a significant amount of data 
storage is needed and access by packets of data, rather than individual data, is suitable. Then, 
NAND flash memory is the best choice.  
 
For symmetric reasons, NOR flash memory is used when a lower amount of data storage is 
needed and random access to individual data with high performance is necessary. NOR flash 
memory is then the best choice for code storage or sets of little or medium data structures. 
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APPENDIX C—EXAMPLE OF QUALITATIVE MEMORY FMEA 

Table C-1. Example of qualitative memory FMEA 

Flow Failure Mode Faulty Block Cause 
Effect on 
Memory 

Controller 

Information_stored Transition of information to 
an erroneous value 

Coding Erroneous data Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Coding Erroneous address Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Storage Loss of refresh Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Storage Flip value in time Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Storage Flip value on access Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Command 
interpreter 

Erroneous command Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Command 
interpreter 

Delayed command Erroneous 
data 

Information_stored Transition of information to 
an erroneous value 

Command 
interpreter 

Erroneous configuration  Erroneous 
data 

Information_stored Inability to transition to 
requested value 

Command 
interpreter 

Erroneous command Erroneous 
data 

Information_stored Inability to transition to 
requested value 

Storage Stuck value Erroneous 
data 

data_out Transmission of an 
erroneous Data_Out value 

Decoding Erroneous data Erroneous 
data 

data_out Inability to transition to 
requested value 

Decoding Stuck value Erroneous 
data 

data_out Transmission of an 
erroneous Data_Out value 

Command 
interpreter 

Erroneous address Erroneous 
data 

data_out Transmission of an 
erroneous Data_Out value 

Command 
interpreter 

Erroneous command Erroneous 
data 

data_out Transmission of an 
erroneous Data_Out value 

Command 
interpreter 

Erroneous configuration  Erroneous 
data 

data_out Delayed transfer of 
information 

Decoding Erroneous timing Erroneous 
data 

data_out Transmission of an 
erroneous Data_Out value 

Command 
interpreter 

Delayed command Erroneous 
data 

data_out Early transfer of information Command 
interpreter 

Erroneous configuration  Erroneous 
data 

data_out Abnormal sequence of sent 
message 

Command 
interpreter 

Erroneous sequencing of 
command 

Erroneous 
data 
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