DOT/FAA/TC-17/67 Explicate '78: Assurance Case
Federal Aviation Administration A p p I | C ab | I |ty to Dl g Ital System S

William J. Hughes Technical Center
Aviation Research Division

Atlantic City International Airport
New Jersey 08405

January 2018

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.
This document is also available from the

Federal Aviation Administration William J. Hughes
Technical Center at actlibrary.tc.faa.gov.

e

U.S. Department of Transportation
Federal Aviation Administration

http:actlibrary.tc.faa.gov

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
U.S. Government assumes no liability for the contents or use thereof. The
U.S. Government does not endorse products or manufacturers. Trade or
manufacturers’ names appear herein solely because they are considered
essential to the objective of this report. The findings and conclusions in this
report are those of the author(s) and do not necessarily represent the views
of the funding agency. This document does not constitute FAA policy.
Consult the FAA sponsoring organization listed on the Technical
Documentation page as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center's Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

http:actlibrary.tc.faa.gov

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
DOT/FAA/TC-17/67

4. Title and Subtitle 5. Report Date
EXPLICATE °78: ASSURANCE CASE APPLICABILITY TO DIGITAL January 2018
SYSTEMS

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

C. Michael Holloway & Patrick J. Graydon

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

NASA Langley Research Center, 100 NASA Road, Hampton VA 23681

11. Contract or Grant No.

1A1-1073
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
Federal Aviation Administration Final Report

William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport, NJ 08405

14. Sponsoring Agency Code

Barbara Lingberg, AIR-6B4

15. Supplementary Notes

The FAA William J. Hughes Technical Center Aviation Research Division Technical Monitors were Charles Kilgore and Srini
Mandalapu.

16. Abstract

This report documents the results of the Explicate '78 project. The project was conducted by NASA Langley Research Center in
support of an annex (Assurance Case Applicability to Digital Systems) to the Reimbursable Interagency Agreement 1A1-1073
(Design, Verification, and Validation of Advanced Digital Airborne Systems Technology). In particular, the report describes an
assurance case developed to express the arguments contained in, or implied by, DO-178C (Software Considerations in Airborne
Systems and Equipment Certification), which implicitly justifies the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment that performs its intended function with a
level of confidence in safety that complies with airworthiness requirements.” An appendix to the report provides an assurance case
for DO-330 (Software Tool Qualification Considerations).

17. Key Words 18. Distribution Statement

DO-178C, Assurance case, Argument, Software, Correctness, Safety, | This document is available to the U.S. public through the
DO-330 National Technical Information Service (NTIS), Springfield,
Virginia 22161. This document is also available from the FAA
William J. Hughes Technical Center at actlibrary.tc.faa.gov.

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 191

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

Without the initial encouragement of Mike DeWalt (the retired Chief Scientist and Technical
Advisor for Software), the Explicate *78 project would not have taken place. Without his careful
review of the work at several stages, the results would not have continued. Barbara Lingberg also
contributed important technical insights. Chuck Kilgore (now retired) and Srini Mandalapu
provided helpful program management support, particularly in accommodating schedule changes

necessitated by a variety of unexpected events that transpired during the project. To all of you,
thanks!

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY ix
1. INTRODUCTION 1
2. BACKGROUND 2
2.1 About DO-178C 2
2.2 About Assurance Case Principles 3
2.3 About the GSN 5
2.4 About Previous Work 7
2.5 Summary of Terms 8
3. THE IMPLICIT ASSURANCE CASE IN DO-178C 8
3.1 Guiding Principles 8
3.2 Level D Arguments 9
3.3 Level C Arguments 22
3.4 Level B Arguments 33
3.5 Level A Arguments 38
4, OBSERVATIONS AND ANALYSIS 43
4.1 About Fidelity 43
4.2 About Adequacy 44

4.2.1 Observation 1 — Foundational Reliance is Placed on a Separate Safety
Process 45

4.2.2 Observation 2 — Foundational Reliance is Placed on System

Requirements 46
4.2.3 Observation 3 — Critical Reliance is Placed on Data Item Integrity 46
4.2.4 Observation 4 — Warrants are Difficult to Discern 47
4.2.5 Observation 5 — Adequacy Depends on Specifics 47
4.2.6 Observation 6 — A Case-Based Alternative Approach Seems Feasible 48
5. THE OTHER DOCUMENTS 48
6. CONCLUDING REMARKS 53
7. REFERENCES 54

APPENDICES

A—ARGUMENTS FOR DO-178C
B—ARGUMENTS FOR TOOL QUALIFICATION (DO-330)
C—PREVIOUS PAPERS

LIST OF FIGURES

Figure Page
1 Some Elements of GSN

2 Example of a GSN Element

3 Level D: SWACCEPTABLELEVD 11
4 Level D: HLRSATSRREFLEVD 12
5 Level D: EOCSATHLREFLEVD 14
6 Level D: JustifiedConfidenceLevD 16
7 Level D: ADQPLANNINGLEVD 17
8 Level D: ADQVERVERLEVD 18
9 Level D: ADQCONFIGMANLEVD 19
10 Level D: AdgSQALevD 21
11 Level D: AdgCertLiasLevD 21
12 Level C: SwAcceptableLevC 23
13 Level C: HLRSatSRRefLevC 24
14 Level C: JustifiedConfidenceLevC 26
15 Level C: AdgPlanningLevC 27
16 Level C: AdgVerVerLevC 28
17 Level C: AddRefineLevelCSat 29
18 Level C: LLRSatLevC (top) 30
19 Level C: LLRSatLevC / LLRAdgLevelC (left) 31
20 Level C: LLRSatLevC / SWArchAdqLevelC (right) 32
21 Level C: EOCSatLLevC 33
22 Level B: SwAcceptableLevB 34
23 Level B: JustifiedConfidencelLevB 35
24 Level B: IndepSatLevB 37
25 Level B: AdgVerVerLevB 38
26 Level A: SWAcceptableLevA 39
27 Level A: JustifiedConfidenceLevA 40
28 Level A: IndepSatLevA 41
29 Level A: AdgVerVerLevA (top) 42
30 Level A: AdgVerVerLevA (left) 42

Vi

31
32
33
34
35

Level A: AdgVerVerLevA (right)

Level D (FM): HLRSatSRRefLevDFM

Level D (OO): HLRSatSRRefLevDOO

Level D (FM & OO): HLRSatSRRefLevDFMOO
Level D (MBD): HLRSatSRRefLevDMB (PARTIAL)

vii

43
49
50
o1
52

LIST OF ACRONYMS

CNS/ATM Communication, Navigation, Surveillance and Air Traffic Management
EUROCAE European Organisation for Civil Aviation Equipment

GSN Goal Structuring Notation

TQL Tool Qualification Level

viii

EXECUTIVE SUMMARY

The Explicate *78 project was conducted by NASA Langley Research Center in support of an
annex (Assurance Case Applicability to Digital Systems) to a Reimbursable Interagency
Agreement 1A1-1073 (Design, Verification, and Validation of Advanced Digital Airborne Systems
Technology) between NASA Langley Research Center and the FAA.

This report documents two of the main achievements of the Explicate *78 research:

1. Expressing, as an assurance case, the arguments contained in, or implied by, DO-178C,
which implicitly justifies the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements”

2. Expressing as an assurance case the arguments contained in, or implied by, DO-330, whose
stated purpose “is to provide tool qualification guidance”

Substantial portions of the DO-178C assurance case are presented and explained in the body of
the report, with the entire case presented in appendix A. Brief but substantive explanatory materials
about DO-178C (and associated documents) and about assurance cases, evaluative observations
and analysis, and representative arguments from the technology supplements are also presented in
the body of the report. The complete DO-330 assurance case is presented and explained in
appendix B. Previous papers written about the work are reprinted in appendix C.

1. INTRODUCTION

In September 2012 representatives from NASA Langley Research Center and the FAA signed an
annex (Assurance Case Applicability to Digital Systems) to the Reimbursable Interagency
Agreement 1A1-1073 (Design, Verification, and Validation of Advanced Digital Airborne Systems
Technology). The annex initiated research to create an assurance case framework for the guidance
document DO-178C: Software Considerations in Airborne Systems and Equipment Certification
[1], and to develop educational materials and argument evaluation criteria. The research
collectively came to be called Explicate '78.

The specific activities agreed to be undertaken included the following:

. Expressing, as an assurance case, the arguments contained in, or implied by, DO-178C,
which implicitly justifies the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements”

. Determining whether there is a need to conduct an analysis similar to the DO-178C analysis
for any of the four supplementary documents associated with DO-178C, and, conducting
any such analysis deemed worthwhile

. Providing educational materials about the basic principles, terminology, and existing uses
of assurance/safety cases
. Developing argument evaluation criteria for determining whether an assurance case is

sufficient for purpose

This report fully documents the first two of these activities, while making use of results from the
third and fourth activities where appropriate. Full documentation of those two activities has been
previously provided to the FAA in the form of a separate series of video presentations and
transcripts [2—6], augmented by two NASA contractor reports [7, 8].

Deciding how to best organize the report was difficult. Specific difficulties included determining
how much background information to provide and in what form to provide it; selecting the style
and order of presentation for the individual elements of the DO-178C arguments; choosing the
depth, breadth, and detail of evaluation comments to present; and deciding how to present the
analysis of the chosen supplementary document. Many different potential solutions to these
difficulties were tried and found wanting. The solutions adopted in this report are not perfect but
should be adequate for the most likely readers of the report.

. Background information is provided at a fairly high level, with references given for the
benefit of readers who may need more details.

. The DO-178C arguments are presented in a graphical style nearly identical to the popular
Goal Structuring Notation (GSN) [9], with textual commentary added for further
explanation.

. The order of explication of the DO-178C arguments mimics the order in which the

arguments were originally created, namely beginning with the least critical software level
to which the document applies (Level D) and proceeding level-by-level to Level A.

Only a few selected arguments are presented in the main body of the report. The full
collection is contained in appendix A.

o Evaluation results are summarized and explained in a separate section.

. The analysis of the chosen supplementary document (DO-330: Software Tool Qualification
Considerations [10]) is presented in appendix B. A brief explanation of why it was chosen
for analysis, and why the other three supplements were not, is included in the main body
of this report.

. The three previously published conference papers about Explicate '78 [11-13]) are
reproduced in full in appendix C. Some material from these papers is used verbatim in this
report. Some other material was made obsolete as the project progressed.

2. BACKGROUND

Fully understanding this paper requires at least a passing familiarity with DO-178C, the assurance
case concept, and the GSN. This section provides background information on these three subjects
for readers who do not already possess the requisite knowledge. This section also provides a brief
discussion of prior related published work.

2.1 ABOUT DO-178C

For the benefit of the readers who are not familiar with DO-178C, a short discussion of the DO-
178C’s history is provided in this section. The information relies heavily on appendix A in DO-
178C, which contains a summary of the history of the DO-178 series of documents.

The initial document in the 178 series was published in 1982, with revision A following in 1985.
Work on revision B began in the fall of 1989; the completed document, which was a complete
rewrite of the guidance from revision A, was published in December 1992. Among many other
changes, the B version expanded the number of different software levels based on the worst
possible effect that anomalous software behavior could have on an aircraft. Level A denoted the
highest level of criticality (for which satisfying the most rigorous objectives was required), and
Level E denoted the lowest level (which was objective free). The B version also introduced annex
tables to summarize the required objectives by software level.

Twelve years after the adoption of DO-178B, RTCA and the European Organisation for Civil
Aviation Equipment (EUROCAE)! moved to update the document by approving the creation of a
joint special committee/working group in December 2004 (SC-205/WG-71). This group started
meeting in March 2005 and completed its work in November 2011. The terms of reference for the
group include an *“objective-based approach for software assurance” and the “technology
independent nature” of the objectives. The special committee/working group was also directed to
maintain “backward compatibility with DO- 178B” except where doing so would fail to

1 At one time, RTCA was an abbreviation for Radio Technical Commission for Aeronautics; since 1991 the four letters have been the
freestanding name of the organization. EUROCAE uses a different document numbering scheme, but the content of the documents is otherwise
identical. For example, DO-178C is called ED-12C. Only the DO numbering is used in this report.

“adequately address the current states of the art and practice in software development in support
of system safety,” “to address emerging trends,” or “to allow change with technology.”

Ultimately, the effort produced seven documents. In addition to DO-178C, new editions were
written of two existing associated documents, which are DO-278A: Software Integrity Assurance
Considerations for Communication, Navigation, Surveillance and Air Traffic Management
(CNS/ATM) Systems [14] and DO-248C: Supporting Information for DO-178C and DO-278A
[15]. The former is very similar to DO-178C, but addresses software in certain ground-based
systems, which operate within a different regulatory scheme from airborne systems. The latter
provides answers to various questions and concerns raised over the years by both industry and
regulatory authorities. It contains 84 frequently asked questions, 21 discussion papers, and a brief
rationale.

Four new documents were also published to address specific issues and techniques: DO-330:
Software Tool Qualification Considerations [10]; DO-331: Model-Based Development and
Verification Supplement to DO-178C and DO-278A [16]; DO-332: Object-Oriented Technology
and Related Techniques Supplement to DO-178C and DO-278A [17]; and DO-333: Formal
Methods Supplement to DO-178C and DO-278A [18]. The general subject matter of these
documents is evident from their titles.

As a result of the terms of reference and operating instructions under which DO-178C was
developed, the document is only an update to, as opposed to a rewrite or substantial revision of,
DO-178B. Differences between the B and C versions include corrections of known errors and
inconsistencies; changes in wording intended for clarification and consistency; an added emphasis
on the importance of the full body of the document; a change in qualification criteria for tools and
the related creation of a separate document for tool qualification; modification of the discussion of
system aspects related to software development; closing of some perceived gaps in guidance; and
the creation of the technology-specific supplements previously enumerated for formal methods,
object-oriented technology, and model-based design and verification.

The relevant documents received official regulatory authority recognition in 2013 [19, 20].

2.2 ABOUT ASSURANCE CASE PRINCIPLES

The concept of an assurance case is a generalization of the safety case concept. A common
definition2 of a safety case is “a structured argument, supported by a body of evidence that provides
a ... case that a system is safe for a given application in a given operating environment” [21].
Conclusions are made concerning the achievement of an acceptable level of safety, and arguments
are focused on providing justified confidence that those safety conclusions are satisfied. A more
general assurance case concerns providing justified confidence about desired attributes in addition

2 The elided part of the quoted definition includes the adjectives “compelling, comprehensible and valid.” With those adjectives, the definition
embeds notions of goodness, which is inappropriate in a definition for a phrase that may be applied to something that only purports to be a good
safety case, but which may, after evaluation, be found to be neither compelling, comprehensible, nor valid. The main body of 00-56, issue 6,
implicitly recognizes this distinction, but the definition has not been changed.

to safety, such as correctness, functionality, performance, or security. Hereafter in this report, this
general term will be used.

Claims, arguments, evidence3, context, and assumptions constitute five components of a well-
structured assurance case [22]. A claim, within the assurance case literature, refers to a constative
statement about some attribute or aspect related to the system being considered. Goal is another
common name for the same concept within the assurance case community. Two terms commonly
used for centuries within the philosophy and logic communities for the same concept are
proposition and conclusion [23, 24]. The term conclusion is used in this report because it tends not
to have any of the negative connotations of the other terms.

In a full assurance case, there will likely be many conclusions that must be shown to hold* at
varying levels of generality. An example of a high-level conclusion is: The software performs
its intended function at an acceptable level of safety (the sentences in bold throughout the report
denote assurance case text). Examples of conclusions with increasing levels of specificity are as
follows: High-level requirements are a satisfactory refinement of system requirements;
adequate configuration management is in place; and configuration items are identified.

In the assurance case literature, the term argument is overloaded. It is commonly used to refer to
the overall case or to portions of the case that can be described separately. It is also commonly
used in a more restrictive sense of that which explains how a conclusion is supported by, or
justifiably inferred from, the evidence and associated lower-level conclusions. Perhaps to partially
alleviate the overloading confusion, the GSN uses the term strategy for this latter situation. The
most appropriate term, however, is warrant [25], which is used in this report.

Evidence, as commonly used in the assurance case community, refers to the available body of
known facts relevant to the case being considered. Data, fact, and solution are synonymous terms.
Examples of evidence include hazard logs, testing results, and mathematical theorems. When
considered in light of traditional treatments of argumentation, evidence is nothing more than a
special type of premise. In such treatments, a premise is a statement cited in support of a
conclusion, which it is presumed the listener or reader will readily accept as true (either
immediately, or as the result of another argument supporting its truth). Both premise and evidence
are used in this report. The former is generally used for statements in which additional argument
is provided to justify their truth; the latter is used for premises at the “bottom” of an argument
structure.

3 The claims, argument, and evidence distinction are established within the safety case literature. The terms and distinctions are briefly addressed
in this section.

4 The phrase “shown to be true” and variants, such as “shown to hold,” are implicitly modified by “... to an appropriate degree of confidence for
the case under consideration.” Truth is of concern, in the practical, engineering sense, but not in an absolute philosophical or theological sense.

Context generally refers to any information that is needed to provide definitions or descriptions of
terms or to constrain the applicability of the assurance case to a particular environment or set of
conditions. For example, the context for a conclusion “the software performs its intended
function with a level of confidence in safety that complies with airworthiness requirements”
would likely include the applicable airworthiness requirements [26], a description of the intended
function of the software, and any constraints on the environment in which the software is expected
to be used. Some recent research defines context more strictly than has been done previously [27].
The looser, more common notion of context is used in this report.

An assumption is a statement on which the case relies but which is not elaborated or argued for in
the assurance case. It is simply assumed to hold. As an example, an argument concerning safety
that concludes that all identified hazards have been eliminated may rely on the assumption
that all credible hazards have been identified.

These five concepts, no matter which terms are used to express them, are all present implicitly in
the collective minds of the developers of any successful engineered system. An assurance case
simply provides a means for ensuring that this implicit knowledge is documented explicitly in a
form that can be examined carefully and critically, not only by the developers, but also by others.
The use of assurance cases is not a new way of engineering, but rather a way of documenting in
arguments what engineers already do. An active research community is exploring how to best
create, express, analyze, improve, and maintain assurance cases. Readers interested in learning
more about assurance case research are encouraged to explore the references cited in the papers
reproduced in appendix C of this report, along with other references cited directly in the main
body.

One additional assurance case concept—the confidence argument—plays an important role in the
DO-178C case. The idea of separating primary and confidence arguments was first introduced in
2011 by researchers from the Universities of Virginia and York [28]. It involves distinguishing
between arguments making direct conclusions about the attributes of interest (e.g., safety in a
safety case) and arguments related to sufficiency of confidence instead of intermingling these
different concerns into a single-argument structure. The Explicate ‘78 research did not apply the
specific proposed mechanisms, but it did make extensive use of the general concept. This general
concept is especially appropriate for DO-178C. Even a cursory reading of the guidance reveals
that it contains a mixture of objectives about the desired properties of the final software product,
intermediate products, and the processes used to develop the product. With only a few exceptions,
this mixture separates rather cleanly into primary and confidence arguments.

2.3 ABOUT THE GSN

The GSN is a popular graphical notation for expressing assurance cases. For developing GSN
diagrams for Explicate *78, a set of tools from Dependable Computing, Inc. (DCI) was used. Some
of the primary symbols of the notation as rendered by the tools are shown in figure 1. The standard
GSN names for the concepts are used in the figure. However, conclusion is used instead of goal
and warrant instead of strategy. The standard GSN uses ellipses, not rounded rectangles, for
assumptions and justifications, as is used by the DCI tools. Text within these symbols is used to
provide content and a convenient means of referring to individual elements.

The concepts represented by most of these elements have already been described. The new
concepts introduced in the figure are as follows. A justification gives the rationale for why a
particular strategy (warrant) or goal (conclusion) is acceptable. A module provides a means for
referring to a claim (conclusion) that is elaborated in a separate argument. To construct an
argument, the elements of the GSN notation are linked together using the in context of or supported
by directed lines. The undeveloped entity symbol is appended to the bottom of another element to
indicate that the particular line of argument requires further development.

f 2

Solution

Goal Strategy Supported by
Module .
In context of
) [)A (J Unde<vzoped
Context Assumption Justification entity

Figure 1. Some Elements of GSN

The meaning of two or more supported by arrows proceeding from a goal (conclusion) or strategy
(warrant) is that all elements pointed to by the arrows are necessary to provide support. Also, all
elements at a lower level in the structure inherit the context and assumptions attached to their
ancestors in the structure.®

For the implementation of GSN used in Explicate ‘78, the text within each graphical element
consists of three parts, one numerical and two alphabetical, as shown in figure 2.

SwAcceptableLevA

Software performs its intended
function at acceptable level of
safety for Level A

32

Figure 2. Example of a GSN Element

The number towards the lower right-hand side (32 in the example) is a unique identifier that is
used in producing a comprehensive index. It is called the GSN ID. The GSN ID distinguishes
among GSN elements across the entire collection of arguments. Whether GSN IDs are generated
is controlled by the argument developer. These are present in all of the DO-178C arguments
developed for Explicate ‘78.

5 This statement is not true of modules in standard GSN. For reasons of simplicity and readability, standard GSN practices have not been strictly
adhered to. The away goal and pattern constructs have not been used.

The two alphabetical parts are written when developing the argument. The bold text at the top
(SwAcceptableLevA in the example) simply serves as an identifier; it is optional, but used
throughout the Explicate ‘78 arguments. The normal text in the middle of the graphical element is
the essential content: Software performs its intended function at acceptable level of safety for
Level A in the example.

The DCI tools used in Explicate ‘78 also provide support for two forms of embedded links:

. Module link: denoted by a small square with an arrow on the bottom right-hand corner of
an element. This link only appears in electronic versions of the arguments; it does not
appear in printed versions.

. Confidence link: denoted by a small yellow square partially hidden behind the upper right
hand corner of an element. This link appears in both electronic and printed versions.

Other aspects of the notation are explained below when they first appear.

2.4 ABOUT PREVIOUS WORK

No published work was found that has attempted to accomplish the same goals as the current effort,
but two previous projects did address related aspects concerning DO-178B and assurance cases.

The MITRE Corporation tried to map three different standards into an assurance case framework
[29]. The primary purpose of this effort was to explore two primary hypotheses: All assurance
cases have similar components, and an assurance standard implies the structure. One of the three
standards used in the study was DO-178B. The created assurance case was structured rigidly
around the DO-178B chapters. For example, the top-level conclusion was that DO-178B Software
Considerations are taken into account. Sub-conclusions were given for each of the DO-178B
chapters (2-9); for example: 2.0 System Aspects were taken into account; the 5.0 Software
Development Process was executed as planned; and the 9.0 Certification Liaison process was
properly established and executed.

The effort appears to have concentrated on translating the textual and tabular form of DO-178B
into a graphical form with as little interpretation or abstraction as possible. This differs
substantially from the Explicate ‘78 research, which concentrated on discovering the underlying
implicit assurance case, not rigidly translating one form of concrete expression into another form.

Researchers at the University of York and QinetiQ in the United Kingdom conducted the other
related previous work. The primary goal of this research was to explore ways to justify substitution
of one technology for another. In particular, a major emphasis was placed on developing arguments
showing that the evidence produced by replacements for testing (such as formal proof) could be at
least as convincing as the evidence produced by testing. As part of this research, certain aspects of
the testing-related objectives of DO-178B were explored and GSN representations were produced.
Unpublished results from the research were submitted to SC-205/WG-71, and considered by the
Formal Methods sub-group, which wrote the document that eventually become DO-333.

2.5 SUMMARY OF TERMS

The following list enumerates and explains the specific terms that are used in the description of
the DO-178C assurance case:

o argument: a structure consisting of a conclusion, one or more premises, and a warrant,
along with possible additional information in the form of context and assumptions. The
purpose of an argument is to convince the reader that its conclusion is true. Recall that
“true” in the context of this report is assumed to always be modified by “to an appropriate
degree of confidence for the case under consideration.”

. conclusion: a statement whose truth is asserted as a consequence of the warrant and
premises

. warrant: an explanation of the reason(s) the premises are sufficient to establish the truth
of the conclusion

o premise: a statement that, if true, contributes positively to the truth of the conclusion. Some
premises may themselves be conclusions of supporting arguments.

o evidence: a special form of premise that identifies known facts. No additional argument is
needed for evidence.

. context: additional information needed to clarify or constrain the meaning of parts of an
argument

. assumption: a statement whose truth is necessary for the conclusion to hold, but for which
no additional argument or elaboration is provided

. main argument: an argument making direct conclusions about the attributes of interest in
the case; may also be called a top-level argument

o confidence argument: an argument concerning whether confidence is justified in relevant

aspects of the main argument

3. THE IMPLICIT ASSURANCE CASE IN DO-17/8C

With the preceding background information as a foundation, it is now easier to discuss the
assurance case developed to describe the guidance in DO-178C. Throughout this discussion, the
definite pronoun will be employed when referring to this assurance case. This usage is not intended
to imply that the specific case developed in this research is the only, or even necessarily the best,
case that can be developed. As indicated in previous work, several alternative approaches were
explored, and others briefly considered. Pages C-24 through C-27 of appendix C present the early
steps taken in discovering and developing this case.

3.1 GUIDING PRINCIPLES

Three principles guided the creation of the DO-178C assurance case: 1) faithfulness to the text; 2)
minimum speculation; and 3) explication before evaluation. These principles were adopted to help
guard against straying from the purpose of the research, which, as indicated previously, was to
accurately represent the implied assurance case in DO-178C. The possibility was therefore reduced
of inadvertently (or intentionally), creating a case that conformed more to a personal concept of
an ideal case than to the guidance.

Maintaining faithfulness to the text dictated using actual words from the guidance whenever
possible. For example, whenever an argument element represented a specific objective, the full
text of the objective was reproduced in the argument along with citations to both the text section
in which it appears and the associated Annex table entry. Faithfulness to the text also required
consulting the explanatory material in DO-248C to clarify possible ambiguities.

In one area, following the faithfulness to the text principle produced some surprising results.
Except for a handful of instances, nothing about activities appears in the arguments. DO-178C
section 1.4.d explicitly states that an applicant “may plan and ... adopt alternative activities to
those described in this document.”® Thus, the activities described in the guidance are only
suggestions, not an integral part of the implied assurance case.

The primary application of the minimum speculation principle was for explicating the warrants
associating premises and conclusions. In many instances, neither the DO-178C guidance nor the
DO-248C additional information contained any explicit or strongly implied reasons explaining
why certain premises should be considered to justify a particular conclusion. For such instances,
the warrant included in the argument took a trivial compositional form.

The explication before evaluation principle is almost self-explanatory. The full set of arguments
was created before any evaluation of their sufficiency was undertaken. However, throughout the
creation of the arguments, periodic assessment was conducted regarding whether they accurately
captured the reasoning contained in the guidance. The explication before evaluation principle was
also followed in organizing the rest of the current section. A full representative sample of the
arguments is presented before any evaluative comments are made about them.

3.2 LEVEL D ARGUMENTS

All the Level D arguments are shown in this section, with varying amounts of descriptive text,
beginning with much detail and decreasing throughout the section in anticipation that the reader
will grow accustomed to the content and style of the graphical arguments’.

The top-level assurance argument (see figure 3) establishes the conclusion SwAcceptableLevD:
Software performs its intended function at acceptable level of safety for Level D. Recall that
the stated general purpose of DO-178C is to provide “guidelines for the production of software for
airborne systems and equipment that performs its intended function with a level of confidence in
safety that complies with airworthiness requirements.” Thus, the argument’s conclusion represents
a concise statement of the stated purpose of the guidance as applied specifically to Level D
software.

8 The elided text is “subject to the approval of the certification authority.” The existence of these words in the quoted sentence is entirely superfluous
because those words are implicitly part of everything in the guidance.

7 The size of some arguments, combined with suboptimal handling of the interaction of figures and text in Microsoft® Word®, causes several
instances of more-than-desired whitespace throughout the exposition of the arguments.

The four context elements (IntFun, DefAccSafetyFromRegs, GlossaryApplies, and LevelDDef)
attached to the concise conclusion provide necessary additional information about its precise
meaning. IntFun indicates that the software mentioned in the conclusion is fully described in an
external Description of the intended function of the software. DefAccSafetyFromRegs indicates
that the definition of acceptable level of safety is found in the applicable airworthiness regulations.
GlossaryApplies indicates that any words or phrases used in the argument with entries in the DO-
178C glossary are to be assumed to have the meaning specified therein. Finally, LevelDSoftware
specifies that the meaning of Level D software in the conclusion matches the meaning specified in
the guidance.

The argument shows that the DO-178C guidance implicitly establishes the conclusion through two
premises (HLRSatSRRefLevD and EOCSatHLRefLevD) and the warrant ArgByCorrectness.
Both premises are needed to show that the software correctly performs its intended function.
Testing to allocated system requirements might be inadequate to show that software adequately
addresses software contributions to system hazards. In situations for which high-level
requirements are not a satisfactory refinement of allocated system requirements, software might
perfectly satisfy the high-level requirements, yet fail to perform its intended function. The use of
the module notation for these premises indicates that they are justified by supporting arguments.

10

ﬂntFun \

Description of intended function of the

software
\ ’/
/DefAccSafetyFromRegs \

Definition of acceptable level of safety
from airworthiness regulations

\ 2/
/GIossaryAppIies \

Words / phrases are used consistently
with their descriptions in the Glossary

\ %
/ LevelDDef \

Software assigned to Level D is defined as
"Software whose anomalous behavior, as
\ shown by the system assessment process,
would cause or contribute to a failure of
system function resulting in a minor failure
condition for the aircraft" (2.3.3.d).

\ Y/

/RquIIocVaIidSuff

System requirements allocated to software augmented
by any derived requirements are valid and sufficient to
define intended function and ensure acceptable level
of safety. "The relationship of the requirements
development process to the safety process [is] defined
to ensure that the safety analysis [is] not compromised
by either the improper implementation of safety-related
requirements or the introduction of new behavior (that
is, derived requirements) that was not envisioned in
the original safety analysis" (DO-248C 5.4 bullet 6)

=

//

/
Warrant ArgByCorrectness / \ A
Showing correctness of the software / /
relative to allocated system requirements & HLRDev
and derived requirements is sufficient "High-level requirements are developed" (5.1.1.a,

10 A-2.1, Data Item 11.9 Software Requirements Data)
=]

SwAcceptableLevD

Software performs its intended
function at acceptable level of
safety for Level D

11

O

[}

\

/DerHLProv

"Derived high-level requirements are defined and
provided to the system processes, including the
system safety assessment process" (5.1.1.b, A-2.2)
See also DO-248C 5.5.1.

\ 7

i i

HLRSatSRRefLevD EOCSatHLRefLevD
High-level requirements are (for Executable Object Code is (for Level
Level D) a satisfactory refinement of D) a satisfactory refinement of the
the allocated system requirements high-level requirements for Level D
8 9

Figure 3. Level D: SWACCEPTABLELEVD

The warrant ArgByCorrectness explains that these premises are also sufficient for that purpose.
Assumption RegAllocValidStuff and context elements HLRDev and DerHLProv document how
the argument’s logic depends on the guidance being used in the context of an effective, compatible
system safety assessment process. Without this clarification, the argument might: 1) leave readers
wondering how evidence of requirements refinement and satisfaction shows achievement of the
claimed level of safety; 2) mislead readers into strictly equating “safety” and software correctness;
or 3) give readers the impression that the standard deems such safety analysis unnecessary for
Level D software. By documenting both the assumption of an external system safety assessment
process and objective A-2.2’s requirement that software developers provide system safety
assessors with derived requirements, this part of the argument explains how system development
efforts using DO-178C address safety despite the explicit omission of safety analysis evidence.

The only remaining element in the diagram is the confidence link (such links are denoted by a
partially hidden small yellow square) attached to ArgByCorrectness. The confidence argument
indicated by this link establishes the conclusion JusTIFIEDCONFIDENCELEVD.

Next is the first premise of the top-level argument, which is HLRSATSRRerFLEvD: High-level
requirements are (for Level D) a satisfactory refinement of the allocated system
requirements. The (sub-) argument establishing this premise is shown in figure 4.

HLRSatSRRefLevD

High-level requirements are (for
Level D) a satisfactory refinement of
the allocated system requirements

9

[

A

Warrant ArgByQbjSat LevDObjs631
Showing compliance, accuracy, -

consistency, and traceability of ;h:rgrggﬂbfcg\fgj fors L;:'et:
High-level Requirements is (A-3-2) ‘6' 3‘1 (f(A-'s)é) e

sufficient for Level D software

86

HLRComply HLRTrace2SR

"High-level requirements comply with system "High-level requirements are traceable to

requirements” (A-3.1): "... the system functions system requirements” (A-3.6). "... the

to be performed by the software are defined, functional, performance, and safety-related
requirements of the system that were

... the functional, performance, and
safety-related requirements of the system are
satisfied by the high-level requirements, and ...
the derived requirements and the reason for
their existence are correctly defined" (6.3.1.a) /

allocated to software were developed into
the high-level requirements" (6.3.1.f)

©
w

88 i
i
|
HLRAccCons ExtDefofAccurate
"High-level requirements are There exists an Data Item 11.14
Data ltem 11.14 accurate and consistent” (A-3.2): external, agreed -
s Verfication Resulls "each high-level requirement is definition 0% Sofiware Verification Results
oftware Verification Resul accurate, unambiguous, and accurate requirements 92
a7 sufficiently detailed, and ... the (DO-178C has no such
requirements do not conflict with definition)
each other" (6.3.1.b) 89
91
Data ltem 11.14
Sofiware Verification Resulis

a0
Figure 4. Level D: HLRSATSRREFLEVD

The three premises for this conclusion are HLRCompLY (which corresponds to the objective stated
fully in section 6.3.1.a and summarized in Annex table entry A-3.1), HLRAccCONSs (section
6.3.1.b, table entry A-3.2), and HLRTRACE2SR (section 6.3.1.f, table entry A-3.6). HLRCompPLY
concerns the high-level requirements satisfying the system requirements and any derived

12

requirements being handled appropriately. HLRTRACE2SR concerns traceability between the high-
level and the system requirements allocated to software. HLRAcCCONS concerns the accuracy,
consistency, and unambiguousness of the high-level requirements. Because DO-178C does not
provide a definition or description of what is meant by “accuracy,” and because the process of
applying a standard dictionary definition of the word to requirements is not clear, the assumption
is attached (EXTDEFOFACCURATE) that there exists an external, agreed definition of accurate
requirements. Without such an agreed definition, the meaning of this premise cannot be fully
known.

Neither the guidance nor the supporting information provides any explanation for why satisfying
these three premises is sufficient (in a Level D sense) to establish that the high-level requirements
are a satisfactory refinement of the system requirements allocated to software. Thus, the warrant
ARGBYOBJSAT is nothing more than the trivial statement Showing compliance, accuracy,
consistency, and traceability of High-level Requirements is sufficient for Level D software.

Each of the three premises is supported by direct evidence (which, as noted earlier, is indicated by
the small circle) contained in DATA ITEM 11.14: Software Verification Results. This section
number and data item name is taken directly from chapter 11 of the guidance.

Figure 5 shows the argument for the second premise (EOCSATHLREFLEVD) of the top-level
argument. This argument is slightly more complicated than the previous one, involving five
premises and several context items that require a bit of explanation. Like the previous argument,
however, the warrant ARGBYOBJISAT is a trivial statement because neither the guidance nor
supporting information explain why the premises should be considered sufficient to establish the
conclusion.

13

EOCSatHLRefLevD

Executable Object Code is (for
Level D) a satisfactory refinement
ofthe high-evel requirements

EOCandPDIPnL

"Executable Object Code and Parameter Data ltem Files, if
any, are produced and loaded in the target computer” (5.4.1.a,
A-2.7, Data Item 11.12 Executable Object Code, Data ltem
11.22 Parameter Data Item File)

/

AN

ﬂ_evDEOCHLObjs
The only objectives for Level D are 6.4.a (A-6.1), 6.4.b (A-6.2),

‘Warrant ArgByObjSat

Showing satisfaction of these five
objectives is sufficient fo establish
satisfactory EQC refinement from
high-level requirements software

114 class testing

6.4.e (A6.5), 6.3.3.1(A-4.13), 6.6.a (A-5.8)

fl’estCredi'tClarify

"... DO-178C/DO-278A adopts a strategy called equivalence
... The objectives 1,2, 3, 4 ___in Table A-6

PAN

|

provide clarification that testing credit can only be obtained by
testing of the high-level and low-level requirements”
Qofzmc 562 (excerpts)

PDICorFullObjective

"The Parameter Data ltem File should be verified

PDICor

"Parameter Data ltem File is
comect and complete” (A-58)

to comply with its structure as defined by the high-
level requirements: this verification includes
ensuring that the Parameter Data ltem File does
not contain any elements not defined by the high-
level requirements. Each data element in the

Resulis

Partinteg

"Software partitioning integrity is
confirmed” (A-4 13) "partitioning
breaches are prevented” (6.3.3)

02

Data ltem 1114

Soltware Verification Results 101

[

Data lems 11.13, 11.14
Software Verification Cases and
Procedures, Software Verification

Parameter Data ltem File should also be shown to
have the cormrect value, to be consistent with other
data elements, and to comply with its aftributes as
defined by the high-level requirements” (6 6.a) j
103

104

ArchDev

"Software architecture is developed” (A-2.3) "from the high-level
requirements” (5.2 1 a) (Data Item 11.10 Design Descnption)

PartintegRationale

" __ By requiring the applicant to demonstrate that partitioning schemes
can be fully verified through analysis, review, and test, objective 13
[6.3.3.f, A-4.13] excludes those partitioning architectures that cannot
substantiate claims of non-interference. ... " DO-248C 5.6.1 bullet 4

TargetComp

Target computer environment; 6.4.1.a
"Selected tests should be performed in
the integrated target computer
environment, since some errors can only

EOCCompliesHL
"Executable Object Code
complies with high-evel
requirements” (6.4.a, A-6.1)

EOCCompatTC

"Executable Object Code is
compatible with target
computer” (6 .4.e, A-6.5)

be detected in this environment”

TCTestRationale

"The non-aviation community does allow

EOCRobustHL

"Executable Object Code is
robust with highdevel

reguirements” (6.4.b, A-6.2)
Data ltems 11.13, 1114, 1121

Sofware Verification Cases

and Procedures, Software

Verification Results, Trace Data
1086

Data ltems 11.13, 1114, 1121

credit for testing in a nontarget
environment, however, this could allow
certain errors that are target-related, as
well as compiler target-specific errors to
escape detection. . [Objective A-6.5]
specifies that credit is obtained by testing
on the target or showing that any other
testing is equivalent to target-level
testing.” DO-248C 5.6.2 second bullet

Data Hems 1113, 1114
Software Verification Cases
and Procedures, Software
Verification Results

T2

Software Verification Cases and Procedures,
Software Verification Results, Trace Data

108

Figure 5. Level D: EOCSATHLREFLEVD

14

The context item attached to the conclusion requires explanation. EOCANDPDIPNL encapsulates
the objective of the integration process stated in section 5.4.1 and table A-2.7 of DO-178C: the
“Executable Object Code and Parameter Data Item Files, if any, are produced and loaded
in the target computer’ [1] An objective is captured as a context element in the argument instead
of as a conclusion or premise because any objective concerning only the existence of a data item
is consistently represented as context elements. This is because showing the satisfaction of such
an objective does not require any additional argument.

Of the five premises, three directly address the quality of the executable object code. The evidence
for two of these (EOCCompLIESHL, EOCROBUSTHL) is contained in the relevant parts of three
data items:

. DATA ITEM 11.13: Software Verification Cases and Procedures
° DATA ITEM 11.14: Software Verification Results
° DATA ITEM 11.21: Trace Data

The third premise concerning the executable object code (EOCCOMPATTC) concerns
compatibility with the target computer. Two context elements (TARGETCOMP,
TCTESTRATIONALE) provide additional information regarding why testing on the target computer
is considered essential. The evidence for demonstrating the truth of this premise is contained in
DATA ITEM 11.13 and DATA ITEM 11.14.

The other two premises are not directly related to executable object code. PARTINTEG concerns the
integrity of software partitioning. The context element PARTINTEGRATIONALE explains the reason
for requiring a showing of partitioning integrity. Context ARCHDEYV indicates that developing the
software architecture is needed to define what partitioning is employed.

The final premise in this argument is PDICOR: “Parameter Data Item File is correct and
complete” (A-5.8). The text is the simplified version of the full objective given in the annex table.
The full text of the objective is written in the attached context element to enhance the look of the
diagram.

The associated confidence argument is shown in figure 6.

15

LevDEvidence

The required data items for Level D
provided in a form described in the Plan

for Software Aspects of Certification
JustifiedConfidenceLevD (11.0.b)

The evidence provided is adequate for
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level D DataltemChars

20 The data items have the characteristics
described in 11.0.a: (1) unambiguous,
(2) complete, (3) verifiable, (4) consistent,
(5) modifiable, and (6) traceable.

-
%]

?SA

Y
Warrant ArgByProcesses

Establishing adequacy of
required processes is sufficient

19

AdqgPlanningLevD AdgCertLiasLevD

Adequate planning has The certification liaison process

been conducted for Level D is adequate for Level D

14 18
| Y

AdgVerVerResLevD AdqConfigManLevD AdqSQALevD
Sufficient verification of Adequate configuration Adequate software quality
verification results have management is in place for Level D assurance is in place for Level D
been achieved for Level D 16 17

Figure 6. Level D: JustifiedConfidenceLevD

The conclusion of the confidence argument is JUsTIFIEDCONFIDENCELEVD: The evidence
provided is adequate for justifying confidence that the correctness of the software has been
demonstrated to the extent needed for Level D. This argument encapsulates all of the Level D
relevant objectives from DO-178C that concern required processes. It asserts explicitly, as the
guidance asserts implicitly, that establishing adequacy of required processes is sufficient to provide
the needed confidence. The adequacy of these required processes is established in five premises,
which are expanded in supporting arguments: ADQPLANNINGLEVD, ADQVERVERLEVD,
ADQCONFIGMANLEVD, ADQSQALEVD, ADQCERTLIASLEVD.

Associated with the conclusion is a context element (LEVDEVIDENCE) and an assumption
(DATAITEMCHARS). The context element notes that the data items are to be provided in a form
described in the Plan for Software Aspects of Certification (11.0.b). The assumption lists the
characteristics (described in 11.0.a) that each data item is supposed to possess. It should be: 1)
unambiguous; 2) complete; 3) verifiable; 4) consistent; 5) modifiable; and 6) traceable. These
characteristics are enumerated in an assumption, rather than as a conclusion of a supporting

16

argument because DO-178C does not contain any objectives requiring that the characteristics be

directly demonstrated.

Figure 7 contains the simple argument justifying ADQPLANNINGLEVD.

AdgPlanningLevD

Adequate planning has
been conducted for Level D

123

Warrant ArgByObjSat

Showing satisfaction of these two
objectives from section 4.1 is sufficient to
establish satisfactory planning for Level D

LevDPlanQObj

The only objectives applicable for
Level D are 4.1.a (A-1.1), 4.1.d (A-1.4)

122

ActivitiesDef

"The activities of the software
development processes and integral
processes of the software life cycle that will
address the system requirements and

AddConRationale

software level(s) are defined” (4.1.a, A-1.1)

AddConAddressed "Objective 4 [4.1.d, A-1.4] ... ensured
" . - " that the applicant addressed those items
aditonal considerations, such as those unigus to certification (or CNS/ATM

dd d it n41.d Al d system approval) and highlighted any
addressed, if necessary." (A1) non-standard approaches so the risks to
121 safety could be assessed.”" DO-248C 5.4

Data ltems 111,112,113, 114, 115
Plan for Software Aspects of Ceitification

{PSAC), Software Development Plan {SDP),

Software Venfication Plan {SVP), Software
Configuration Management {SCM) Plan,
Software Quality Assurance {SQA) Plan

iir

Data ltems 111,112,113, 114, 115

Plan for Software Aspects of Certification
{PSAL), Software Development Plan {SDP),
Software Venfication Plan {SVP), Software
Configuration Management {SCM) Plan,
Software Quality Assurance {SQA) Plan

20

Figure 7. Level D: ADQPLANNINGLEVD

At Level D, the guidance requires only two objectives related to planning. Satisfying these two
objectives is explicated in the two premises: ACTIVITIESDEF and ADDCONADDRESSED. The
evidence required to show these two premises hold is contained in the relevant parts of five data

items:

DATA ITEM 11.1: Plan for Software Aspects of Certification (PSAC)
DATA ITEM 11.2: Software Development Plan (SDP)

DATA ITEM 11.3: Software Verification Plan (SVP)

DATA ITEM 11.4: Software Configuration Management (SCM) Plan
DATA ITEM 11.5: Software Quality Assurance (SQA) Plan

Because neither the guidance nor supporting information explains why these two premises are
considered sufficient, the warrant takes the same trivial form previously seen.

17

Figure 8 shows the simple argument describing the requirements for Level D for the verification
of the results of the verification process, which is given the slightly shorter name verification of
verification results in the argument. No additional commentary seems necessary.

AdqVerVerResLevD
Sufficient verification of verification
results have been achieved for level D

127

Warrant ArgByObjSat

Satisfaction of this sole objective
establishes sufficiency of verification
of verification results for Level D

126

L

HLRTestCov

"Test coverage of high-level
requirements is achieved"
(6.4.4.a, A-7.3)

12

[4)]

Data ltem 11.14
Software Verification Resulis
124

Figure 8. Level D: ADQVERVERLEVD

In contract, the argument concerning configuration management is a bit more complicated, as
shown in figure 9.

18

AdqConfigManLevD

Adequate configuration
management is in place for Level D

@

AllSec70bjsApply
3 All objectives in Section 7 apply to
arrant ArgByObj Sat Level D software

Showing satisfaction of these six
objectives is sufficient to
establish adequate configuration .
management for Level D AssumeCCassign
47 All data items have been properly
assigned to a Data Control Category
(CC1/ CC2) as required by section 7.3

ProbReportingWhy

"The problem reporting process records non-
compliance with software plans and standards, records
deficiencies of outputs of software life-cycle processes,
records anomalous behavior of software product, and
ensures resolution of these problems” (7.1.c)

134

I
ChangeControlWhy

"Change cantrol provides for recording, evaluation,
resalution, and approval of changes throughout the

¥ software life cycle" (7.1.d) e
ProbRepEtAlIEst _
"Problem reporting, change control, change review, and (ChangeRaviewWhy \
configuration status accounting are established" (A-8.3) "
P '‘Change review ensures problems and changes are
e assessed, approved or disapproved, approved
changes are implemented, and feedback is provided

to affected processes through problem reporting and
change control methods defined during the software

Qz\annlng process” (7.1.e) 4 ;y

Data Rems 11.17, 1118 StatusAccWhy

Problem Reports, SCM Records "Status accounting provides data for the config-
uration management of software life cycle processes

138
with respect to configuration identification, baselines,
Problem Reports, and change control” (7.1.f)
ArcRelEst ArcRelEstFullObj
. "Archival and retrieval ensures
Archive, refrieval, and release that the software life cycle data
are established” (A-8.4) associated with the software
142 product can be refrieved in case
of a need to duplicate, regenerate,

retest or modify the software

hJ
product. The objective of the
ConfltemsLabeled BaseTraceEst release activity Is to ensure that
"Each configuration item and its "Baselines are defined for further only authorized software is used,
successive versions are labeled software life cycle process activity especially for software
manufacturing, in addition to

unambiguously so that a basis and allow reference to, control of,

is established for the control and traceability between,

and reference of configuration, configuration items" (7v.1.b, A-8-2) .-
items” (7.1.a, A-8.1) 13 o

being archived and
retrievable" (7.1.g)

T

¥
SwlLoadConEst EnvControlEst
Data kem 1118 Data Mems 11.16, 1,1'18 "Software load control is established" "Software life cyde environment control
SCM Records Software Configuration (A-8 5) "the Executable Object Code is established" (A-8.6) - "the tools used
2300 Index, SCM Records and Parameter Data Item Files, if any, to produce the software are identified,
130 are loaded into the system or equipment controlled, and retrievable" (7.1)
with appropriate safeguards" (7.1.h) 146
Data Hems 1115, 1118
Diata Hem 11.18 Soft Life Cyde Emviron "
SCM Records 143 Configuration Index, SCM Records
145

Figure 9. Level D: ADQCONFIGMANLEVD
The conclusion AbaCoNnFIGMANLEVD is supported Dby six premises ConfltemsLabeled,

BaseTraceEst, ProbRepEtAllEst, ArcRelEst, SwLoadConEst, and EnvControlEst, which identify
necessary source control properties and capabilities. According to the guidance, unless each of the

19

versions of each configuration item is unambiguously labeled, the relationship between the
argument text and these artifacts would be unclear, and the validity of evidence would be in doubt.
Without baselines, traceability between the various items and the items that informed their
production could not be established. Without problem reporting, problems might be identified only
to fall through the cracks. Without change control and change review, it would be necessary to
follow a strict waterfall process, re-executing each stage in its entirety whenever a discovered
defect forces a change. Configuration status accounting information underpins the other
configuration management activities. Archive, retrieval, and release capacities make it possible to
revisit any past version as needed to investigate or address problems. Software load control ensures
that only authorized versions of the executable object code and parameter data items are used in
airborne systems and that it is known which versions are in use in which systems. Without software
life cycle environment control, it would not be possible to precisely recreate given versions of
artifacts, such as compiled executable object code, from their source artifacts (e.g., as different
versions of a compiler might produce slightly different code).

Context elements, such as ProbReportingWhy and ArcRelEstFullObj, clarify what the argument
means when it names configuration management practices and capabilities. For example,
ProbReportingWhy explains what problem reporting is by describing how it operates and what it
accomplishes. ArcRelEstFullObj explains archive, retrieval, and release by observing that this
capability permits developers to retrieve software life-cycle data in case of a need to duplicate,
regenerate, retest, or modify the software product.

Warrant ArgByObjSat asserts that the identified practices and capabilities are sufficient. This
sufficiency is not justified by explicit backing evidence because the rationale is not stated.

Context element AllSec70bjsApply shows which of DO-178C’s objectives relate to configuration
management and that all such objectives apply at Level D and all higher software levels.
Assumption AssumeCCassign serves multiple purposes. First, it clarifies that the configuration
items discussed in this argument includes all data items named in the standard. Second, it identifies
the leveling mechanism at work in configuration management. Whereas all objectives apply to at
least some configuration items at every software level, some objectives do not apply to some
configuration items at some levels. The tables in Annex A of the section specify the control
category of each data item at each software level, whereas Section 7.3 of the standard defines
which objectives apply at which control category.

The meanings of the cited evidence items should be easily discernable based on analogy to the
explanations given for previous evidence items. Going forward, no mention will be made of
evidence items in the explanatory text.

Figure 10 is related to a simple argument, which relies on two premises to justify the conclusion
based ADQSQALEVD: Adequate software quality assurance is in place for Level D.

20

AdqSQALevD

Adequate software quality
assurance is in place for Level D

Warrant ArgByObjSat

Showing satisfaction of these two
objectives is sufficient to establish

LevDSQAObj
The only objedives for Level D

satisfactory SQAfor Level D are 8.1.b (A-0.2), 8.1.d (A-9.5)
AssureCompPlans AssureConfRev
Independent "Assurance is obtained that Independent "Assurance is
software life cycle processes comply with obtained that software conformity
approved software plans” (8.1.b, A-9.2) review is conducted” (8.1.d, A-9.5)
Data Nem H.19 Diata e H.19
S0ARecords SQARecords
Prrd) 52

Figure 10. Level D: AdgSQALevD
Figure 11 shows a simple, three-premise argument concerning the certification liaison process.
Interestingly, the objectives required by DO-178C for this process are the same for software Levels

D through A. Thus, the confidence arguments for Levels C, B, and A all reference directly the
supporting argument presented here for Level D.

Figure 11. Level D: AdgCertLiasLevD

21

3.3 LEVEL C ARGUMENTS

Although section 3.2 presented the full set of Level D arguments, only a subset of the arguments
associated with Level C is presented here. Omitted arguments are shown in appendix A.
Explanatory text is provided only for aspects of the arguments that bring out ideas that have not
already been addressed.

Figure 12 contains the main argument for Level C, which establishes the conclusion
SWACCEPTABLELEVC: Software performs its intended function at acceptable level of safety
for Level C. The argument has the same structure as the main Level D argument. The content is
directly analogous as well, with the substitutions appropriate for the different software level. All
but one of the context elements, the assumption, and the warrant are unchanged. The fourth context
element provides the definition for Level C (instead of D) software.

22

SwAcceptableLevC

Software performs its intended
function at acceptable level of
safety for Level C

31

\

ﬂ:\efAccSafetyFromRegs

\

Warrant ArgByCorrectness

Showing correctness of the software

relative to allocated system requirements

and derived requirements is sufficient

ﬂntFun

Description of intended function of the
software

Definition of acceptable level of safety
from airworthiness regulations

GlossaryApplies

Words / phrases are used consistently with

their descriptions in the Glossary

>,

LevelCDef

Software assigned to Level C is defined as

"Software whose anomalous behavior, as

shown by the system assessment process,

would cause or contribute to a failure of
system function resulting in a major failure

condition for the aircraft.” (2.3.3.c).

)
AN

ﬂequuocValidSuff

System requirements allocated to software augmented
by any derived requirements are valid and sufficient to
define intended function and ensure acceptable level
of safety. "The relationship ofthe requirements
development process to the safety process [is] defined
to ensure that the safety analysis [is] not compromised
by either the improper implementation of safety-related
requirements or the introduction of new behavior (that
is, derived requirements) that was not envisioned in
the original safety analysis" (DO-248C 5.4 bullet 6)

¢

HLRDev

"High-level requirements are developed" (5.1.1.a,
A-2.1, Data ltem 11.9 Software Requirements Data)

DerHLProv

See also DO-248C 5.5.1.

"Derived high-level requirements are defined and
provided to the system processes, including the
system safety assessment process” (5.1.1.b, A-2.2)

AN N

HLRSatSRRefLevC

High-level requirements are (for
Level C) a satisfactory refinement of
the allocated system requirements

n
(o]

EOCSatHLRefLevD

Executable Object Code is (for
Level D) a satisfactory refinement
of the high-level requirements

N
©

Figure 12. Level C: SwAcceptableLevC

23

One of the premises is unchanged. Table A-6 in [1] shows why the premise is
EOCSATHLREFLEVD instead of EOCSATHLREFLEVC. The table shows that the objectives are
the same between Levels C and D concerning the relationship between executable object code and
high-level requirements.

The other premise (HLRSATSRREFLEVC) is changed and requires a new supporting argument to
substantiate it. This argument is shown in figure 13.

HLRSatSRRefLevC

High-level requirements are (for
Level C) a satisfactory refinement of
the allocated system requirements

174

Warrant ArgByObjSat HLRLevelCObjs
High-level requirements refinement for ggl?lcg\zi?;g;‘eg;o{ :?;\e-g%)araend
Level D is acceptable for Level C if 631 (A3 7) Tables raferance

augmented by showing verifiability,
conformance to standards, and accuracy
of algorithms

activities in 6.3.1, but only objectives,
no specific activities, are given in 6.3.1

s 165

AlgorAccReq

"Algorithms are accurate" (A-3.7): "the
accuracy and behavior of the proposed
algorithms, especially in the area of
discontinuities" is ensured (6.3.1.g)

HLRSatSRRefLevD

High-level requirements are (for
Level D) a satisfactory refinement of
the allocated system requirements

166 172
HLRVerifiable HLRConformStd
"High-level requirements are "High-level requirements conform to
verifiable" (6.3.1.d, A-3.4) standards" (A-3.5): "Software
168 Requirements Standards were
: followed during the software
requirements process and that Data Htem 11.14
deviations from the standards are Software Verification Results
justified" (6.3.1.e) P,
1u 173
Data ibern 11.14 Data e 1114
S¢ Verific F S Verificati
TEF 169

Figure 13. Level C: HLRSatSRRefLevC

The guidance for Level C introduces objectives about low-level requirements. Therefore, one may
wonder why there is nothing about low-level requirements in the main argument. The first version
of the case for Level C included a premise about the refinement of low-level requirements. Further
reflection suggested that the confidence argument might be a better place to capture low-level
requirement objectives. Several DO-178C experts concurred with the opinion; therefore, the final
version follows that approach. The results are shown in figures 14 and 17.

24

According to the DO-178C guidance for Level C, to show satisfactory refinement of allocated
system requirements into high-level requirements, it must be demonstrated that
HLRSATSRREFLEVD holds, along with three additional premises:

o HLRVERIFIABLE: “High-level requirements are verifiable” (6.3.1.d, A-3.4)

. HLRCoONFORMSTD: “High-level requirements conform to standards” (A-3.5):
“Software Requirements Standards were followed during the software requirements
process and that deviations from the standards are justified” (6.3.1.e)

o ALGORACCREQ: “Algorithms are accurate” (A-3.7): “the accuracy and behavior of
the proposed algorithms, especially in the area of discontinuities” is ensured (6.3.1.9)

Each of these is shown to hold by reference to the evidence contained in DATA ITEM 11.14:
Software Verification Results. As shown in several previous instances, neither the guidance nor
the supporting information provides an explicit rationale for why these additional objectives are
necessary or sufficient. Thus, the warrant takes the default, trivial form.

The confidence argument for Level C (figure 14) looks similar to the confidence argument for
Level D. One of the premises is identical (ADQCERTLIASLEVD) because no new objectives are
added for the certification liaison process. Four of the premises are directly analogous, with new
supporting arguments required to address added objectives. One premise
(ADDREFINELEVELCSAT) is entirely new. It addresses the additional refinement steps that are
introduced in the guidance for Level C.

25

ﬂ.evCEvidence \

The required data items for Level C
provided in a form described in the Plan
" for Software Aspects of Certification
JustifiedConfidenceLevC (11.0.b)
The evidence provided is adequate for \ 32/
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level C ﬂ)ataltemChars \
41 The data items have the characteristics
described in 11.0.a: (1) unambiguous,
(2) complete, (3) verifiable, (4) consistent,
1 (5) modifiable, and (6) traceable.
Warrant ArgByProcPlusRef \ 33]A

Establishing adequacy of established
processes and of additional
refinement steps is sufficient

40

1

AdqgPlanningLevC
Adequate planning has
been conducted for

Level C

AddRefineLevelCSat

Additional refinement steps required
at Level C are satisfactory refinements

39

1] H]
AdqVerVerResLevC AdqConfigManLevC AdqSQALevC AdqCertLiasLevD
Sufficient verification of Adequate configuration Adequate software quality The certification liaison
verification results has been management is in place assurance is in place process is adequate
achieved for Level C for Level C for Level C for Level D 38

35 36 37

Figure 14. Level C: JustifiedConfidenceLevC

The argument for adequate planning at Level D contained only two premises. The argument for
adequate planning at Level C (see figure 15) includes the Level D conclusion as a premise and an
additional five premises. This argument applies to Level B and Level A, also, because no new
planning objectives are added at those software levels. One peculiarity exists in the argument,
namely existence of the intermediate premise LEVCPLANSAT; which is presented only for
explanatory and aesthetic purposes. All premises beneath it could be directly connected to the
warrant.

26

AdgPlanningLevC

Adequate planning has
been conducted for Level C

189

Warrant ArgByObjSat AllPlanApplyCBA
Showing satisfaction of Level D and five All plannina obiectives are
additional objectives is sufficient to a Fl)icablegt’c Lfevel C B A software
establish satisfactory planning for Level C PP T

188, 175

K LevCPlanSat
AdgPlanningLevD
. The additional planning objectives
Adequate planning has applicable to Level C are satisfied
been conducted for Level D .
176 o
LifeCycleDef DevRevCoord

"The software life cycle(s), including the inter- "Development and revision of software
relationships between [sic] the processes, plans are coordinated" (4.1.g, A-1.7)
their sequencing, feedback mechanisms, and 186
transition criteria is defined" (4.1.b, A-1.2)

178

Data Item 1114
Software Verification Results

Data Items 11.1, 112, 11.3, 11.4, 11.5 185

Plan for Software Aspects of Cerlification (PSAC),
Software Development Plan (SDP), Sofiware
Verification Plan (SVP), Software Configuration SwPlansComply
Management {(SCM) Plan, Soflware Quality i
Assurance {SQA) Plan 177 "Software plans that comply with
this document (sections 4.3 and 11)

have been produced" (4.1.f A-1.6)
¥ 184

LifeCycleEnv SwDevStds
"Software life cycle envircnment is selected "Software development standards are
and defined" (A-1.3) "including methods defined" (A-1.5), which are "consistent
and tools to be used for the activities of with the system safety objectives for
each software life cycle process" (4.1.c) the software to be produced” (4.1.e)
180 182 Data iHtem 11.14
Software Veiification Results

I "
O

Data Items 11.1, 11.2, 11.3, 114, 115 Data ltems 11.6, 11.7, 11.8

Plan for Software Aspects of Cerlification {PSAC), Sofiware Requirements Standards, Software Design
Software Development Plan {SDP), Software Standards, Softiware Code Standards

Verification Plan {SVP), Software Configuration 181
Management {SCM) Plan, Scftware Quality

Assurance (SQA) Plan ira

Figure 15. Level C: AdgPlanningLevC

Figure 16 presents the argument establishing the sufficiency of the verification of verification
results. It is similar in form to the planning argument because it includes the Level D conclusion

as a premise, along with five new ones.

27

AdqgVerResVerLevC
Sufficient verification of verification
results have been achieved for level C

204

'

Warrant ArgByObjSat

Satisfying Level D and the five
additional objectives in 6.4.4
and 6.4.5 for Level C is sufficient

203

AdgVerVerResLevD

Sufficient verification of
verification results have
been achieved for Level D

TestProcCor

"Test procedures are correct” (A-7.1)
"the test cases, including expected
results, were correctly developed info
test procedures” (6.4.5.b)

192

Data Item 1114
Sofware Vernihcation Resulls
797

TestCovCoupling

"Test coverage of sofiware structure
(data coupling and control coupling)
is achieved” (6.4.4.d, A-7.8)

2(

2

Data Hem 1114
Software Verication Results

StatementCov

"Test coverage of software
structure (statement coverage)
is achieved” (6.4.4.c, A-7.7)

TestResultsCor

"Test results are correct and
discrepancies ('‘between the
actual and expected results")
are explained” (6 4.5 c, A-7.2)

Data ltem 1114
Software Vernilication Results
o

TestCovLLReq

"Test coverage of low-level
requirements is achieved”
6.4 4b, A-74)

[}

Data ltem 11.14
Software Verhication Results
95

Figure 16. Level C: AdgVerVerLevC

Data ltem 11.14

CouplingCovRat

"The intent behind this objective
[6.4.4.d, A-7 8] is to ensure that
applicants do a sufficient amount
of hardware/software integration
testing and/or software
integration testing to venfy that
the software architecture is
correctly implemented with
respect to the requirements”
DO-248C 56.3 bullet 5

StatementCovRat

"Objectives 5, 6, and 7 ___
that test cases written for
requirements explore the Source
Code with the degree of rigor
required by software/assurance
level. For Level C (AL 3), it was
deemed satisfactory that
demonstrating that all statements in
the Source Code were explored by
the set of test cases. [6.4 4 ¢,
A-7.7]" DO-248C 5.6.3 bullet 4 [sic]

\

ensure

KSee also the rest of the section }

Software Verihication Results

fom

Context element STATEMENTCOVRAT reveals one of the few instances in which a reason is given
for certain objectives. Context element STATEMENTCOVRAT reveals another such instance.

Figure 17 expresses the argument concerning the additional refinement steps that are required by
Level C and introduces a new element in the notation.

28

AddRefineLevelCSat

Additional refinement steps required
at Level C are satisfactory refinements

229

LLRDev
"Low-level requirements are developed"” (5.2.1.a,
A-2.4, Data Item 11.10 Design Description)

221

S~

DerLLProv

"Derived low-level requirements are defined and
provided to the system processes, including the
system safety assessment process"” (5.2.1.b,
A-2.5) See also DO-248C 5.5.1.

¥
Warrant ArgByEachRefineStep

Showing satisfactory refinements for
each successive tier of low-level
requirements is sufficient

222

N~

/SourceCodeDev

"Source code is developed" from the low-level
requirements (5.3.1.a, A-2.6, Data Item 11.11
Source Code)

\ 223

/PossMuItLLR

522".. .. the high-level requirements are
used in the design process to develop
software architecture and low-level requirements.
This may involve one or more lower levels of
requirements.”; 6.1.b "If one or more levels of
software requirements are developed between

228

A

high-level requirements and low-level
requirements, the successive levels of
LLRSatLevC requirements are developed such that each
Low-level requirements are (for successively lower level satisfies its higher level
Level C) a satisfactory refinement requirements" (see also DO-248C 5.5.1)
ofthe high-level requirements
\ 224
225
SCSatLevC EOCSatLLLevC
Source Code and related outputs Executable Object Code is (for
are satisfactory for Level C Level C) a satisfactory refinement
of the low-level requirements
226
227

Figure 17. Level C: AddRefineLevelCSat

The warrant ADDREFINELEVELCSAT takes the general simple form shown previously. Three of
the attached context elements concern the existence of certain entities: low-level requirements
(LLRDEV), associated derived low-level requirements (DERLLPROV), and source code developed
from the low-level requirements (SOURCECODEDEV). The fourth context element
(PossMULTLLR) explains the possibility that more than one tier of low-level requirements may
exist.

This possibility of more than one tier is indicated in the diagram by the solid black circle on the
directed line connecting the warrant to the module LLRSATLEVC. This module is one of the three
premises, along with SCSATLEVC (Source Code and related outputs are satisfactory for Level
C) and EOCSATLLLEVC (Executable Object Code is ... a satisfactory refinement of the low-

29

level requirements). The first and third are elaborated next. The second is available in appendix
A of this report.

The argument to establish LLRSATLEVC (Low-level requirements are [for Level C] a satisfactory
refinement of the high-level requirements) is too large to show in a single figure. Figure 18 shows
the top part of the argument, figure 19 shows the part associated with the premise
LLRADQLEVELC, and figure 20 shows the part associated with the premise SWARCHADQLEVELC.

LLRSatLevC

Low-level requirements are (for
Level C) a satisfactory refinement
of the high-level requirements

252
DefLowLevelReq \
¥ "... low-level requirements
terminology corresponds roughly
Warrant ArgByLLandArch with terms like software design,
Showing satisfactory low-level detailed design, etc", "While
requirements and software architecture software architecture description
is sufficient to establish satisfactory LLR does have some correspondence
refinement from high-level requirements to the same terminology in
- standard software engineering
251 practices, other terms such as
high-level design are also used."
DO-248C, 5.5.1
\ 230
LLRAdqgLevelC SwArchAdgLevelC
The low-level requirements The software architecture
are satisfactory for Level C is satisfactory for Level C
242 250

Figure 18. Level C: LLRSatLevC (top)

30

LLRAd(qLevelC

The low-level requirements
are satisfactory for Level C

[y)
|\;

4

Warrant ArgByObjSat

Showing satisfaction of the
applicable objectives from
section 6.3.2 is sufficient

¥
£

LLRComply

"Low-level requirements comply with high
level requirements" (A-4.1): "the low-level
requirements satisfy the high-level
requirements and ... derived requirements
and the design basis for their existence
are correctly defined” (6.3.2.a)

[\
L
[N

Data item 11.14
Software Verificaion Resulis
231

AlgorAccDes

discontinuities

"Algeorithms are accurate” (A-4.7): "the
accuracy and behavior of the proposed
algorithms, especially in the area of

" is ensured (6.3.2.g)

[¥)
b
o

Data Item 11.14
Sofiware Verification Results

239

LLRAccCons

"Low-level requirements are accurate and
consistent" (A-4.2): "each low-level
requirement is accurate and unambiguous,
and the low-level requirements do not
conflict with each other” (6.3.2.b)

234

LLRConfStand

"Low-level requirements conform to
standards" (A-4.5): "Software Design
Standards were followed during the
software design process and ... deviations
from the standards are justified” (6.3.2.e)

236

LLRTraceHLR

"Low-level requirements are traceable
to high-level requirements" (A-4.6): "the
high-level requirements and derived
requirements were developed into the
low-level requirements” (6.3.2.1)

238

Datfa lem 1114
Software Verification Results
233

Data tem 11.14
Sofiware Verification Resulis
235

Data Hem 11.14
Sofiware Verification Results
237

Figure 19. Level C: LLRSatLevC / LLRAdgLevelC (left)

31

SwArchAdgLevelC
The software architecture
is satisfactory for Level C

n

250

Warrant ArgByObjSat

Showing satisfaction of the
applicable objectives from
section 6.3.3 is sufficient

(%]
B
©

SwArchCompatHLR
"Software architecture is compatible with
high-level requirements" (A-4.8) : "the

the high-level requirements, especially
functions that ensure system integrity, for

software architecture does not conflict with

SwArchConsis

"Software architecture is consistent" (A-4.9):
"a correct relationship exists between the
compenents of the seftware architecture ...
If the interface is to a component of a lower
software level ... appropriate protection

SwArchConforms

"Software architecture conforms to standards"
(A-4.12) : "the Software Design Standards
were followed during the software design
process and ... deviations to the standards are
justified, for example deviations to complexity

example, partitioning schemes." (6.3.3.a) mechanisms" (6.3.3.b) restriction and design construct rules" (6.3.3.e)
244 246 248
Data itemn 11.14 Data lem 11.14 Data Hem 11.14
Software Verification Resulis Software Verification Resulis Sofiware Verification Resulis

243

245

247

Figure 20. Level C: LLRSatLevC / SWArchAdgLevelC (right)

Figure 21 shows the simple argument justifying the sufficiency of the refinement of executable
object code from low-level requirements (EOCSATLLLEVC). This conclusion is supported by two
premises. EOCCompPLIESLL asserts compliance with low-level requirements, and EOCROBUSTLL
asserts robustness with them. Both premises are supported by reference to the appropriate material
from three data items: DATA ITEM 11.13: Software Verification Cases and Procedures; DATA ITEM
11.14: Software Verification Results; and DATA ITEM 11.21: Trace Data.

The shared context item (CC12CONFLICT) notes an apparent minor conflict within the guidance.
For DATA ITEM 11.21: Trace Data at Level C, the control category is specified at a less-stringent
level in table A-6 than it is for table A-2 (see [1]). Resolving this conflict is simple: Assume that
the higher control category applies throughout.

32

TestCredRationale
"... DO-178C/DQO-278A adopts a
EOCSatLLLevC strategy called equivalence class
Executable Object Code is (for Festlng. - The OI?JECtNe.S.ﬂ‘ 2.' 3 4.
Level C) a satisfactory refinement in Table A-8 provide clarification that
of the low-level requirements testing credit can only be obtained by
286 testing of the high-level and low-level
requirements."” DO-248C 5.6.2
(excerpts)

\%)

78

Y
Warrant ArgByObjSat

Showing compliance and
robustness is sufficient to establish
satisfactory EOC refinement from
low-level requirements for Level C

285
EOCCompliesLL EQCRobustLL
"Executable Object Code "Executable Object Code is
complies with low-level robust with low-level
requirements"” (6.4.c, A-6.3) requirements” (6.4.d, A-6.4)
281 284

CC12conflict

Table A-6 has the data
item 11.21 (Trace Data)
controlled at CC2 for level
C, but Table A-2 (1, 4, 6)

has Trace Data Controlled

Data Rems 11.13, 11.14, 11.21 at CC1 Data ltems 11.13, 11.14, 1121

Software Verification Cases and 279 Software Verification Cases and
Procedures, Software Verification Procedures, Software Verification
Results, Trace Data 280 Resulis, Trace Data 283

Figure 21. Level C: EOCSatLLevC

3.4 LEVEL B ARGUMENTS

For Level B, we will present only four of the arguments from the assurance case:

. SWACCEPTABLELEVB: Software performs its intended function at acceptable level of
safety for Level B.

. JusTIFIEDCONFIDENCELEVB: The evidence provided is adequate for justifying confidence
that the correctness of the software has been demonstrated to the extent needed for
Level B.

. INDEPSATLEVB: Additional independence requirements for Level B are satisfied.

o ADQVERVERLEVB: Sufficient verification of verification results has been achieved for
Level B.

The main Level B argument is shown in figure 22. Although it would be possible to use an identical
structure here as for Levels D and C, a slightly different structure has been used. The form of the
conclusion and associated context items remains the same, but the form of the warrant and
premises differs substantially. Choosing a different form emphasizes more explicitly how the
guidance itself differentiates between the objectives for Levels C and B.

33

SwAcceptableLevB

Software performs its intended
function at acceptable level of
safety for Level B

50

4

Warrant ArgBy SatLevCplusNew

Software that satisfies Level C is acceptable
for Level B if augmented by several
additional objectives, control of data items,
and independence requirements

49

IntFun

Description of intended function of the
software

42

DefAccSafetyFromRegs

Definition of acceptable level of safety
from airworthiness regulations

_

D,

Words / phrases are used consistently with
their descriptions in the Glossary

GlossaryApplies

N

4

LevelBDef

Software assigned to Level B is defined as
"Software whose anomalous behavior, as
shown by the system assessment process,
would cause or contribute to a failure of
system function resulting in a hazardous
failure condition for the aircraft." (2.3.3.b).

45

~—

IndepRationale

"Independence may detect more errors
due to objectivity of evaluation." DO-248C,
3.74 (FAQ #74), p. 39; Also see
"Independence in DO-178C/DO-278A"
DO-248C, 4.19 (DP #19), pp. 103-109

46

SwAcceptableLevC AddedObjsLevBSat

Software performs intended
function at acceptable level
of safety for Level C

47

Additional objectives added for
Level B software are satisfied

48

Figure 22. Level B: SwAcceptableLevB

The warrant (ARGBYSATLEVCPLUSNEW) explicitly identifies the three categories of differences
between the guidance for Level C and Level B: several additional objectives, control of data items,
and independence requirements. Context element INDEPRATIONALE repeats the assertion from
DO-248C concerning the potential efficacy of independence requirements. The details regarding
one of the two premises has already been shown (SWACCEPTABLELEVC). The other premise
(ADDEDOBIJSLEVBSAT) is supported by a simple, six-premise argument enumerating the three
added objectives concerning compatibility with the target computer and the three added objectives

concerning verifiability. The diagram is shown in appendix A.

34

The rest of the differences between the guidance for Level C and the guidance for Level B appear
in the confidence argument shown in figure 23.

LevBEvidence

The required data items for
Level B provided in a form
described in the Plan for

JustifiedConfidencelLevB Software Aspects of Certification
The evidence provided is adequate for (11.0.b) £y
justifying confidence that the correctness -
of the software has been demonstrated
to the extent needed for Level B DataltemChars
61 The data items have the
characteristics described in

11.0.a: (1) unambiguous,

(2) complete, (3) verifiable, (4)
consistent,(5) modifiable, and
Y (6) traceable.

2
Warrant ArgByProcesses A

Establishing adequacy of
required processes is sufficient

W

60
Y
ObjsSat4N oLevBDiffs AdgPlanninglLevB
Objectives are satisfied for Adequate planning has
processes for which Level B been conducted for Level B
does not add objectives 57
56
3 IndepSatLevB
Additional Independence
requirements for Level B
AdgConfigManLevC are satisfied
Adequate configuration 58
management is in place -
for Level C f
53
AdqgVerVerResLevB

Sufficient verification of

verification results have
b hieved for Level B
AdgSQALevC AdqCertLiasLevD een achieved for Level &
Adequate software quality The certification liaison 59
assurance is in place process is adequate
for Level C for Level D
54 55

Figure 23. Level B: JustifiedConfidencelLevB

35

The left-hand premise (OBISSATANOLEVBDIFFS) is included in the diagram only for emphasis.
The three items beneath it could be directly connected to the warrant without any change in
meaning. The three items could, and probably should, be eliminated entirely.8

The other three premises encapsulate the additional objectives added for Level B software, which
encompass planning, independence requirements, and verification of verification results. The
supporting argument establishing Adequate planning has been conducted for Level B is not shown
here (see appendix A).

The argument for INDEPSATLEVB is shown in figure 24. It is not complicated, but it does contain
more premises than any argument seen so far:

o HLRCompLYIND: “High-level requirements comply with system requirements” has
been shown with independence (6.6.1a, A-3.1).

. HLRAccConNsIND: “High-level requirements are accurate and consistent” has been
shown with independence (6.3.1.b, A-3.2).

. ALGORACCREQIND: “Algorithms are accurate” has been shown with independence
(6.3.1.9, A-3.7).

. LLRCompPLYIND: “Low-level requirements comply with high level requirements” has
been shown with independence (6.3.2.a, A-4.1).

. LLRAccConsIND: “Low-level requirements are accurate and consistent” has been
shown with independence (6.3.2.b, A-4.2).

. ALGORACCDESIND: “Algorithms are accurate” has been shown with independence
(6.3.2.9, A-4.7).

. SCcompLLIND: “Source Code complies with low-level requirements” has been shown
with independence (6.3.4.a, A-5.1).

. PDICoRIND: “Parameter Data Item File is correct and complete” has been shown with
independence (6.6.a, A-5.8).

. PDIVERIND: “Verification of Parameter Data Item File is achieved” with
independence (6.6.b, A-5.9).

. EOCCompLIESLLIND: “Executable Object Code complies with low-level

requirements” has been shown with independence (6.4.c, A-6.3).

The context elements attached to the warrant are explanatory only. They could be removed without
any change in the meaning of the argument.

8 ADQCONFIGMANLEVC, ADQSQALEVC, and ADQCERTLIASLEVD do not need to be repeated here because they are included as part of the
confidence argument for Level C (which is included in SWACCEPTABLELEVC and is one of the two premises for the main Level B argument).
ADDREFINEMENTLEVELCSAT, which is not reproduced in the Level B confidence argument, is also included there.

36

IndepSatLevB

Additional Independence
requirements for Level B are satisfied

LevBEIndReqsA3

For section 6.3.1 (Table A-3) Level
B requires independence for
objectives 6.3.1a (A-3.1),6.3.1b

\

¥

K(AfS,Z), and 63 1g (A-37)

J

LevBIndReqsA4

For sections 6.3.2 (Table A-4) Level
B requires independence for
objectives6.3.2.a (A-4.1),63.2b

Warrant ArgBy ObjSat

Showing satisfaction of the ten
added objectives is sufficient
(not including the two added for
verification of verification results)

(A4.2) and 632.g (A47)

ﬂ_einlndRequS ™
For sections 6.3.4 and 6.6 (Table
A-5) Level B requires independence
for objectives 6.3.4.a (A-5.1),6.6.a

332

\<A-5.s), and 6.6.b (A-5.9)

LevBIndReqsA6

For section 6.4 (Table A-6) Level B
requires independence for
objectives 6.4.c (A-6.3)

211

HLRComplylnd

"High4evel requirements comply
with system requirements” has
been shown with independence
(6613, A-3.1)

313

HLRAccConsInd

"High-level requirements are
accurate and consistent” has
been shown with
independence (8.3.1.b, A-3.2)

AlgorAccReqind

"Algorithms are accurate”
has been shown with
independence (6.3.1.g9,A-3.7)

EOCCompliesLLind

"Executable Object Code complies
with low-level requirements” has
been shown with independence
(B.4.c,A6.3)

331

Data hems 1114
Software Verificabon Resulls

2

Data e 1114
Software Verniiication Results

a4

Data lem 11.14 Data items 11.13, 1114, 1121

Soflware Veriicaion Resulls Software Verification Cases
and Procedures, Software
Verification Results, Trace Data

)

LLRComplylnd

"Low-level requirements comply with
high level requirements” has been

LLRAccConsind

"Low-level requirements are
accurate and consistent” has

AlgorAccDesind

"Algorithms are accurate”
has been shown with

shown with independence been shown with independence independence
(6.3.2.a, A-4.1) a1 (6.3.2b, A-4.2) 394 6.3.2.9,A4.7) 323
Data e 1114 Data bem 11.14 Data e 11.14
Software Veriiication Results Software Veriicaion Resulls Software Verfication Results
i 320 Iz
' ﬁ—/
SCcompLLind PDICorind PDIVerind

"Source Code complies with low-level
requirements” has been shown with
independence (6.3 4.a, A-5.1)

"Parameter Data Item File is
correct and complete” has been
shown with independence
(6.6.a, A58)

"Verification of Parameter
Data ltem File is achieved”
with independence
(6.6.b, A-5.9)

Data lbems 1114
Software Verification Results

26

Data bems 1113, 1114
Software Verificalion Cases
amd Procedures, Soflware

Verification Results

Data Mem 1114
Software Verification Resulls

324

Figure 24. Level B: IndepSatLevB

37

Two independence requirements added for Level B were not included. Because these two
requirements are associated with the verification of verification results, they are enumerated in the
argument for ADQVERVERLEVB , which is shown in figure 25.

AdgVerVerResLevB

Sufficient verification of
verification results have
been achieved for Level B

!

‘Warrant ArgByObjSat

LevelC verification of verification results
augmented by two independence
objectives and more demanding
structural coverage is sufficient

DecisionCovRat

"Objectives 5, 6, and 7 ensure
that test cases written for

requirements explore the Source

AdgVerVerResLevC DecisionCovind Code with the degree of rigor
Sufficient verification of "Test coverage of software structure ‘requllred EY SSﬂwa‘rgfa;Euzramﬁe
verification results have (decision coverage) is achieved" - e&’;. - fmrh evel B ()’é :4
been achieved for Level C with independence (6.4.4.c, A-7.6) addition of the req_u_lremem[-4.4.C,
L . A-7.6] that all decision paths in the
334 341 source was considered sufficient to
address the increase in the
associated hazard category"
DO-248C 5.6.3 bullet 4 [sic]. See
also the rest of the section.
Data em 11.14
Software Verification Results

T

StatementCovind TestCovCouplingind
"Test coverage of software structure "Test coverage of software
(Statgmem coverage) is achieved" structure (data coupling and
with independence (6.4.4.c, A-7.7) control coupling) is achieved" with
336 independence (6.4.4.d, A-7.8)
Data Mem 1114 Data lem 11.14
Software Verification Resulis Soltware Verification Results
335 337

Figure 25. Level B: AdgVerVerLevB

For Level B verification of verification results, DO-178C requirements independent achievement
of statement (STATEMENTCOVIND) and coupling coverage (TESTCOVCOUPLINGIND). It also adds
a requirement for decision coverage, which must be achieved with independence
(DEecisioNCoVIND). The evidence is contained in the relevant parts of DATA ITEM 11.14: Software
Verification Results.

3.5 LEVEL A ARGUMENTS

Explicating the Level A guidance required only four arguments: the main argument, the confidence
argument, and two supporting arguments for premises in the confidence argument. The main
argument is shown in figure 26. Besides including the context elements shown for every lower
level and an associated confidence argument, it consists solely of incorporating the Level B
conclusion and all arguments supporting that conclusion. As explained in LEVALEVBDIFFSCONF,

38

this is because all the differences between objectives for Level A and Level B address matters
of confidence.

IntFun \

Description of intended function of the
62 /

software
DefAccSafetyFromRegs \

Definition of acceptable level of safety from
airworthiness regulations
63/

GlossaryApplies \

Words / phrases are used consistently with
their descriptions in the Glossary
64/

LevelADef \

Software assigned to Level A is defined as
"Software whose anomalous behavior, as
shown by the system assessment process,
would cause or contribute to a failure of
system function resulting in a catastrophic
failure condition for the aircraft.” (2.3.3.a).

SwAcceptableLevA

Software performs its intended
function at acceptable level of
safety for Level A

70

65/
ﬂ_evA LevEDiffsConf \

All of the differences between objectives
A for Level A and Level B address matters

Warrant ArgBySatLevBplusNew of confidence
Software that satisfies Level B is acceptable \ 66/‘]
for Level A if two new verification of

verification results objectives and ten new ﬂndepRationale \
independence requirements are satisfied

. "Independence may detect more errors

69 due to objectivity of evaluation." DO-248C,
3.74 (FAQ #74), p. 39; Also see
"Independence in DO-178C/DO-278A"
DO-248C, 4.19 (DP #19), pp. 103-109

\)

SwAcceptableLevB

Software performs intended
function at acceptable level
of safety for Level B

68

Figure 26. Level A: SWAcceptableLevA

These matters of confidence are explicated in the argument for JUSTIFIEDCONFIDENCELEVA,
which is shown in figure 27. The explanatory premise OBJSSATANOLEVADIFFS, like its analogous
premise in the Level B confidence argument, is not strictly necessary. The premises
INDEPSATLEVA and ADQVERVERLEVA are necessary. The former is shown in figure 28; the latter,
because of its size, is shown in figures 29-31. By this point, these arguments should be understood
without any additional explanatory text. Their form and content are directly analogous to the
similar arguments for Level B.

39

IndepSatLevA

Additional Independence
requirements for Level A are satisfied

@

JustifiedConfidenceLevA

The evidence provided is adequate for
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level A

@

AdgPlanningLevB

Adequate planning has
been conducted for Level B

73

i

Warrant ArgByProcesses

Establishing adequacy of
required processes is sufficient

80

ObjsSatdNoLevADiffs

Objectives are satisfied for
processes for which level A does
not add objectives or independence

ﬂ_evAEvidence

The required data items for Level A
provided in a form described in the Plan
for Software Aspects of Certification
(11.0b)

\ 7

N

ﬂ!ataltemChars

The data items have the characteristics
described in 11.0.a: (1) unambiguous,

(2) complete, (3) verifiable, (4) consistent,
(5) modifiable, and (6) traceable.

\ 7

j
\

/A

AdgVerVerResLevA

Sufficient verification of
verification results have
been achieved for Level A

AdqgCertLiasLevD

The certification liaison process
is adequate for Level D

=

AdqConfigManLevC

Adequate configuration
management is in place for Level C

AdqgqSQALevC

74

Adequate software quality
assurance is in place for Level C

Figure 27. Level A: JustifiedConfidenceLevA

40

IndepSatLevA

Additional Independence
requirements for Level A are satisfied

w
&
R

¥

Warrant ArgByObjSat

Satisfying Level B independence

augmented by six new

independence objectives is sufficient

w
=3

Indep SatLevB

Additional Independence
requirements for Level B are
satisfied

344

SwArchCompatHLRInd

"Software Architecture is compatible
with high-level requirements” has
been shown with independence
(63.3.a,A4.8)

N

ﬂ_evAlndRequ:i

Forsection 6.3.3 (Table A-4) Level A
adds an independence requirement
for objectives 6.3.3a (A-4.8),633b
(A-4.9), and 6.3.3f (A-4.13)

\

/,LevAIndRequs

Forsection 6.3.4 (Table A-5) Level A
adds an independence requirement
for objectives 6.3.4 b (A-5 2) and
6.3.4.f(A-5.6)

\

ﬂevAlndRequG

For section 6.4 (Table A-6) Level A
adds an independence requirement
for objective 6.4.d (A-6.4)

\

/ VerOfVerElsewhere

Note: Added independence objectives
related to venfication of verification are
discussed in AdgVerVerLevA

AN

\

EOCRobustLLInd

with low-level requireme
been shown with indepe
(6.4.d,A6.4)

"Executable Object Code is robust

nts" has
ndence

w
@

Data Items 1113, 1114, 1121

"Software Architecture is

consistent” has been shown with
independence (6.3.3.b,A-4.9)

w

"Software partitioning integrity”
has been shown with
independence (6.3.3.f, A-4.13)

354

N

"Source Code complies with s
architecture” has been shown
independence (6.3.4.b, A-5.2)

Software Verification Results Software Verification Cases and Procedures,
324G Software Verification Results, Trace Data
358
SwArchConsisind Partintegind SCcompSAlnd SCaccuratelnd

"Source Code is accurate and
consistent” has been shown with
independence (6.3.4.f, A-5.6)

oftware
with

w
=)

DataHems 1114

Software Venhcation Results

357

Data tems 11.14
Software Verfication Resuits
353

Data Hems 11.14

Software Venfication Resuits

Data lems 11.14
Software Venhcation Results
355

Figure 28. Level A: IndepSatLevA

35f

AdqgVerVerLevA

Sufficient verification of verification
results have been achieved for level A

384

A

Warrant ArgByObjSat

Level B verification of verification results
augmented by four independence
objectives, verification of additional code,
and more demanding coverage is sufficient

383

AdqgVerVerResLevB

Sufficient verification of
verification results have
been achieved for Level B

363

AddVVindsat

Additional independence
requirements for Level A verification
of verification are satisfied

373

IndAdded4LevA

Level Aadds an
independence
requirement for objectives
6.4.5.b (A-7.1),6.4.5.c
(A-7.2), 6.4.4.a (A-7.3),

¥

NewVVAODbjsSat

The two new Level A
objectives for verification
of verification results are

satisfied 382

and 6.4.4.b (A-7.4)

364

Figure 29. Level A: AdgVerVerLevA (top)

AddVVindSat

Additional independence
requirements for Level Averification
of verification are satisfied

TestProcCorlnd
"Test procedures are
correct” is shown with
independence (6.4 5b,
AT 1)

(%
&
&

Data e 11.14
Software Verification Results

By

IndAdded4dlevA

Level A adds an independence
requirement for objectives 6.4.5.b
(A-7.1),645c(AT72),644a
(A-7.3), and 6.4.4.b (A-7.4)

LLRTestCovind

'"Test coverage of low-level
requirements is achieved"
with independence
(6.4.4.0, A-T.4)

TestResultsCorind

"Test results are correct

and discrepancies

explained” is shown with

independence (6. 45 c,
2)

3

HLRTestCovind

"Test coverage of high-

level requirements is
achieved" with
independence
(B.44.a AT3)

[N
-

Data tem 11.14
Software Verification Results

Data tem 1114
Software Verification Results

Data e 1114
Software Verification Results

Figure 30. Level A: AdgVerVerLevA (left)

42

NewVVAObjsSat

MCDCCovRat

The two new Level A objectives for .)
verification of verification are satisfied Objectives 5,6, and 7 ... ensure that

o test cases written for requirements
362 explore the Source Code with the
degree of rigor required by software/
assurance level. ... for Level A (AL 1),
the commitiee established that ail logic
ex pressions in ine Source Code should
be explored. ... Acompromise was
ac hieved based on experience gained
from three programs ... The term for
McDCCovind this type of coverage was Modified
"Test coverage of sofware structure Condition/Decision Coverage. [B.4.4.c,
(modified condition/decision A-T.5]" DO-248C 5.6.3 bullet 4. See also
coverage) is achieved” with the rest of the section.
independence (6.4.4.c, A-7.5) 378

_ MCDC4ExiCode
"MC/DC [6.4.4.c, A-7.5] assures that the
sfructure of the Source Code is further

ﬂEFAddCUdERHt exercised. This further demonstrates the
"Objective O [6.4.4.c A7.0] . ensures that Source Code functions as they relate to
Vera ddCodelnd the Executable Object Code or its proky is fhe software requirements and ine
evaluated for any functionality aaded by e Data Hem 11.14 correctness of the design. Additonally,
"Verification of additional code, L any extraneous code (such as dead
compiler and ensure(s] that such functionality Software Veriicalion
that can not be iraced to is verified or analyzed 1o ensure that it has. code) or unreachable paihs in the code
Source Code is achieved” with no safety impact " DO-248C 5.6.3 bullet 6 Resulis may be identified " DO-248C, 3.74 (FAQ
independence (6.4 4.c, A7 9) g o N B #74) p 20 L
ObjCodeTraceRat
"Obiject code traceability [6.4.4.c, A-7.9]
o= Provides assurances that the compiler does
not produce object code that has not been
verified " DO-248C, 374 (FAQ #74), p. 39
Data Hern 11.14 375
Software Veriicalion Results

Figure 31. Level A: AdgVerVerLevA (right)

4. OBSERVATIONS AND ANALYSIS

Two distinct aspects of the created assurance case deserve evaluation: the fidelity of the case to
the guidance it purports to explicate and the adequacy of the case for providing the desired
assurance. In evaluating the fidelity of the case, an answer is attempted regarding whether the case
properly captures the guidance contained in DO-178-C. In evaluating the adequacy of the case, an
answer is attempted regarding whether DO-178C meets its intended purpose. Unless the answer
to the first question is “yes,” the developed assurance case cannot be used legitimately to attempt
to answer the second question. Therefore, fidelity is considered first.

4.1 ABOUT FIDELITY

During the course of the Explicate ‘78 research, independent evaluations of the fidelity of the case
were sought on multiple occasions. Early in the work, the FAA’s former Chief Scientist and
Technical Advisor for Software provided a comprehensive critique of the first version of the Level
D arguments and offered suggestions for modifications to the first version of the Level C
arguments (including concurring with the then nascent notion of placing the arguments concerning
low-level requirements in the confidence argument). He and other FAA personnel also provided
helpful comments when the initial versions of the Level B and Level A arguments were created
and as subsequent modifications were made to the arguments for all levels. Non-FAA personnel
were also invited to comment when the work was presented in public forums, particularly the 2014
National Systems, Software, and Airborne Electronic Hardware Conference, and the 2015 Safety-
Critical Systems Symposium.

In the public forums, no one expressed any strong doubts about the overall fidelity of the

arguments, but several people asked why certain choices were made. The three most common
questions concerned matters that have already been explained: Why activities are not included,

43

why certain objectives are expressed as context instead of as conclusions to be demonstrated, and
why low-level requirements are contained in the confidence argument instead of in the primary
argument.

Two other questions were also raised: one concerning why entire data items are cited as evidence
instead of just the relevant parts of the items and the other about why section 12 matters are
mentioned only once. The same response answers both questions: These choices enable the
argument to more accurately represent the DO-178C guidance as written. DO-178C itself does not
specify specific parts of a data item in reference to objectives but rather the entire item. For section
12, only one objective exists. Including more detail in the assurance case would have violated the
faithfulness to the text principle described in section 3.1.

In addition to these multiple requests for external reviews, two comprehensive internal reviews
were conducted by two individuals. These reviews uncovered several minor inconsistences and
omissions®, which were subsequently corrected. The version of the arguments presented here
incorporates all of these changes.

As a result of these reviews (both external and internal), a plausible inference may be drawn that
the assurance case described in this report accurately captures the implicit assurance case
underlying DO-178C. Therefore, evaluating the adequacy of the assurance case for purpose can
provide insight into the adequacy of DO-178C itself.

4.2 ABOUT ADEQUACY

Methods for evaluating the adequacy of assurance cases are a subject of continuing research and
debate. References [30, 31, and 32] provide the current thinking on this subject. Educational
materials produced separately as part of this project are also available for review. Module 3
specifically addresses evaluation methods.

Two of the most vigorous ongoing debates concern matters that are not pertinent to the Explicate
"78 assurance case. One such debate centers on the extent to which it is possible (and desirable) to
create assurance cases consisting entirely (or at least, primarily) of deductive arguments.10 The
other vigorous debate involves whether the strength of arguments can (and should) be quantified.
Neither of these debates pertain here. Creating a mostly deductive case would have required
violating the guiding principles of faithfulness to the text and minimum speculation. Trying to
quantify argument strength would have required violating the minimum speculation principle by,
for example, necessitating speculation about the appropriate numbers to attach to the efficacy of
the means used to satisfy the various objectives. Therefore, neither deductive nor quantitative
evaluation is relevant to the DO-178C assurance case. Qualitative evaluation is the only option.

9 This includes slightly less minor, but not fatal, inconsistency in the previously mentioned Level B arguments.
10 A deductive argument is one in which true premises and a valid structure guarantee the truth of the conclusion.

44

Several approaches for qualitative evaluation exist, but all of them are essentially variants of
Kelly’s original four-step process [33—34]. The details of this process are described in educational
module 3 and are not repeated here. The four steps may be summarized as: 1) identifying the key
elements of the case; 2) checking for structural errors; 3) checking for an appropriate amount of
detail; and 4) assessing argument strength. The first three steps were during development and
revision of the DO-178C case because these steps directly affect the fidelity of explication. Only
after the case was completed in the form shown was step four applied.

Six overall observations arose from the assessment.

4.2.1 Observation 1 — Foundational Reliance is Placed on a Separate Safety Process

The main arguments for Levels C and D directly (and for Levels A and B indirectly) rely on a
warrant (ArgByCorrectness) that involves supporting a conclusion partially about safety by
premises exclusively about correctness. In general, equating safety and correctness is not justified.
It is justified in the DO-178C context based on the assumption explained in RegAllocValidSuff;
the provision that derived requirements must be provided to a separate system safety assessment
process.

Given a set of requirements that eventually includes everything necessary to provide an adequate
level of safety, then ensuring that the requirements are met, necessarily ensures that an adequate
level of safety is provided. Therefore, the guidance needs to ensure only that the software satisfies
its requirements. Within the context to which the guidance applies, software system correctness
necessarily implies software system safety. This implication does not hold in general (safety and
correctness are different concepts) but does in the specific environment in which software is built
for airborne systems and equipment. The assurance case makes the necessity of the implication
holding clear, whereas the textual guidance tends to hide it from view well that some critics of
DO-178C (and its predecessors) seem totally unaware of it.

Another way in which the guidance places foundational reliance on a separate safety process is in
the assignment of criticality levels to the software. The determination of the software level is not
part of the DO-178C guidance; it is part of the separate system safety assessment process. If the
software level is assigned improperly, the application of DO-178C is not likely to have the desired
results. For example, if software is assigned Level D but its anomalous behavior “would cause or
contribute to a failure of system function resulting in a catastrophic failure condition for the
aircraft,” then the likelihood that critical errors will be introduced and missed is higher than it
would have been had the software been properly assigned to Level A. Conversely, if the software
is improperly assigned to Level A, when the worst possible outcome of its anomalous behavior
would be a “minor failure condition for the aircraft,” then resources are likely to have been
expended that did not need to be expended.

Looking into the future, the question arises whether reliance on separate processes for safety
assessment and software development will continue to be possible. As software becomes more
pervasive, and functions are allocated to software, the interconnections between the software and
the system may become so great that a more intimate relationship becomes necessary between
the two processes.

45

4.2.2 Observation 2 — Foundational Reliance is Placed on System Requirements

Within the airborne systems software community, the foundational reliance on the quality of the
system requirements allocated to software is well understood. These requirements are developed
outside of DO-178C. As made explicitly clear in the assurance case, DO-178C’s guidance is
intended to ensure the implementation of these requirements is correct. If the allocated
requirements are bad (e.g., they fail to account for certain known potential hazardous states, or,
worse, they require the entry into such a state), then following the guidance may prove well in the
correct implementation of these bad requirements.

In some other software communities, the reliance may be less understood. This is particularly true
for communities in which standard practice involves software developers creating their own
requirements. Such a community would not be well-served by adopting DO-178C alone as
guidance.

4.2.3 Observation 3 — Critical Reliance is Placed on Data Item Integrity

Data items are cited as evidence at the base of every argument in the assurance case because they
contain the information relevant to determining whether the argument’s conclusions are adequately
supported. Thus, the integrity of the data items is crucial to the adequacy of the case. This
importance is emphasized in the confidence arguments, all four of which include the specific
assumption DataltemChars that the data items have the characteristics described in 11.0.a: 1)
unambiguous; 2) complete; 3) verifiable; 4) consistent; 5) modifiable; and 6) traceable.

The possession of these characteristics is explicated as an assumption because the guidance is not
consistently clear about how possession must be shown. For some of the contents of some of the
data items, the guidance includes specific objectives to demonstrate some of these attributes. For
example, high-level requirements must be shown to be unambiguous, consistent, and traceable for
Level D and above (see HLRAccCons and HLRTrace2SR in figure 4), and verifiable for Level C
(see HLRVerifiable in figure 13). Similarly, low-level requirements must be shown to possess
these characteristics for Level C (see LLRAccCons and LLRTrace2HLR in figure 19) and
verifiable for Level B (HLRVerifiable in the argument for AddedObjsLevBSat, which was not
shown). However, no specific objectives exist for either high- or low-level requirements that
directly demand a showing of completeness or modifiability.

The glossary entry for configuration management suggests that it may be responsible for ensuring
data item integrity: “the process of ... (d) verifying the correctness and completeness of
configuration items.” However, the specific objectives associated with configuration management
do not require any showing of correctness or completeness; therefore, no such conclusion or
premise is contained in the assurance case.

The text of DO-178C implies that the integrity of the data items is critically important. The
assurance case explicitly emphasizes this importance and highlights the fact that demonstrating
the integrity of every aspect of every data item is not necessarily required by the guidance. The
extent to which different assessors require such demonstrations may well account for some of the
variations in the anecdotally reported amount of effort needed to gain approvals.

46

4.2.4 Observation 4 — Warrants are Difficult to Discern

Throughout the explanation of the assurance case, instances were highlighted for which neither
the guidance nor the supporting information provided insight into the reasons for certain
objectives. The minimal speculation guiding principle prohibited guesses being made about
reasons in these instances. Thus, the warrants that were developed were necessarily trivial. No
other option consistent with the principle was possible. Different wording of the trivial warrants
could have been employed, but any wording consistent with the text would be equivalent in
meaning to the wording that was chosen.

If the guiding principle had been relaxed, the result would likely have been chaotic. That is, every
person reading the assurance case would find something with which to disagree. Based on the
experiences in SC-205/WG-71 with the attempts to create a comprehensive rationale, some of
these disagreements would be quite intense. Although a general consensus existed about the need
for nearly all of the objectives, little agreement existed about the specific reasons for them. This
lack of agreement about specific reasons was even more pronounced concerning the assignment
of objectives to software levels. Therefore, relaxing the minimal speculation principle almost
certainly would have derailed the project after the first review by others.

Warrants are difficult, perhaps often impossible, to discern after the fact. The assurance case as
written emphasizes this difficulty. This difficulty may also contribute to some of the differences
that applicants report noticing among different assessors, perhaps even a stronger contributor than
data item integrity.

4.2.5 Observation 5 — Adequacy Depends on Specifics

In the abstract, the main arguments, augmented by the associated confidence arguments, seem
generally adequate to support their conclusions. Consider the main argument at Level D. Given
the associated context and foundational assumption, if it is possible to demonstrate both that high-
level requirements are a satisfactory refinement of the allocated system requirements
(HLRSatSRRefLevD) and that executable object code is a satisfactory refinement of the high-level
requirements (EOCSatHLRefLevD), then it is reasonable to conclude that the software is correct
(to an appropriate degree of confidence) with respect to its requirements. Therefore, in the context
of an appropriate safety assessment process, it is reasonable to conclude (to an appropriate degree
of confidence) that the software performs its intended function at an acceptable level of safety for
Level D.

Assessing the adequacy of the supporting arguments in the abstract is difficult. Consider the Level
D supporting argument for HLRSatSRRefLevD. It may be asked if it is reasonable to make this
conclusion based on showing only compliance with system requirements (HLRComply); accuracy
and consistency (HLRAccCons); and traceability to system requirements (HLRTrace2SR). If it is,
it may be questioned why the guidance requires additional conclusions to be shown for Level C
(HLRVerifiable, HLRConformStd, AlgorAccReq) and another for Level B (HLRCompatTC). The
answers lie in a variety of details, which can be known only for an actual project, not in the abstract.
Among the details that are needed are the contents of the relevant data items associated with high-
level requirements (11.9 Software Requirements Data, 11.14 Software Verification Results); a

47

qualitative understanding of the degree of confidence needed for this conclusion; and the contents
of the data items associated with all relevant aspects of the confidence argument for Level D.

The need to have project specifics for assessing argument adequacy suggests that there may well
be wisdom in the FAA’s long-standing practice of granting software approvals only for specific
products. The need also suggests a possible follow-on project: creating an assurance case for a
realistic software product.

4.2.6 Observation 6 — A Case-Based Alternative Approach Seems Feasible

Moving to the opposite end of the specificity spectrum and looking at the explicated assurance
case overall suggests the likely feasibility of developing an entirely case-based alternative set of
objectives. This feasibility has already been recognized by the FAA. A key component of the
ongoing streamlining assurance processes effort involves creating a minimal set of overarching
properties. The Explicate 78 assurance case has contributed to the formulation of the initial draft
of the overarching properties. Also, an assurance-case-based approach is currently being followed
for exploring the criteria for evaluating the properties. If the effort is successful, the overarching
properties will eventually constitute the foundation of a different, optional approval approach.

5. THE OTHER DOCUMENTS

Another activity specified to be part of the Explicate *78 research was the following: determining
whether there is a need to conduct an analysis similar to the DO-178C analysis for any of the four
supplementary documents associated with DO-178C and conducting any such analysis deemed
worthwhile.

The four additional documents that were considered were mentioned briefly in section 2.1:

o DO0-330: Software Tool Qualification Considerations

o DO-331: Model-Based Development and Verification Supplement to DO-178C and DO-
278A

. DO0-332: Object-Oriented Technology and Related Techniques Supplement to DO-178C
and DO-278A

o DO-333: Formal Methods Supplement to DO-178C and DO-278A

In response to a specific request from the FAA sponsors of this research, the primary effort in this
area was expended on creating a full collection of arguments for DO-330. These arguments are
presented and explained in appendix C.

For DO-331, DO-332, and DO-333, only the arguments addressing the refining of high-level
requirements from allocated system requirements for Level D were created, specifically:

o HLRSatSRRefLevDFM: High-level requirements are (for Level D using DO-333) a
satisfactory refinement of the allocated system requirements (see figure 32)

. HLRSatSRRefLevDOO: High-level requirements are (for Level D using DO-332) a
satisfactory refinement of the allocated system requirements (see figure 33)

48

HLRSatSRRefLevDFMOO: High-level requirements are (for Level D using DO-332

and DO-333) a satisfactory refinement of the allocated system requirements (see

figure 34)

HLRSatSRRefLevDMB: High-level requirements are (for Level D using DO-331) a

satisfactory refinement of the allocated system requirements (see figure 35)

v

HLRComply

"High-level requirements comply with system
requirements” (FM.A-3.1): ... the system
functions to be performed by the software are
defined, ... the functional, performance, and
safety-related requirements of the system are
satisfied by the high-level requirements, and ...
the derived requirements and the reason for their
existence are correctly defined” (FM.6.3.1.a)

389

Data Item 11.14
Software Verification Results

388

Figure 32. Level D (FM): HLRSatSRRefLevDFM

HLRSatSRRefLevDFM

High-level requirements are (for Level D
using DO-333) a satisfactory refinement
of the allocated system requirements

l

399

Warrant ArgByObjSat

Showing compliance, accuracy, 398
consistency, and traceability of
high-level requirements is

sufficient for Level D software

LevDObjs631

The only objectives for Level D are
FM.6.3.1.a (FM.A-3.1), FM.6.3.1.b
(FM.A-3-2), FM.6.3.1.f (FM.A-3.6)

385

|
FMNoHelpDR

"Formal methods cannot show that |
derived requirements and the reason | "High-level requirements are traceable to
for their existence are correctly | system requirements" (FM.A-3.6): "... the
defined." (FM.6.3.1.a) ‘ functional, performance, and safety-related

HLRTrace2SR

386 requirements of the system that were
| allocated to software were developed into
| the high-level requirements" (FM.6.3.1.f)
FMShowCompliance | 397
39
"If the system requirements and |

high-level requirements are formally |

modeled, then formal analysis can be |
used to show compliance.” (FM.6.3.1.a) |

387 |

J

| Data Item 11.14
| Software Verification Results

396
|

FMSuppTrace
"If formal methods are used to meet

the objective of section FM.6.3.1,

item a, this can provide evidence in
support of traceability." (FM.6.3.1.f)

395

‘ [ExtDefofAccu rate

| There exists an external, agreed
definition of accurate requirements

| (DO-178C and DO-333 have no

‘ | such definition)

HLRAccCons

"High-level requirements are accurate and
consistent" (FM.A-3.2): "each high-level
requirement is accurate, unambiguous, and
sufficiently detailed, and ... the requirements
do not conflict with each other" (FM.6.3.1.b)

394

/FNisPrchnamb

"If the high-level requirements are
| expressed in a formal notation then
- they will be precise and
unambiguous." (FM.6.3.1.b)

Data Item 11.14

Software Verification Results

/FMCheckable

"The formal model of high-level
requirements can be checked for
> consistency ... and may enable
accuracy checks to be carried out
using formal analysis." (FM.6.3.1.b)

AN

Jﬁj

J

393

49

HLRSatSRRefLevDOO

High-level requirements are (for Level D
using DO-332) a satisfactory refinement
of the allocated system requirements

412

Warrant ArgByObjSat

Showing compliance, accuracy,
consistency, and traceability of
high-level requirements is
sufficient for Level D software

411

The only objectives for Level

LevDObjs631

Dare6.3.1.a (A-3.1), 6.3.1.b
(A-3-2), 6.3.1.f (A-3.6)

400

HLRComply

"High-level requirements comply with system
requirements” (A-3.1): "... the system functions
to be performed by the software are defined,
... the functional, performance, and
safety-related requirements of the system are
satisfied by the high-level requirements, and ...
the derived requirements and the reason for
their existence are correctly defined" (6.3.1.a)

HLRTrace2SR

"High-level requirements are traceable to
system requirements" (A-3.6): "... the
functional, performance, and safety-related
requirements of the system that were
allocated to software were developed into
the high-level requirements" (6.3.1.f)

410

403

00.11.14.cAdds

"... local type consistency
analyses, dynamic memory
management verification,
..." (Unlikely to matter

for this objective)

Data Item 00.11.14
Software Verification Results
402

00.11.14.cAdds

"... local type consistency
analyses, dynamic memory
management verification,

..." (Unlikely to matter
for this objective)

Data Item 00.11.14
Software Verification Results
409

HLRAccCons

"High-level requirements are accurate and
consistent" (A-3.2): "each high-level
requirement is accurate, unambiguous, and
sufficiently detailed, and ... the requirements
do not conflict with each other" (6.3.1.b)

407

ExtDefofAccurate

There exists an external, agreed
definition of accurate
requirements (DO-178C and
DO-332 have no such definition)
404

A

00.11.14.cAdds

"... local type consistency
analyses, dynamic memory
management verification,
..." (Unlikely to matter

for this objective)

Data Item 00.11.14
Software Verification Results
406

Figure 33. Level D (OO): HLRSatSRRefLevDOO

50

HLRSatSRRefLevDFMOO

High-level requirements are (for
Level D using DO-332 and DO-333)
a satisfactory refinement of the
allocated system requirements

HLRComply

"High-level requirements comply with system
requirements" (FM.A-3.1): "... the system
functions to be performed by the software are
defined, ... the functional, performance, and
safety-related requirements of the system are
satisfied by the high-level requirements, and ...
the derived requirements and the reason for their
existence are correctly defined" (FM.6.3.1.a)

433

445
Warrant ArgByObjSat LevDObjs631
Showing compliance, accuracy, "
Consistegncy, apnd traceability o¥ The only objectives for Level D are
high-l}evel requirements is ::F’\:/IGA?;;) (Emg\?;)f &mii%;’
sufficient for Level D software b R M
444 428
|
FMNoHelpDR ‘ Y
"Formal methods cannot show that “ HLRTrace2SR
N derived requirements and the reason "High-level requirements are traceable to FMSuppTrace
/ for their existence are correctly |

defined.” (FM.6.3.1.a)
429

system requirements" (FM.A-3.6): "... the
functional, performance, and safety-related
requirements of the system that were

FMShowCompliance

to software were developed into
the high-level requirements" (FM.6.3.1.f)

"If formal methods are used to meet
the objective of section FM.6.3.1,
item a, this can provide evidence in
support of traceability." (FM.6.3.1.f)

\\ "If the system requirements and |

00.11.14.cAdds ‘

| Software Verification Results
"... local type consistency

high-level requirements are formally |

440
433 J

modeled, then formal analysis can be |
used to show compliance.” (FM.6.3.1.a) |

J |

430

|
analyses, dynamic memory |
management verification,

Data Item 00.11.14
Software Verification Results
432

..." (Unlikely to matter ‘
for this objective) |

4

HLRAccCons

"High-level requirements are accurate and
consistent” (FM.A-3.2): "each high-level
requirement is accurate, unambiguous, and
sufficiently detailed, and ... the requirements
do not conflict with each other" (FM.6.3.1.b)

430

00.11.14.cAdds

local type consistency
analyses, dynamic memory
management verification,
..." (Unlikely to matter

for this objective)

Data Item 11.14
Software Verification Results
409

s

Data Item 00.11.14

v

[Ex(DefofAccu rate

[FNisPrchnamb

00.11.14.cAdds

"... local type consistency
analyses, dynamic memory
management verification,

..." (Unlikely to matter
for this objective)

442

_

There exists an external, agreed
definition of accurate requirements
(DO-178C and DO-333 have no
such definition)

43:

s

"If the high-level requirements are
expressed in a formal notation then
they will be precise and
unambiguous." (FM.6.3.1.b)

FMCheckable

"The formal model of high-level
requirements can be checked for
consistency ... and may enable
accuracy checks to be carried out
using formal analysis." (FM.6.3.1.b)

436]

s

Figure 34. Level D (FM & OO): HLRSatSRRefLevDFMOO

51

A 4

Warrant (Option 1) ArgByTradMeans

Showing satisfaction directly from the data item
(as is done in the core DO-178C) is sufficient

416

HLRSatSRRefLevDMB

High-level requirements are (for Level D
using DO-331) a satisfactory refinement
of the allocated system requirements

427

Warrant MBA3ltem1

"ltem 1: In case the requirements from
which a Design Model is developed are
output of the system process, the objectives
1 and 6 are implicitly satisfied for these
requirements." Thus showing satisfaction of
MB.6.3.1.b (MB.A-3-2) is sufficient.

426

HLRAccCons

"High-level requirements are accurate and
consistent" (MB.A-3.2): "each high-level
requirement is accurate, unambiguous, and
sufficiently detailed, and ... the requirements
do not conflict with each other" (MB.6.3.1.b)

425

.

I 1of2

MB.11.14Adds

simulate

Data Item MB.11.14
Software Verification Results

Ina."... simulation..." In b. "... model, ...,
..." and a sentence beginning "If
utilizing ..." In c. "... simulations, ..., and any
analysis results in support of simulation."

414

415

Y

ExtDefofAccurate

There exists an external, agreed
definition of accurate
requirements (DO-178C and
DO-331 have no such definition)

413 A

MBA3Item2

Warrant (Option 2) ArgBySimulation
"ltem 2: ... simulation may be used as a
means of compliance for objectives 1, 2, ... of
this table. If simulation is used as this means,
objectives MB.8, MB.9, MB.10 are required."

417
J

Showing satisfaction through simulation is
sufficient if corectness of simulation cases,
procedures, and results is demonstrated.

424

SimCasesCor SimProcCor SimResCor

"Simulation cases are correct" (MB.A-3.8) "the simulation "Simulation procedures are correct” "Simulation results are correct and

cases ... should be reviewed and/or analyzed to ensure that
the simulation was performed accurately and completely with
respect to [MB.6.3.1.b]" ... "the objectives related to the

(MB.A-3.9): "the simulation cases, including
expected results, were correctly developed
into simulation procedures" (MB.6.8.3.2.b)

discrepancies (‘between actual
and expected results') explained"
(MB.6.8.3.2.c, MB.A-3.10)

verification of test cases as presented in DO-178C sections
6.4.4.a ... are also applicable for simulation cases" 421 423
(MB.6.8.3.2.a) [meaning presumably for level D that

simulation coverage of high-requirements is achieved]

419

MB.11.14Adds

MB.11.14Adds
na."."Inb. "." Inc."."

MB.11.14Adds
Ina."."Inb.".."

Ina. nb. Inc."."

Data Item MB.11.14
Software Verification Results

Data Item MB.11.14 Data Item MB.11.14
Software Verification Results Software Verification Results
418 420 422

Figure 35. Level D (MBD): HLRSatSRRefLevDMB (PARTIAL)

The argument for HLRSatSRRefLevDFM is identical in form to the argument for the conclusion
HLRSatSRRefLevD in the assurance case for Level D for the unsupplemented DO-178C. The
differences lie in the addition of an explanatory context element (FMNoHelpDR) and a
justification (FMShowCompliance) for HLRComply; an assumption (FNisPrecUnamb) and a
justification (FMCheckable) for HLRAccCons; and a justification (FMSuppTrace) for
HLRTrace2SR.

52

The argument for HLRSatSRRefLevDOO is even more similar to the argument for the conclusion
HLRSatSRRefLevD. The only difference lies in the inclusion of a context element describing the
addition made in DO-332 to the Software Verification Results data item. As noted, this addition is
not likely to be relevant in establishing the truth of the three premises relevant to this argument.

The argument for HLRSatSRRefLevDOO combines the content of the two previous arguments.
Because no overlap exists in the additional content from DO-333 and DO-332, the two are easy to
combine.

A similar comment cannot be made concerning using DO-331 with either (or both) of the other
two supplements. The argument presented for HLRSatSRRefLevDMB is only a partial argument,
considering only one of the three premises (HLRAccCons). The diagram introduces another bit of
notation: The black diamond denotes possible alternatives; the 1 of 2 text denotes that one and
only one of the two alternatives contributes to supporting the conclusion. HLRAccCons is
supported by one of the two warrants. Warrant ArgByTradMeans indicates showing satisfaction
directly from the data item (as is done in the core DO-178C). Warrant ArgBySimulation
indicates showing satisfaction through simulation, which requires demonstrating SimCasesCor,
SimProcCor, and SimResCor. The evidence for these must be included in the Software
Verification Results; the additional information that DO-331 requires be included in this data item
is indicated by the context element MB.11.14Adds.

6. CONCLUDING REMARKS

This report has documented two of the main achievements of the Explicate ‘78 research:

1. Expressing as an assurance case the arguments contained in, or implied by, DO-178C,
which implicitly justify the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements”

2. Expressing as an assurance case the arguments contained in, or implied by, DO-330, whose
stated purpose “is to provide tool qualification guidance”

Substantial portions of the DO-178C assurance case were presented and explained in the body of
the report, with the entire case presented in appendix A. The complete DO-330 assurance case was
presented and explained in appendix B. Brief, but substantive, explanatory material associated
with DO-178C and with assurance cases was also presented in the body of the report.

Completion of this report brings to an end the current Explicate “78 research. The spirit of the

research continues, however, in the ongoing effort to define, refine, and put into practice a new
approach to assurance based on overarching properties.

53

7. REFERENCES

1.

10.

11.

12.

13.

14.

RTCA. (2011). DO-178C: Software Considerations in Airborne Systems and Equipment
Certification, RTCA, Inc., Washington, DC. (Also published as EUROCAE ED-12C.)

Knight, J. (2012). Fundamentals of Dependable Computing for Software Engineers. Boca
Raton, FL: CRC Press.

Holloway, C. M. Understanding assurance cases: Module 3 - Evaluation. Developed for
the FAA under Annex 2 of 1AI-1073, September 2015.

RTCA. (2011). DO-333: Formal Methods Supplement to DO-178C and DO-278A,
RTCA, Inc., Washington, DC. (Also published as EUROCAE ED-216.)

Holloway, C. M. Understanding assurance cases: Module 4 - Creation. Developed for the
FAA under Annex 2 of 1AI-1073, March 2016.

RTCA. (2011). DO-178A: Software integrity assurance considerations for
communication, navigation, surveillance, and air traffic management (CNS/ATM)
systems, RTCA, Inc., Washington, DC. (Also published as EUROCAE ED-109A.)

Ministry of Defence. (2015. Defence Standard 00-56, Issue 6: Safety management
requirements for defense systems — Part 1: Requirements and guidance, Glasgow, UK.

NASA Report. (2015). Understanding and evaluating assurance cases. (NASA/CR-2015-
218802).

RTCA. (2011). DO-331: Model-Based Development and Verification Supplement to
DO-178C and DO-278A, RTCA, Inc., Washington, DC. (Also published as EUROCAE
ED-218.)

RTCA. (2011). DO-330: Software tool qualification considerations, RTCA, Inc.,
Washington, DC. (Also published as EUROCAE ED-215.)

RTCA. (2011). Supporting information for DO-178C and DO-278A. DO-248C
(EUROCAE ED-94C). Graydon, P. J. (2014). Towards a Clearer Understanding of
Context and its Role in Assurance Argument Confidence. Proceedings from the
International Conference on Computer Safety, Reliability and Security (SAFECOMP),
Florence, Italy.

RTCA. (2011). DO-332: Object-Oriented Technology and Related Techniques
Supplement to DO-178C and DO-278A, RTCA, Inc., Washington, DC. (Also published
as EUROCAE ED-217.)

Graydon, P. J., Holloway, C. M. (2017). An Investigation of Proposed Techniques for
Quantifying Confidence in Assurance Arguments. Safety Science, 92(February 2017),
53-65.

GSN Committee. (2011). GSN Community Standard, Version 1, Origin Consulting Ltd.,
York, UK.

54

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Hawkins, R., Kelly, T., Knight, J., and Graydon, P. (2011). A New Approach to Creating
Clear Safety Arguments. Proceedings from Advances in Systems Safety: Proceedings of
the 19th Safety-Critical Systems Symposium, Southampton, UK.

Copi, I. M., Cohen, C., and McMahon, K. (2011). Introduction to Logic, (14th ed.). Upper
Saddle River, NJ: Pearson Education.

European Aviation Safety Agency Report. (2013). Software Considerations for
Certification of Airborne Systems and Equipment. (AMC 20-115C).

FAA. Standard airworthiness certification: Regulations — Title 14 code of federal
regulations.
https://www.faa.gov/aircraft/air_cert/airworthiness_certification/std_awcert/std_awcert
regs/regs/ (last visited 7 November 2016).

FAA. (2013). Advisory circular 20-115C. Airborne Software Assurance. D.C.:
Government Publishing Office.

Software Engineering Institute. (2015). Eliminative Argumentation: A Basis for Arguing
Confidence in System Properties. (CMU-SEI-2015-TR-005). Pittsburgh, PA:
Goodenough, J. B., Weinstock, C. B., and Klein, A. Z.

Toulmin, S. E. (2003). The Uses of Argument, updated edition. Cambridge, UK:
Cambridge University Press.

Kelly, T. P. (2007). Reviewing Assurance Arguments: A Step-by-Step Approach.
Proceedings from the Workshop on Assurance Cases for Security — The Metrics
Challenge (co-located with the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks [DSN]), Edinburgh, UK.

Holloway, C. M. Understanding assurance cases: Module 5 - Speculation. Developed for
the FAA under Annex 2 of 1AI-1073, March 2016.

Govier, T. (2010). A Practical Study of Argument (7th ed.). Belmont, CA: Cengage
Learning.

Holloway, C. M. Understanding assurance cases: Module 2 - Application. Developed for
the FAA under Annex 2 of 1AI-1073, September 2015.

Holloway, C. M. (2015). Explicate *78: Uncovering the implicit assurance case in DO-
178C. Proceedings from Engineering Systems for Safety: Proceedings of the 23rd Safety-
critical Systems Symposium, Bristol, UK. M. Parsons and T. Anderson, Eds., Safety
Critical Systems Club, pp. 205-225.

Holloway, C. M. Understanding Assurance Cases: Module 1 - Foundation. Developed for
the FAA under Annex 2 of 1AI-1073, September 2015.

Ankrum, T. S., and Kromholz, A. H. (2005). Structured assurance cases: Three common
standards. Proceedings from the Ninth IEEE International Symposium on High-
Assurance Systems Engineering (HASE), Heidelberg, Germany.

55

https://www.faa.gov/aircraft/air_cert/airworthiness_certification/std_awcert/std_awcert

29.

30.

31.

32.

33.

Holloway, C. M. (2012). Towards understanding the DO-178C / ED-12C assurance case.
Proceedings from the 7th IET International Conference on System Safety, Incorporating
the Cyber Security Conference, Edinburgh, UK.

Graydon, P. J. (2015). Formal assurance arguments: A solution in search of a problem?
Proceedings from the 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Rio de Janeiro, Brazil.

Holloway, C. M. (2013). Making the Implicit Explicit: Towards an Assurance Case for
DO-178C. Proceedings from the 31st International System Safety Conference (ISSC),
Boston, Massachusetts.

Graydon, P., Knight, J., and Green, M. (2010). Certification and safety cases. Proceedings
from the 28th International Systems Safety Conference (ISSC), Minneapolis, Minnesota.

NASA Report. (2015). Current Practices in Constructing and Evaluating Assurance Cases
with Applications to Aviation. (NASA/CR-2015-218678).

56

APPENDIX A—ARGUMENTS FOR DO-178C

This appendix contains all of the argument diagrams developed for DO-178C.

SwAcceptableLevD

Software performs its intended
function at acceptable level of
safety for Level D

11

IntFun

Description of intended function of the
software

DefAccSafetyFromRegs

Definition of acceptable level of safety
from airworthiness regulations

/GIossaryAppIies

Words / phrases are used consistently
with their descriptions in the Glossary

\

)
|

\

ﬂ.eveIDDef

Software assigned to Level D is defined as
"Software whose anomalous behavior, as
shown by the system assessment process,
would cause or contribute to a failure of
system function resulting in a minor failure
condition for the aircraft" (2.3.3.d).

%
S

Y

Warrant ArgByCorrectness

Showing correctness of the software
relative to allocated system requirements
and derived requirements is sufficient

/RquIIocVaIidSuff

define intended function and ensure acceptable level
of safety. "The relationship of the requirements

requirements or the introduction of new behavior (that
is, derived requirements) that was not envisioned in
the original safety analysis" (DO-248C 5.4 bullet 6)

\

System requirements allocated to software augmented
by any derived requirements are valid and sufficient to

development process to the safety process [is] defined
to ensure that the safety analysis [is] not compromised
by either the improper implementation of safety-related

/HLRDev

"High-level requirements are developed" (5.1.1.a,
A-2.1, Data Item 11.9 Software Requirements Data)

"Derived high-level requirements are defined and
provided to the system processes, including the
system safety assessment process" (5.1.1.b, A-2.2)
See also DO-248C 5.5.1.

High-level requirements are (for
Level D) a satisfactory refinement of
the allocated system requirements

Executable Object Code is (for Level
D) a satisfactory refinement of the
high-level requirements for Level D

10 \
/ DerHLProv
y Y
HLRSatSRRefLevD EOCSatHLRefLevD

Figure A-1. Level D: SWACCEPTABLELEVD

A-1

HLRSatSRRefLevD

High-level requirements are (for
Level D) a satisfactory refinement of
the allocated system requirements

©
[

¥
Warrant ArgByObjSat LevDObjs631
Showing compliance, accuracy, The only objectives for Level
consistency, and traceability of D are 6.3.1.a (A-3.1), 6.3.1.b
High-level Requirements is 30 B3 38
sufficient for Level D software (A-3-2).63.11(A-38)
86

HLRComply HLRTrace2SR

"High-level requirements comply with system "High-level requirements are traceable to
requirements” (A-3.1): "... the system functions system requirements” (A-3.6). "... the

to be performed by the software are defined, functional, performance, and safety-related

... the functional, performance, and requirements of the system that were
safety-related requirements of the system are allocated to software were developed into
satisfied by the high-level requirements, and ... the high-level requirements" (6.3.1.f)

the derived requirements and the reason for j 03

their existence are correctly defined" (6.3.1.a) /

88 !
!
|
|
HLRAccCons ExtDefofAccurate
"High-level requirements are There exists an Data ltem 11.14
Data ltem 11.14 accurate and consistent” (A-3.2): external, agreed -
T "each high-level requirement is definition 0% Sofiware Venfication Resulis
Software Verification Results accurate, unambiguous, and accurate requirements 92
a7 sufficiently detailed, and ... the (DO-178C has no such
requirements do not conflict with definition)
each other" (6.3.1.b) 89
91

Data item 11.14

Software Verification Resulis
G

Figure A-2. Level D: HLRSATSRREFLEVD

EOCSatHLRefLevD
Executable Object Code is (for

Level D) a satisfactory refinement

of the high-level requirements

_ 11.22 Parameter Data Item File)

EOCandPDIPnL

"Executable Object Code and Parameter Data Item Files, if
any, are produced and loaded in the target computer” (5.4.1.a,
A-2.7, Data ltem 11.12 Executable Object Code, Data Item

J

y

AN

/ LevDEOCHLObjs
The only objectives for Level D are 6.4.a (A-6.1), 6.4.b (A-6.2),

Warrant ArgByObjSat

Showing satisfaction of these five
objectives is sufficient to establish
satisfactory EOC refinement from
high-level requirements software

14 class testing. ... The objectives 1, 2, 3, 4 ... In Table A-6

6.4.e (A-6.5), 6.3.3f (A-4.13), 6.6.a (A-5.8)

/ TestCreditClarify
"... DO-178C/DO-278A adopts a strategy called equivalence

©
N

¥

provide clarification that testing credit can only be obtained by
testing of the high-level and low-level requirements”
KDO-%BC 5.6.2 (excerpts)

©

PDICorFullObjective
"The Parameter Data ltem File should be verified

PDICor

"Parameter Data Item File is
correct and complete” (A-5.8)

to comply with its structure as defined by the high-
level requirements; this verification includes
ensuring that the Parameter Data Item File does
not contain any elements not defined by the high-
level requirements. Each data element in the

10.
10

a

Resulls

Partinteg

"Software partitioning integrity is
confirmed” (A-4.13): "partitioning
breaches are prevented" (6.3.3.f)

102

f
EOCCompliesHL

"Executable Object Code
complies with high-level
requirements” (6.4.a, A-6.1)

107
10¢

Data ltems 11.13, 11.14, 1.1
Software Verification Cases
and Procedures, Software
Verification Results, Trace Data
106

Data Hem 11.14

Data hems 11.13, 11.14
Software Verification Cases and
Procedures, Soflware Verification

Parameter Data [tem File should also be shown to
have the correct value, to be consistent with other
data elements, and to comply with its attributes as
defined by the high-level requirements” (6.6.a)

103

—— O:-._—_ﬂ

T4

ArchDev

"Software architecture is developed" (A-2.3) "from the high-level
\requirements“ (5.2.1.a) (Data Item 11.10 Design Description)

©
©

AN,

ﬁa rtintegRationale

"... By requiring the applicant to demonstrate that partitioning schemes
can be fully verified through analysis, review, and test, objective 13
[6.3.3.1, A-4.13] excludes those partitioning architectures that cannot
substantiate claims of non-interference. ... " DO-248C 5.6.1 bullet 4

"nn/
100

TargetComp

Target computer environment; 6.4.1.a
"Selected tests should be performed in
the integrated target computer
environment, since some errors can only

EOCCompatTC

"Executable Object Code is
compatible with target
computer” (6.4.e, A-6.5)

be detected in this environment"

110
110

TCTestRationale
"The non-aviation community does allow

EOCRobustHL

"Executable Object Code is
robust with high-level
requirements"” (6.4.b, A-6.2)

10
10

©

Data Items 11.13, 11.14, 11.21

credit for testing in a non-target
environment, however, this could allow
certain errors that are target-related, as
well as compiler target-specific errors to
escape detection. ... [Objective A-6.5]
specifies that credit is obtained by testing
on the target or showing that any other
testing is equivalent to target-level
testing.” DO-248C 5.6.2 second bullet

Data Hems 11.13, 1114
Software Verificaion Cases
and Procedures, Software
Verificalion Resulis

"2

Software Verification Cases and Procedures,
Sofiware Verification Resulls, Trace Data

o

Figure A-3. Level D: EOCSATHLREFLEV

A-3

JustifiedConfidenceLevD

The evidence provided is adequate for
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level D

)

o

\

Warrant ArgByProcesses

Establishing adequacy of
required processes is sufficient

AdgPlanningLevD

Adequate planning has
been conducted for Level D

14

/LevDEvidence

The required data items for Level D
provided in a form described in the Plan
for Software Aspects of Certification
(11.0.b)

\

ﬂ)ataltemc‘hars

The data items have the characteristics
described in 11.0.a: (1) unambiguous,

(5) medifiable, and (6) traceable.

\

(2) complete, (3) verifiable, (4) consistent,

“JA

AdqCertLiasLevD

The certification liaison process
is adequate for Level D

18

AdgVerVerResLevD

Sufficient verification of
verification results have
been achieved for Level D

(&)1

AdgConfigManLevD

Adequate configuration
management is in place for Level D

16

AdgSQALevD

Adequate software quality
assurance is in place for Level D

17

A-4

Figure A-4. Level D: JustifiedConfidencelLevD

AdqgPlanninglLevD

Adequate planning has
been conducted for Level D

123

Warrant ArgByObjSat

Showing satisfaction of these two
objectives from section 4.1 is sufficient to
establish satisfactory planning for Level D

LevDPlanObj

The only objectives applicable for
Level D are 4.1.a (A-1.1), 4.1.d (A-1.4)

122

116

ActivitiesDef

"The activities of the software
development processes and integral
processes of the software life cycle that will
address the system requirements and
software level(s) are defined" (4.1.a, A-1.1)

118

AddConAddressed

"Additional considerations, such as those
discussed in section 12, have been
addressed, if necessary." (4.1.d, A-1.4)

Data Items 11.1, 11.2, 11.3, 1.4, 1.5

Plan for Software Aspects of Cerlification
{PSAC), Software ent Plan {SDP),
Software Verificalion Plan {SVP), Software
Configuration Management {SCM) Plan,
Sofiware Quality Assurance {SQA) Plan

17

Data ltems 11.1, 112, 11.3, 114, 11.5

Plan for Software Aspects of Cerlification
{P5SAC), Software Development Plan (SDP),
Soflware Verification Plan {SVP), Software
Configuration Management (SCM) Plan,
Software Quality Assurance (SQA) Plan

120

AddConRationale

"Objective 4 [4.1.d, A-1.4] ... ensured
that the applicant addressed those items
unique to certification (or CNS/ATM
system approval) and highlighted any
non-standard approaches so the risks to
safety could be assessed." DO-248C 5.4

©

Figure A-5. Level D: ADQPLANNINGLEVD

AdqgVerVerResLevD

Sufficient verification of verification

results have been achieved for level D
127

Warrant ArgByObjSat

Satisfaction of this sole objective
establishes sufficiency of verification
of verification results for Level D

126

HLRTestCov

"Test coverage of high-level
requirements is achieved"
(6.4.4.a, A-7.3)

125

Data Item 11.14
Software Verification Results
124

Figure A-6. Level D: ADQVERVERLEVD

A-6

L4

AdqConfigManLevD

Adequate configuration
management is in place for Level D

@

‘Warrant ArgByObj Sat
Showing satisfaction of these six

AllSecTObjsApply

L All objectives in Section 7 apply to
Level D software

objectives is sufficient to
establish adequate configuration

AssumeCCassign

management for Level D

All data items have been properly
assigned to a Data Contral Category

(CC1/CC2) as required by section 7.3

A

ﬁrobReportingWhy

"The problem reporting process records non-
compliance with software plans and standards, records
deficiencies of outputs of software life-cycle processes,

\

records anomalous behavior of software product, and
ensures resolution of these problems” (7.1.c)

134

ProbRepEtAIIEst

"Problem reporting, change control,
configuration status accounting are established" (A-8.3)

\

/ChangeControlWhy

"Change control provides for recording, evaluation,
resolution, and approval of changes throughout the
software life cycle" (7.1.d) ar

change review, and

13¢

Data ltems 11.17, 11.18
Problem Reports, SCM Records

/ChangeReviewWhy \

"Change review ensures problems and changes are
e assessed, approved or disapproved, approved

changes are implemented, and feedback is provided
to affected processes through problem reporting and
change control methods defined during the software
\plannmg process" (7.1.e) 4 -,,_j

//;tatusAchhy

138

"Status accounting provides data for the config-
uration management of software life cycle processes
with respect to configuration identification, baselines,
Problem Reports, and change control” (7.1.f)

X

137

N

ArcRelEst

"Archive, refrieval, and release
are established" (A-8.4)

o

ConfltemsLabeled

"Each configuration item and its
successive versions are labeled
unambiguously so that a basis
is established for the control

and reference of configuration
34

items" (7.1.a, A-8.1)

BaseTraceEst

"Baselines are defined for further
software life cycle process activity
and allow reference to, control of,
and traceability between,

configuration tems" (7.1.b, A-8-2) ..,

Data lem 11.18

5CM Records
41

Data kem 1118

5CM Records
T30

ArcRelEstFullObj

"Archival and retrieval ensures
that the software life cycle data
associated with the software
product can be refrieved in case
of a need to duplicate, regenerate,
retest or modify the software
product. The objective of the
release activity is to ensure that
only authorized software is used,
especially for software
manufacturing, in addition to
being archived and

retrievable" (7.1.q)

I

¥

Data tems 1116, 1118

Software Configuration

Index, SCM Records
32

SwLoadConEst

"Software load control is established"
(A-8.5): "the Executable Object Code
and Parameter Data Item Files, if any,
are loaded into the system or equipment
with appropriate safeguards” (7.1.h)

EnvControlEst

"Software life cy cle environment control
is established" (A-8.6) : "the tools used
to produce the software are identified,
controlled, and retrievable” (7.1.)

Data ltern 11.18

S5CM Records
143

Data ems 11.15, 1118

Software Life Cyde Environment
Configuration Index, SCM Records

4%

Figure A-7. Level D: ADQCONFIGMANLEVD

A-7

AdqSQALevD

Adequate software quality
assurance is in place for Level D

155
y
Warrant ArgByObjSat LevDSQAObj
Showing satisfaction of these two —
objectives is sufficient to establish ;-reesoqlé ?R{ch;"eg 1fo& I(‘AeV;ISI)D
satisfactory SQA for Level D T e ’
154 149
AssureCompPlans AssureConfRev
Independent "Assurance is obtained that Independent "Assurance is
software life cycle processes comply with obtained that software conformity
approved software plans” (8.1.b, A-9.2) review is conducted” (8.1.d, A-9.5)
151 153
Data ltem 11.19 Data Item 11.19
SQA Records SQA Records
150 152

Figure A-8. Level D: ADQSQALEVD

A-8

AdqCertLiasLevD

The certification liaison process
is adequate for Level D

164

4
Warrant ArgByObjSat

Showing satisfaction of these
three objectives is sufficient to
establish satisfactory

certification liaison for Level D

AllSec90bjsApply

All objectives in Section 9
apply to Level D software, as
they do for Levels C, B, and A.

156
CertAutComm ComplianceAgree ComplianceSubs
"Communication and understanding "The means of compliance is "Compliance substantiation
between the applicant and the certification proposed and agreement with the is provided" (9.c, A-10.3)
authority is established” (9.a, A-10.1) Plan for Software Aspects of 162
158 Certification is obtained" (9.b, A-10.2) '
160
Data tem 11.1 Data item 11.1 Data Items 11.16, 11.20
Plan for Software Aspects of Plan for Software Aspects of Software Configuration Index,
Certification (PSAC) Certification (PSAC) Software Accomplishment Summary
15¢ 159 161

Figure A-9. Level D: ADQCERTLIASLEVD

SwAcceptableLevC

Software performs its intended
function at acceptable level of
safety for Level C

31

\

ﬂ:\efAccSafetyFromRegs

\

Warrant ArgByCorrectness

Showing correctness of the software
relative to allocated system requirements
and derived requirements is sufficient

ﬂntFun

Description of intended function of the
software

Definition of acceptable level of safety
from airworthiness regulations

GlossaryApplies

Words / phrases are used consistently with

their descriptions in the Glossary

>,

LevelCDef

Software assigned to Level C is defined as

"Software whose anomalous behavior, as

shown by the system assessment process,

would cause or contribute to a failure of

system function resulting in a major failure

condition for the aircraft.” (2.3.3.c).

)
AN

ﬂequuocValidSuff

System requirements allocated to software augmented
by any derived requirements are valid and sufficient to
define intended function and ensure acceptable level
of safety. "The relationship ofthe requirements
development process to the safety process [is] defined
to ensure that the safety analysis [is] not compromised
by either the improper implementation of safety-related
requirements or the introduction of new behavior (that
is, derived requirements) that was not envisioned in
the original safety analysis" (DO-248C 5.4 bullet 6)

¢

HLRDev

"High-level requirements are developed" (5.1.1.a,
A-2.1, Data ltem 11.9 Software Requirements Data)

DerHLProv

See also DO-248C 5.5.1.

"Derived high-level requirements are defined and
provided to the system processes, including the
system safety assessment process” (5.1.1.b, A-2.2)

AN N

HLRSatSRRefLevC

High-level requirements are (for
Level C) a satisfactory refinement of
the allocated system requirements

n
(o]

EOCSatHLRefLevD

Executable Object Code is (for
Level D) a satisfactory refinement
of the high-level requirements

N
©

Figure A-10. Level C: SwAcceptableLevC

A-10

HLRSatSRRefLevC

High-level requirements are (for
Level C) a satisfactory refinement of
the allocated system requirements

174

Warrant ArgByObjSat

High-level requirements refinement for
Level D is acceptable for Level C if
augmented by showing verifiability,
conformance to standards, and accuracy
of algorithms

173

HLRSatSRRefLevD

High-level requirements are (for
Level D) a satisfactory refinement of
the allocated system requirements

166

HLRLevelCObjs

Objectives added for Level C are
6.3.1.d (A-3.4), 6.3.1.e (A-3.5), and
6.3.1.g (A-3.7). Tables reference
activities in 6.3.1, but only objectives,
no specific activities, are given in 6.3.1

165

AlgorAccReq

"Algorithms are accurate" (A-3.7): "the
accuracy and behavior of the proposed
algorithms, especially in the area of
discontinuities" is ensured (6.3.1.g)

N

HLRVerifiable

HLRConformStd

"High-level requirements are
verifiable” (6.3.1.d, A-3.4)

168

Data Item 1114

Software Verification Resulls

"High-level requirements conform to
standards" (A-3.5): "Software
Requirements Standards were
followed during the software
requirements process and that
deviations from the standards are

justified" (6.3.1.e) 170
Data ltem 11.14
Software Verification Resulis
167 169

Figure A-11. Level C: HLRSatSRRefLevC

A-11

Data ltem 1114
Software Verification Results
77

JustifiedConfidenceLevC

The evidence provided is adequate for
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level C

41
y
Warrant ArgByProcPlusRef
Establishing adequacy of established
processes and of additional
refinement steps is sufficient
40

]

ﬂ.evCEvide nce

The required data items for Level C
provided in a form described in the Plan
for Software Aspects of Certification
(11.0.b)

\

The data items have the characteristics
described in 11.0.a: (1) unambiguous,

(2) complete, (3) verifiable, (4) consistent,
(5) modifiable, and (6) traceable.

\

AdgPlanningLevC
Adequate planning has
been conducted for
Level C

]

]

—

\

%)

/DataltemChars \

/A

AddRefineLevelCSat

Additional refinement steps required
at Level C are satisfactory refinements

39

Y

]

AdqgVerVerResLevC
Sufficient verification of
verification results has been
achieved for Level C

AdqgConfigManLevC

for Level C

Adequate configuration
management is in place

36

AdqSQALevC
Adequate software quality
assurance is in place

for Level C for Level D

37

AdqCertLiasLevD
The certification liaison
process is adequate

38

Figure A-12. Level C: JustifiedConfidenceLevC

A-12

AdgPlanningLevC

Adequate planning has
been conducted for Level C

189

Y

Warrant ArgByObjSat

Showing satisfaction of Level D and five
additional objectives is sufficient to
establish satisfactory planning for Level C

AllPlanApplyCBA

188

All planning objectives are
applicable to Level C, B, A software

17
T/

(8]

AdgPlanningLevD

Adequate planning has
been conducted for Level D

176

LevCPlanSat

The additional planning objectives
applicable to Level C are satisfied

187

LifeCycleDef

DevRevCoord

"Development and revision of software

"The software life cycle(s), including the inter-
relationships between [sic] the processes,
their sequencing, feedback mechanisms, and
transition criteria is defined" (4.1.b, A-1.2)

178

Data tems 11.1, 11.2, 11.3, 11.4, 115

Plan for Software Aspects of Cerlification (PSAC),
Software Development Plan (SDP), Software
Verification Plan (SVP), Software Configuration

plans are coordinated” (4.1.g, A-1.7)

186

Data ltem 11.14
Software Verification Results
185

SwPlansComply

Management (SCM) Plan, Software Quality

Assurance (SQA) Plan

|

177

LifeCycleEnv

"Software life cycle environmentis selected
and defined" (A-1.3) "including methods
and tools to be used for the activities of
each software life cycle process” (4.1.c)

180

SwDevStds

"Software development standards are
defined" (A-1.5), which are "consistent
with the system safety objectives for
the software to be produced” (4.1.e)

"Software plans that comply with
this document (sections 4.3 and 11)
have been produced" (4.1.f, A-1.6)

184

!
O

Data Items 11.1, 11.2, 11.3, 11.4, 115

Plan for Software Aspects of Certiication (PSAC),

Software Development Plan (SDP), Software

Verification Plan (SVP), Software Configuration

Management (SCM) Plan, Software Quality
Assurance (SQA) Plan

O

Data ltems 11.6, 11.7, 118

Data item 1114
Software Venfication Results
183

Software Requirements Standards, Software Design

Standards, Software Code Standards

179

181

Figure A-13. Level C: AdgPlanningLevC

A-13

AdqgVerResVerLevC
Sufficient verification of verification
results have been achieved for level C

204
A
Warrant ArgByObjSat
Satisfying Level D and the five
additional objectives in 6.4.4
and 6.4.5 for Level C is sufficient
203
[CouplingCovRat
"The intent behind this objective
AdgVerVerResLevD - [6.4.4.d, A-7.8] is to ensure that
Sufficient verification of TestCovCoupling applicants do a sufficient amount
verification results have "Test coverage of software structure of hardware/software integration
been achieved for Level D (data coupling and control coupling) .| testing and/or software
~ is achieved" (6.4.4.d, A-7.8) integration testing to verify that
190 ' o the software architecture is
202 correctly implemented with
respect to the requirements”
DO-248C 5.6.3 bullet 5
200
TestProcCor Data tem 11.14
"Test procedures are correct” (A-7.1): Software Verificalion Resulis

"the test cases, including expected
results, were correctly developed into
test procedures” (6.4.5.b)

201

[StatementCovRat \
"Objectives 5, 6, and 7 ... ensure

192

that test cases written for
requirements explore the Source
StatementCov Code with the degree of rigor
required by software/assurance
level. For Level C (AL 3), it was

"Test coverage of software
structure (statement coverage) ||

; ; " ~ deemed satisfactory that
Data Hem 11.14 is achieved” (.4.4.¢, A-7.7) - demonstrating that all statements in
B B 199 the Source Code were explored by
Software Verification Resulls the set of test cases. [6.4.4.c,
191 A-7.7]" DO-248C 5.6.3 bullet 4 [sic].

197

See also the rest of the section. j

Data Hem 11.14
Sofiware Verification Results
TestResultsCor TestCovLLReq 198
"Test results are correct and "Test coverage of low-level
discrepancies ('between the requirements is achieved"
actual and expected results’) (6.4.4.b, A-7.4)
are explained" (6.4.5.c, A-7.2) 196
194
Data Hem 11.14 Data Item 11.14
Sofiware Verification Results Software Verification Results
143 T95

Figure A-14. Level C: AdqVerVerLevC

A-14

AdqConfigManLevC

Adequate configuration
management is in place for Level C

210

4
Warrant ArgByObjSat

Showing adequate configuration
management for Level D augmented
by one change in control category is

sufficient to establish adequate
configuration management for Level C

209

DiffOnly CCategory

All objectives in Section 7 apply to Level C
software. The only difference from Level D
software is that the Software Life Cycle
Environment Configuration Index is controlled
at CC1 instead of CC2. There are no
differences with Level B or Level A software.

205
J
L
h J
CC1Applied
AdqConfigManLevD
) CC1 controls are applied to the
Adequate configuration Software Life Cycle Environment
management is in place for Level D Configuration Index
206 208

Data Items 11.15, 11.18

Software Life Cycle Environment
Configuration Index, SCM Records

207

Figure A-15. Level C: AdqConfigManLevC

A-15

AdqSQALevC

Adequate software quality
assurance is in place for Level C

220

Y

Warrant ArgByObjSat

Showing adequate SQA for Level D
and satisfaction of three additional
objectives is sufficient to establish
satisfactory SQA for Level C

219

AdgSQALevD
Adequate software quality

assurance is in place for Level D

212

Obj8AllLevC

All five section 8 objectives are applicable

to Level C software and to Levels B and
A. These objectives include 2 that are
also applicable to Level D software, and
3 that first appear at Level C.

211

AssureTransCrit

that transition criteria for the

satisfied" (8.1.c, A-9.4)

software life cycle processes are

Independent "Assurance is obtained

218

AssurePlansRev

Independent "Assurance is obtained
that software plans and standards are
developed and reviewed for
compliance with this document and
for consistency” (8.1.a, A-9.1)

214

Data item 11.19
SQA Reconds
213

AssureCompStans

Independent "Assurance is
obtained that software life cycle
processes comply with approved
software standards” (8.1.b, A-9.3)

Data Item 11.19

SQA Records
297

216

Data ltem 11.19
S5QA Records

215

Figure A-16. Level C: AdqSQALevC

A-16

AddRefineLevelCSat

LLRDev
Additional refinement steps required "Low-level requirements are developed" (5.2.1.a,
atLevel C are satisfactory refinements A-2.4. Data Item 11.10 Design Description)

229 29

/ DerLLProv

"Derived low-level requirements are defined and
provided to the system processes, including the
system safety assessment process" (5.2.1.b,

r A-2.5) See also DO-248C 5.5.1.

Warrant ArgByEachRefineStep \ 22

Showing satisfactory refinements for
each successive tier of low-level /SourceCodeDev
requirements is sufficient

[h%)

%

"Source code is developed" from the low-level
228 requirements (5.3.1.a, A-2.6, Data Item 11.11
Source Code)

\ 22

/PossMuItLLR \

522".. .. the high-level requirements are

used in the design process to develop

software architecture and low-level requirements.
This may involve one or more lower levels of
requirements."”; 6.1.b "If one or more levels of
software requirements are developed between

(%)

high-level requirements and low-level

requirements, the successive levels of
requirements are developed such that each
successively lower level satisfies its higher level
requirements” (see also DO-248C 5.5.1)

224/

\

LLRSatLevC

Low-level requirements are (for
Level C) a satisfactoryrefinement
of the high-level requirements

SCSatLevC EOCSatLLLevC
Source Code and related outputs Executable Object Code is (for
are satisfactory for Level C Level C) a satisfactory refinement
296 of the low-level requirements
227

Figure A-17. Level C: AddRefineLevelCSat

A-17

LLRSatLevC

Low-level requirements are (for
Level C) a satisfactory refinement
of the high-level requirements

252

A

Warrant ArgByLLandArch

Showing satisfactory low-level

requirements and software architecture
is sufficient to establish satisfactory LLR
refinement from high-level requirements

DefLowLevelReq \

"... low-level requirements
terminology corresponds roughly
with terms like software design,
detailed design, etc"; "While
software architecture description
does have some correspondence
to the same terminology in
standard software engineering
practices, other terms such as
high-level design are also used."
DO-248C, 5.5.1 j

230

LLRAdqgLevelC

The low-level requirements
are satisfactory for Level C

242

SwArchAdgLevelC

The software architecture
is satisfactory for Level C

2

Figure A-18. Level C: LLRSatLevC

A-18

LLRAd(qLevelC

The low-level requirements
are satisfactory for Level C

[y)
|\;

4

Warrant ArgByObjSat

Showing satisfaction of the

applicable objectives from
section 6.3.2 is sufficient

¥

LLRComply

"Low-level requirements comply with high
level requirements" (A-4.1): "the low-level
requirements satisfy the high-level
requirements and ... derived requirements
and the design basis for their existence
are correctly defined” (6.3.2.a)

[\
L
[N

Data item 11.14
Software Verificaion Resulis
231

AlgorAccDes

"Algeorithms are accurate” (A-4.7): "the
accuracy and behavior of the proposed
algorithms, especially in the area of

" is ensured (6.3.2.g)

discontinuities

[¥)
b
o

Data Item 11.14
Sofiware Verification Results

239

LLRAccCons

"Low-level requirements are accurate and
consistent" (A-4.2): "each low-level
requirement is accurate and unambiguous,
and the low-level requirements do not
conflict with each other” (6.3.2.b)

234

LLRConfStand

"Low-level requirements conform to
standards" (A-4.5): "Software Design
Standards were followed during the
software design process and ... deviations
from the standards are justified” (6.3.2.e)

236

LLRTraceHLR

"Low-level requirements are traceable
to high-level requirements" (A-4.6): "the
high-level requirements and derived
requirements were developed into the
low-level requirements” (6.3.2.1)

238

Datfa lem 1114
Software Verification Results
233

Data tem 11.14
Sofiware Verification Resulis
235

Data Hem 11.14
Sofiware Verification Results
237

Figure A-19. Level C: LLRSatLevC/LLRAdgLevelC

A-19

SwArchAdgLevelC

The software architecture
is satisfactory for Level C

250

Warrant ArgByObjSat

Showing satisfaction of the
applicable objectives from
section 6.3.3 is sufficient

(%]
B
©

SwArchCompatHLR

"Software architecture is compatible with
high-level requirements" (A-4.8) : "the
software architecture does not conflict with
the high-level requirements, especially
functions that ensure system integrity, for
example, partitioning schemes." (6.3.3.a)

244

SwArchConsis

"Software architecture is consistent" (A-4.9):
"a correct relationship exists between the
compenents of the seftware architecture ...
If the interface is to a component of a lower
software level ... appropriate protection
mechanisms" (6.3.3.b)

[¥]
B
[+

SwArchConforms

"Software architecture conforms to standards"
(A-4.12) : "the Software Design Standards
were followed during the software design
process and ... deviations to the standards are
justified, for example deviations to complexity
restriction and design construct rules" (6.3.3.e)

248

Data ltem 11.14
Software Verification Results
243

Data Hem 11.14
Sofiware Verification Resulis
245

Data Hem 11.14
Sofiware Verificaion Results
247

Figure A-20. Level C: LLRSatLevC/SwArchAdgLevelC

A-20

SCSatLevC

are satisfactory for Level C

Source Code and related outputs

277

A

Warrant ArgByObjSat
Showing satisfaction of

applicable objectives is sufficient

276

SCmatchesDesign

Objectives are satisfied
concerning the relationship
between Source Code and both
low-level requirements and
software architecture

260

A

SCAccConfSat

Objectives are satisfied
concerning accuracy of SC and
its conformance to standards

267

PDIObjSat

Objectives concerning Parameter
Data Item Files are satisfied

272

OutiPComCor

"Qutput of software integration
process is complete and
correct" (6.3.5.a, A-5.7)

ErrorExamples

"Typical examples of potential
errors include: compiler warnings,
incorrect hardware addresses,
memory overlaps, missing

275 software components" (6.3.5)

Data Item 11.14

273

Software Verification Results

274

Figure A-21. Level C: SCSatLevC

A-21

SCmatchesDesign

Objectives are satisfied concerning
the relationship between Source
Code and both low-level requirements
and software architecture

260

Y

Warrant ArgByObjSat

Showing compliance and
traceability is sufficient

259

SCcomplLL

"Source Code complies with low-level
requirements” (A-5.1): "the Source
Code is accurate and complete with
respect to the low-level requirements
and that no Source Code implements
an undocumented function" (6.3.4.a)

254

SCcompSA

"Source Code complies with
software architecture” (A-5.2): "the
Source Code matches the data flow
and control flow defined in the
software architecture” (6.3.4.b)

256

SCtracelLL

"Source Code is traceable to low-level
requirements” (A-5.5): "the low-level
requirements were developed into
Source Code" (6.3.4.e)

258

Data Item 11.14
Software Verification Results
253

Data item 11.14
Software Verification Results
255

Data Item 11.14
Software Verification Results
25¢

Figure A-22. Level C: SCSatLevC/ScmatchesDesign

A-22

SCAccConfSat

Objectives are satisfied
concerning accuracy of SC and
its conformance to standards

267

y

Warrant ArgByObjSat

Showing compliance to standards
and accuracy is sufficient

266

SCConf2Stand

"Source Code conforms to
standards" (A-5.4): "the Software
Code Standards were followed ...
This analysis also ensures that
deviations to the standards are

justified" (6.3.4.d) s6o

SCAccurate

"Source Code is accurate and
consistent" (6.3.4.f, A-5.6)

Data Item 11.14
Software Verification Results
261

Data ltem 11.14
Software Verification Results
264

[SCAccurate Expanded

'The objective is to determine
the correctness and consistence
of the Source Code, including
stack usage, memory usage,
fixed point arithmetic overflow
and resolution, floating point
arithmetic, resource contention
and limitations, worst-case
execution timing, exception
handling, use of uninitialized
variables, cache management,
unused variables, and data
corruption due to task or
interrupt conflicts”" (6.3.4.1)

\

263]

Figure A-23. Level C: SCSatLevC/SCAccConfSat

A-23

PDIObjSat

Objectives concerning Parameter
Data Item Files are satisfied

272

2

Warrant ArgByLevDPlusVer
Level D augmented by PDI
verification is sufficient

271

AccOutSCIPLevD

Outputs from Software Coding

PDIVer

"Verification of Parameter Data Item File
is achieved" (A-5.9): "all elements of the

& Integration Processes are Parameter Data Item File have been

acceptable for Level D

covered during verification" (6.6.b)
268 270

Data ltem 11.14
Software Verification Results
269

Figure A-24. Level C: SCSatLevC/PDIObjSat

A-24

TestCredRationale
"... DO-178C/DO-278A adopts a
strategy called equivalence class

testing. ... The objecti 1,2,3,4 ..
Executable Object Code is (for .es ng o .jec |ve§)
Level C) a satisfactory refinement in Table A-6 provide clarification that

of the low-level requirements testing credit can only be obtained by
testing of the high-level and low-level

EOCSatLLLevC

286
requirements." DO-248C 5.6.2
(excerpts) 278}
4
Warrant ArgByObjSat
Showing compliance and
robustness is sufficient to establish
satisfactory EQOC refinement from
low-level requirements for Level C
285
EOCCompliesLL EOCRobustLL
"Executable Object Code "Executable Object Code is
complies with low-level robugt with low-level
requirements” (6.4.c, A-6.3) requirements” (6.4.d, A-6.4)
281 284
CC12conflict
Table A-6 has the data
item 11.21 (Trace Data)
controlled at CC2 for level
C, but Table A-2 (1, 4, 6)
Data Items 11.13, 11.14, 11.21 has Jrace Data Controlled Data Items 11.13, 11.14, 11.21
Software Verification Cases and 279 Software Verification Cases and
Procedures, Software Verification Procedures, Software Verification
Results, Trace Data 280 Results, Trace Data 283

Figure A-25. Level C: EOCSatLLLevC

A-25

SwAcceptableLevB

Software performs its intended
function at acceptable level of
safety for Level B

4

Warrant ArgBy SatLevCplusNew

Software that satisfies Level C is acceptable
for Level B if augmented by several
additional objectives, control of data items,
and independence requirements

49

IntFun

Description of intended function of the
software

42

_

DefAccSafetyFromRegs

Definition of acceptable level of safety
from airworthiness regulations

D,

Words / phrases are used consistently with
their descriptions in the Glossary

GlossaryApplies

Y,

LevelBDef

Software assigned to Level B is defined as
"Software whose anomalous behavior, as
shown by the system assessment process,
would cause or contribute to a failure of
system function resulting in a hazardous
failure condition for the aircraft." (2.3.3.b).

~—

45

IndepRationale

"Independence may detect more errors
due to objectivity of evaluation." DO-248C,
3.74 (FAQ #74), p. 39; Also see
"Independence in DO-178C/DO-278A"
DO-248C, 4.19 (DP #19), pp. 103-109

46

SwAcceptableLevC

Software performs intended
function at acceptable level
of safety for Level C

47

AddedObjsLevBSat

Additional objectives added for
Level B software are satisfied

48

Figure A-26. Level B: SwAcceptableLevB

A-26

AddedObjsLevBSat

Additional objectives added for
Level B software are satisfied

ThreeCom patOhjs

Three added

Warrant ArgByObjSat

Showing three aspects of compatibility
with the target computer and three
aspects of verifiability is sufficient

objectives concern

compatability with target computer

ThreeVerOhjs

Three added
verifiability

objectives concern

HLRCompatTC

"High-level requirements are compatible
with target computer” (A-3.3). "no
conflicts exist between the high-level
requirements and the hardware/software
features of the target computer,
especially system response times and
input/output hardware" (6.3.1.c)

SoftArchCompatTC

computer” (6.3.3.c)

"Software architecture is compatible with
target computer” (A-4.10): "no conflicts
exist, especially initialization, asynchronous
operation, synchronization, and interrupts,
between the software architecture and the
hardware/software features of the target

LLRVerifiable

"Low-level requirements are
verifiable” (6.3.2.d, A-4.4)

SecurceCodeVerifiable

"Source Code is verifiable” (A-5.3):
"the Source Code does not contain
statements and structures that cannot
be verified and that the code does not
have to be altered to testit." (6.3.4.c)

Data tem 11.14 Data tem 1114 Data tem 11.14 Data em 1114
Software Venification Resulls Software Venhcation Resulls Software Venification Results Software Verification Results
289 03 205 200
i
LLRCompatTC SoftArchVerifiable
"Low-level requirements are compatible with "Software architecture is verifiable”
(A-4.11)"... for example, there are

target computer” (A-4.3): "no conflicts exist
between the low-level requirements and the
hardware/software features of the target
computer, especially the use of resources
such as bus loading, system response
times, and input/output hardware” (6.3.2.c)

Data em 11.14
Software Verifiication Resulls

no unbounded recursive
algorithms” (6.3.3.d)

Data em 11.14

Software Verification Results

Figure A-27. Level B: AddedObjsLevBSat

A-27

JustifiedConfidenceLevB

The evidence provided is adequate for
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level B

61

LevBEvidence

The required data items for
Level B provided in a form
described in the Plan for

Software Aspects of Certification
(11.0.b)

A

o

DataltemChars

The data items have the
characteristics described in
11.0.a: (1) unambiguous,

(2) complete, (3) verifiable, (4)
consistent,(5) modifiable, and

Y (6) traceable.

Warrant ArgByProcesses

Establishing adequacy of
required processes is sufficient

60

ObjsSat4NoLevBDiffs

Objectives are satisfied for
processes for which Level B
does not add objectives

AdqConfigManLevC
Adequate configuration
management is in place

for Level C

AdgPlanningLevB

Adequate planning has
been conducted for Level B

57

Y

]

IndepSatLevB

are satisfied

Additional Independence
requirements for Level B

]

AdgSQALevC

Adequate software quality
assurance is in place

for Level C

AdqCertLiasLevD
The certification liaison

AdqVerVerResLevB

Sufficient verification of
verification results have
been achieved for Level B

59

process is adequate
for Level D

w
(4]

Figure A-28. Level B: JustifiedConfidenceLevB

A-28

AdgPlanningLevB

Adequate planning has
been conducted for Level B

307

Y

Warrant ArgByLevCwCC

Showing satisfactory Level C
planning with higher control
categories is sufficient to establish
satisfactory planning for Level B

306

AdgPlanningLevC

Adequate planning has
been conducted for Level C

303

Y

CC1Applied

Higher control category
requirements (CC1) are applied to
planning documents for Level B

305

Control Category Evidence

CC1 for Data Items 112, 11.3, 114, 11,5,

11,6, 11.7, 118, 1113, 11.21 (SDP, SVP,

SCM Plan, SQA Plan, Software Requirements
Standards, Software Design Standards,
Software Code Standards, Software Verification
Cases and Procedures, Trace Data)

304

Figure A-29. Level B: AdgPlanningLevB

A-29

IndepSatLevB

Additional Independence
requirements for Level B are satisfied

LevBIndReqsA3
For section 6.3.1

B requires independence for

objectives 6.3.1a

L

\\(A-E,Z), and 6 3.1

(Table A-3) Level

(A-3.1),6.31b
g (A3T)

ﬂ_walndRequ

'Warrant ArgBy ObjSat

Showing satisfaction of the ten
added objectives is sufficient
(not including the two added for
wverification of verification results)

For sections 6.3.2 (Table A-4) Level
B requires independence for
objectives 6.3 2.a (A-41),632b
(A42) and632g (A4T)

LevBIndReqsAS

332

for objectives 6.3

Y

For sections 6.3.4 and 6.6 (Table
A-5) Level B requires independence
4a(A51)66a

(A-5.8), and 6.6.b (A-5.9)

o

LevBIndReqsAB

For section 6.4 (Table A-6) Level B
requires independence for
objectives 6.4 .c (A-6.3)

HLRComplyind

"High-level requirements comply
with system requirements” has
been shown with independence
(6.6.1a, A-3.1)

313

HLRAccCensind

"High-level requirements are
accurate and consistent” has
been shown with
independence (6.3.1.b, A-3.2)

AlgorAccReqind

"Algorithms are accurate”
has been shown with
independence (6.3.1.g, A-3.7

17

Data bems 11.14
Software Verification Results

Data Mem 11.14
Software Verification Results

Fi4

Data em 11.14
Software Venficabon Results

!

EOCCompliesLLInd

"Executable Object Code complies
with low-level requirements” has
been shown with independence
(6.4.c A-63)

331

o

6

LLRComplyind

"Low-level requirements comply with
high level requirements” has been

LLRAccConslnd

"Low-level requirements are
accurate and consistent” has

AlgorAccDesind

"Algorithms are accurate”
has been shown with

Data bems 11.13, 1114, 11:4
Soltware Vernfication Cases
and Procedures, Software
Verification Results, Trace Data

shown with independence been shown with independence independence
6.3.2a A-4.1) in (6.3.2.b,A-4.2) 254 (6.3.2.9,A-47) 323
Data lem 1114 Data bem 11.14 Data Mem 1114
Software Veriication Results Software Verification Results Software Verfication Results
Jig J20 322
' ‘//—/
SCcompLLind PDICorind PDIVerind

"Source Code complies with low-level
requirements” has been shown with
independence (6.3.4.a,A-5.1)

"Parameter Data Item File is
correct and complete” has been
shown with independence

with independence

"Verification of Parameter
Data Item File is achieved”

(6.6.a,A58) (6.6.b, A5.9)
Data Mems 1114 Data Hems 1113, 1114 Data e 1114
Software Veriication Results Software Verification Gases Software Verification Resulls
a6 and Procedures, Software 98
Verification Results o

Figure A-30. Level B: IndepSatLevB

A-30

AdgVerVerResLevB

Sufficient verification of
verification results have
been achieved for Level B

343

¥

Warrant ArgByObjSat

LevelC verification of verification results
augmented by two independence
objectives and more demanding

structural coverage is sufficient

AdgVerVerResLevC

Sufficient verification of
verification results have
been achieved for Level C

334

DecisionCovind

"Test coverage of software structure
(decision coverage) is achieved”
with independence (6.4.4.c, A-7.6)

341

Data Item 11.14
Software Verification Results
340

StatementCovind

"Test coverage of software structure
(statement coverage) is achieved”
with independence (6.4.4.c, A-7.7)

336

Data Item 11.14
Software Verification Results
335

TestCovCouplingind

"Test coverage of software
structure (data coupling and
control coupling) is achieved" with
independence (6.4.4.d, A-7.8)

338

Data Item 11.14
Software Verification Results
337

[DecisionCovRat \

"Objectives 5, 6, and 7 ... ensure
that test cases written for
requirements explore the Source
Code with the degree of rigor
required by software/assurance
level. ... For Level B (AL 2), the
addition of the requirement [6.4.4.c,
A-7.6] that all decision paths in the
source was considered sufficient to
address the increase in the
associated hazard category”
DO-248C 5.6.3 bullet 4 [sic]. See

also the rest of the section.
339 }

Figure A-31. Level B: AdgVerVerLevB

A-31

SwAcceptableLevA

safety for Level A

Software performs its intended
function at acceptable level of

70

|

IntFun

Description of intended function of the
software

6

ﬂ)efAccSafety FromRegs

Definition of acceptable level of safety from
airworthiness regulations

6

J
J
/G-IossaryApplies
Words / phrases are used consistently with
4
]

their descriptions in the Glossary

\

LevelADef

Software assigned to Level Ais defined as
"Software whose anomalous behavior, as
shown by the system assessment process,
would cause or contribute to a failure of
system function resulting in a catastrophic
failure condition for the aircraft." (2.3.3.a).

6

6

LevALevBDiffsConf

All of the differences between objectives
for Level A and Level B address matters

Warrant ArgBy SatLevBplusNew

Software that satisfies Level B is acceptable

for Level Aif two new verification of

verification results objectives and ten new
independence requirements are satisfied

69

SwAcceptableLevB

of safety for Level B

Software performs intended
function at acceptable level

68

of confidence

66J

IndepRationale
"Independence may detect more errors

due to objectivity of evaluation." DO-248C,

3.74 (FAQ #74), p. 39; Also see
"Independence in DO-178C/DO-278A"
DO-248C, 4.19 (DP #19), pp. 103-109

67

Figure A-32. Level A: SwAcceptableLevA

A-32

/LevAEvide nce \

The required data items for Level A
provided in a form described in the Plan
for Software Aspects of Certification

JustifiedConfidenceLevA (11.0.b)
The evidence provided is adequate for K -j
justifying confidence that the correctness
of the software has been demonstrated
to the extent needed for Level A /Dataltemc:hars \
81 The data items have the characteristics
described in 11.0.a: (1) unambiguous,

(2) complete, (3) verifiable, (4) consistent,
(5) modifiable, and (6) traceable.

\ 7

Q_

A

4
Warrant ArgByProcesses

Establishing adequacy of
required processes is sufficient

80
\
ObjsSat4NoLevADiffs
IndepSatLevA T . AdqgVerVerResLevA
. Objectives are satisfied for i . i
Additional Independence processes for which level A does Sufficient verification of
requirements for Level A are satisfied not add objectives or independence verification results have
78 _4_4 been achieved for Level A

AdqCertLiasLevD

The certification liaison process
is adequate for Level D

AdgPlanningLevB

Adequate planning has
been conducted for Level B

73 76
F A
AdqConfigManLevC AdgSQALevC
Adequate configuration Adequate software quality
management is in place for Level C assurance is in place for Level C
74 75

Figure A-33. Level A: JustifiedConfidenceLevA

A-33

IndepSatLevA

Additional Independence
requirements for Level A are satisfied

w
&
R

¥
Warrant ArgByObjSat

Satisfying Level B independence
augmented by six new
independence objectives is sufficient

w
=3

Indep SatLevB

Additional Independence
requirements for Level B are
satisfied

344

SwArchCompatHLRInd

"Software Architecture is compatible
with high-level requirements” has
been shown with independence
(63.3.a,A4.8)

ﬂ_evAlndRequ:i \

Forsection 6.3.3 (Table A-4) Level A
adds an independence requirement
for objectives 6.3.3a (A-4.8),633b
(A-4.9), and 6.3.3f (A-4.13)

\ Yy
/,LevAIndRequs \

Forsection 6.3.4 (Table A-5) Level A
adds an independence requirement
for objectives 6.3.4 b (A-5 2) and
6.3.4.f(A-5.6)

\ o
ﬂevAlndRequG \

For section 6.4 (Table A-6) Level A
adds an independence requirement
for objective 6.4.d (A-6.4)

\

/ VerOfVerElsewhere

Note: Added independence objectives
related to venfication of verification are
discussed in AdgVerVerLevA

AN

\

(6.4.d,A64)

EOCRobustLLInd

"Executable Object Code is robust
with low-evel requirements” has
been shown with independence

w
@

Data Items 1113, 1114, 1121

"Software Architecture is

consistent” has been shown with
independence (6.3.3.b,A-4.9)

Software Verification Results Software Verification Cases and Procedures,
324G Software Verification Results, Trace Data
358
SwArchConsisind Partintegind SCcompSAlnd SCaccuratelnd

"Software partitioning integrity”

"Source Code complies with software

has been shown with
independence (6.3.3.f, A-4.13)

354

architecture” has been shown with
independence (6.3.4.b, A-5.2)

w
=)

"Source Code is accurate and
consistent” has been shown with
independence (6.3.4.f, A-5.6)

DataHems 1114

Software Venhcation Results

357

Data tems 11.14
Software Verfication Resuits
353

Figure A-34. Level A:

A-34

Data Hems 11.14
Software Venfication Resuits
355

IndepSatLevA

Data lems 11.14
Software Venhcation Results
35f

AdqgVerVerResLevB

Sufficient verification of
verification results have
been achieved for Level B

363

AdqgVerVerLevA

Sufficient verification of verification
results have been achieved for level A

384

A

Warrant ArgByObjSat

Level B verification of verification results
augmented by four independence
objectives, verification of additional code,
and more demanding coverage is sufficient

383
AddvVindSat IndAdded4LevA
Additional independence !-ec;’9| A zddﬁ an
requirements for Level A verification independence

of verification are satisfied

6.4.5.b (A-7.1), 6.4.5.c
373 (A-7.2), 6.4.4.2 (A-7.3),

and 6.4.4.b (A-7.4)

requirement for objectives

364

NewVVAODbjsSat

The two new Level A
objectives for verification
of verification results are

satisfied 382

Figure A-35. Level A: AdgVerVerLevA (top)

A-35

Y

TestProcCorind

"Test procedures are
correct” is shown with
independence (6.4.5.b,
A-T7.1)

366
Data ltem 11.14
Software Venfication Results
365

AddVVindSat

Additional independence
requirements for Level A verification
of verification are satisfied

373

IndAdded4LevA
Level A adds an independence

requirement for objectives 6.4.5.b

(A-7.1), 64.5.c (A-7.2),6.4.4.a
(A-7.3), and 6.4.4.b (A-7.4)

364

LLRTestCovind

with independence
(6.4.4.b,A-7.4)

"Test coverage of low-level
requirements is achieved"”

372

TestResultsCorlnd

"Test results are correct
and discrepancies

explained” is shown with

independence (6.4 5.c,
A-7.2)

368

HLRTestCovind

level requirements is
achieved" with
independence
(6.44.a,A-7.3)

"Test coverage of high-

Data Item 11.14

Data ltem 11.14
Software Verification Results

Data Item 11.14

Software Verificalion Results
369

367

A-36

Figure A-36. Level A: AdgVerVerLevA (left)

Software Verification Results

371

NewVVA ObjsSat

MCDCCovRat \
The two new Level A objectives for .
verification of verification are satisfied Objectives 5, 6, and 7 ... ensure that

. test cases written for requirements

362 explore the Source Code with the
degree of rigor required by software/
assurance level. .. for Level A (AL 1),
the committee established that all logic
expressions in the Source Code should
be explored. ... A compromise was
achieved based on experience gained
from three programs The term for
thistype of coverage was Modified

MCDCCovind

"Test coverage of software structure Condition/Decision Coverage. [6.4.4.c,
(modified condition/decision A-7.5]" DO-248C 5.6.3 bullet 4. See also
coverage) is achieved" with the rest of the section.

independence (6.4 4.c,A-7.5) 378

MCDC4ExtCode

"MC/DC [6.4.4.c, A-7.5] assures that the
structure of the Source Code is further
exercised. This further demonstrates the

VerAddCodeRat

"Objective 9 [6.4.4.c, A7 8] ... ensures that Source Code functions as they relate to
VerAddCodelnd the Executable Object Code or its proxy is r=| the software requirements and the
werificat addit | cod evaluated for any functionality added by the Data bem 11.14 correctness of the design. Additionally,

ertiication of acditional code, compiler and ensure[s] that such functionality Software Verification any extraneous code (such as dead

that can not be traced to is verified or analyzed to ensure that it has code) or unreachable paths in the code
Source Code is achieved” with " Resulls may be identified." DO-248C, 3.74 (FAQ
independence (6.4.4.c, A-7.9) no safety impact.” DO-248C 5.6.3 bullet 6) 280 474y p 39)

ObjCedeTraceRat

"Object code traceability [6.4.4.c, A-7.9]

- provides assurances that the compiler does
not produce object code that has not been
verified.” DO-248C, 3.74 (FAQ #74), p. 39.

Data Wem 11.14
Software Vesificalion Resulls
EZA
Figure A-37. Level A: ADQVERVERLEVA (right)
ﬂslossaryApplies \
Words / phrases are used consistently with their
descriptions in the Glossary
SwAcceptableLevE \ 82/
Software performs its intended
function at acceptable level of / \
safety for Level E LevelEDef
85 Software assigned to Level E is defined as "Software
i whose anomalous behavior, as shown by the system
assessment process, would cause or contribute to a
failure of system function with no effect on aircraft
operational capability or pilot workload" (2.3.3.e).
\ “)
SatByDef

The claim is satisfied by definition: "If a
software component is determined to be
Level E and this is confirmed by the
certification authority, no further guidance
contained in this document applies.” (2.3.3.¢)

84

Figure A-38. Level E: SWACCEPTABLELEVE

A-37

APPENDIX B—ARGUMENTS FOR TOOL QUALIFICATION (DO-330)

This appendix contains the arguments developed for tool qualification in accordance with DO-
178C 812.2 and DO-330. Section B.1. identifies differences between the DO-330 and DO-178C
certification contexts that are critical to understanding how and why the DO-330 argument differs
from the DO-178C argument. Section B.2. presents the top level of the tool qualification argument,
which corresponds to DO-178C 812.2. Section B.3. presents the remainder of the argument for
TQL-5 tools. Subsequent sections present the remainder of the arguments for tools at higher Tool
Qualification Levels.

B.1. THE CERTIFICATION CONTEXT FOR DO-330

Although the structure of DO-330 is largely analogous to DO-178C, there are differences that
affect the structure of the tool-qualification argument. Figure B-1 illustrates two key differences:
1) the source of the highest level of requirements; and 2) how safety is managed and safety-related
insights and changes are handled.

System Life DO-178C Processes DO-330 Processes
Cycle Processes Tool Qualification
System Requirements Need (including
Allocated to Software Software intended use, Tool Planning Process
Safety > Planning Process proposed TQL,
Assessment and a description
Process of the tool
operational Tool Operational
Software Level Software environment) Requirements Process
Requirements -
Process

Tool Requirements

- Process
. Tool Operational
Softv;are Design Requirements,
rocess Derived Tool
Requirements - Tool Operational
Derived Requirements _ Verification and
- Software Coding Validation
Process
Problem or Change Tool Problem Tool Confi ti
Documentation . Reports ool Lonfiguration
- - Management

! : '

Certification Authority

Figure B-1. Certification Context for DO-178C and DO-330

B-1

DO-178C assumes that system life-cycle processes have defined system requirements, allocated
some of these to software, and determined the appropriate software level. When DO-178C and
DO-330 are used together, the DO-178C software planning process defines the need for tool
qualification by identifying the tool and its intended use in the airborne software development
process. The software-planning process determines the appropriate TQL in accordance with DO-
178C 812.2. Tool operational requirements are defined in accordance with the DO-330 tool
operational requirements process.

DO-178C assumes the existence of an unspecified system-safety assessment process. Software
developers provide derived requirements, problem documentation, and change documentation to
the safety assessment process, which updates the system requirements and software level as
needed. In contrast, tool requirements and derived tool requirements are produced in accordance
with the DO-330 tool requirements process. The same process also justifies the existence of
derived tool requirements and evaluates them “to ensure that they do not negatively impact the
expected functionality and outputs defined in the Tool Operational Requirements” (DO-330,
85.2.1.2.h).

B.2. TOP LEVEL (DO-178C 812.2)

The arguments developed for tool qualification begin by showing that the tools used to produce
airborne software “provide confidence at least equivalent to that of [sic] the processes eliminated,
reduced or automated” (DO-178C, 812.2.1). Figure B-2 illustrates this argument (for airborne
software Level D).1 The conclusion is supported by an argument over the DO-178C tool-
qualification process (812.2). Premises GTQLevDC1 and GTQLevDC23 represent the logic
implicit in DO-178C’s 812.2.2, which specifies the appropriate TQL based on the airborne
software level and three criteria:

o Criterion 1. “A tool whose output is part of the airborne software and thus could
insert an error.”
. Criterion 2. “A tool that automates verification process(es) and thus could fail to

detect an error, and whose output is used to justify the elimination or reduction of ...
verification process(es) other than that automated by the tool, or ... development
process(es) that could have an impact on the airborne software.”

. Criterion 3. “A too that, within the scope of its intended use, could fail to detect an
error.”

For airborne software Level D, DO-178C’s table 12-1 specifies that tools satisfying criterion 1
must be qualified to TQL-4, whereas tools that satisfy only criterion 2 or criterion 3 need only be
qualified to TQL-5.

1 There are two differences between the style of the DO-330 arguments and the DO-178C arguments. The DO-330 arguments were developed
using a simple graphics program instead of the Dependable Computing tools. Also, the DO-330 arguments use the traditional GSN Strategy
convention instead of the Warrant approach developed for the DO-178C arguments. Changing to the Warrant approach and reproducing new
diagrams may be done if desired.

B-2

ToolsQualifiedLevD

The tools used “provide confidence at least
equivalent to that of [sic] the processes eliminated,
reduced, or automated” for Level D (12.2.1)

k.

4

ToolsUsed

The tools used are identified in the PSAC and used to eliminate, reduce, or
automate a process of DO-178C without its output being verified (11.1,122 1)

Process

A process is “a collection of activities performed in the software
life cycle to produce a definable output or product” (Glossary)

Tools
Atool is “a single tool, a collection oftools, or one or more functions within a tool” (12.2.1)

CToolCriterion1

Tool criterion 1: “A fool whose output is part of the airbome software” (12.2.2)

CToolCriterion2
Tool criterion 2- “A fool that automates verification process(es) . and whose output is used to justify

ArgByObjSat

Argument overthe tool
qualification process

the elimination or reduction of [either] (1) verification process(es) other than that automated by the
@mr (2) development process(es) that could have an impact on the airborne software” (12.2 2)

GTQLevDC1

Each tool satisfying
cnterion 1 is qualified to
TQL-4(12.2.2)

v

GTQLevDC23

Each tool satisfying
cnterion 2 or 3 but not
criterion 1 is qualified to
TQL-5(12.2.2)

A

TQualTQL4

The tool performs its
intended function at an
acceptable level of
confidence for TQL-4

TQualTQLS

The tool performs its
intended function at an
acceptable level of
confidence for TQL-5

CToolCriterion3
Tool cnterion 3: “Afool that, within the scope of its intended use, could fail to detect an error’ (12.2.2)

Figure B-2. ToolsQualifedLevD

Confidence in the argument depicted in figure B-2 might be lost if the tool-qualification needs
were identified incorrectly. Figure B-3 depicts the conference argument associated with the
inference of ToolsQualifiedLevD from GTQLevDC1l and GTQLevDC23. Support for the
conclusion that “there is sufficient confidence that tool qualification needs have been established
correctly” is given by evidence of satisfaction of DO-178C objective 4.1.D/A-1.4. That is, the Plan
for Software Aspects of Certification (PSAC), Software Development Plan (DSP), Software
Verification Plan (SVP), Software Configuration Management (SCM) Plan, and Software Quality
Assurance (SQA) Plan testify that “additional considerations,” including tool qualification, “have
been addressed” (DO-178C, §4.1.D).

TQLNeedsConf

There is sufficient confidence that tool qualification
needs have been established correctly

ﬂI'_QLCoordinated

Each tool’s “toal qualification level [is] coordinated
\with the certification authority” (12.2.2) A

Y

ArgOverRelObjs /Process

Argument over related A process is “a collection of activities performed in the software
DO-178C objectives @e cycle to produce a definable output or product” (Glossary)

ﬂl’ QisAddCon
Tool qualification is an additional consideration

. J

AddConAddressed

“‘Additional considerations, such as those
discussed in Section 12, have been
addressed, if necessary” (4.1.d, A-1.4)

!
O

Data Items 11.1, 11.2, 11.3, 11.4, 11.5

Plan for Software Aspects of Certification
(PSAC), Software Development Plan (SDP),
Software Verification Plan (SVP), Software
Configuration Management (SCM) Plan,
Software Quality Assurance (SQA) Plan

Figure B-3. TQLNeedsConf

B-4

Three variants of the argument shown in figure B-2 present alternatives that apply at other airborne
software levels. Figure B-4 gives the top level of the argument for Level C airborne software.
Figure B-5 gives the top level of the argument for Level B airborne software. And figure B-6 gives
the top level of the argument for Level A airborne software. Tool qualification is not applicable
for Level E airborne software.

All of these arguments depend on evidence that the tool performs its intended function at a level
of confidence that is acceptable given its TQL. The confidence argument depicted in figure B-3
applies in all cases. These arguments differ only in that different TQL levels apply at each of the
airborne software levels.

ToolsQualifiedLevC ToolsUsed
The tools used “provide confidence at least The tools used are identified in the PSAC and used to eliminate, reduce, or

equivalent to that of [sic] the processes eliminated, automate a process of DO-178C without its output being verified (11.1,12.2.1)
reduced, or automated” for Level C (12.2.1)

Process
A process is “a collection of activities performed in the software
life cycle to produce a definable output or product” (Glossary)

Tools

Eluul is “a single tool, a collection of tools, or one or more functions within a tool” (1 2.2D
CToolCriterion1
Tool criterion 1: “Atool whose output is part of the airborne software” (12.2.2)

¥ @olCriterionZ

ArgByObjSat Tool criterion 2- “A tool that automates verification process(es) and whose output is used to justify
Argument over the tool
qualification process

the elimination or reduction of [gither] (1) verification process(es) other than that automated by the
@r (2) development process(es) that could have an impact on the airborne software” (12.2.2)

CToolCriterion3
Tool criterion 3 “A tool that, within the scope of its intended use, could fail to detect an emor” (12 2 2)

GTQLevCC1

Each fool satisfying
criterion 1 is qualified to
TQL-3 (12.2.2)

GTQLevCC23

Each tool satisfying
criterion 2 or 3 but not
criterion 1 is qualified to
TQL-5 (12.2.2)

A

TQualTQL3

—y

TQualTQL5

The tool performs its
intended function at an
acceptable level of
confidence for TQL-3

The tool performs its
intended function at an
acceptable level of
confidence for TQL-5

Figure B-4. ToolsQualifedLevC

B-5

ToolsQualifiedLevB

The tools used “provide confidence at least
equivalent to that of [sic] the processes eliminated,
reduced, or automated” for Level B (12.2.1)

¥

ArgByObjSat

Argument over the tool
qualification process

ToolsUsed

The tools used are identified in the PSAC and used to eliminate, reduce, or
automate a process of DO-178C without its output being verified (11.1,12.2.1)

Process

Aprocess is “a collection of activities performed in the software
life cycle to produce a definable output or product” (Glossary)

Tools
Atool is “a single tool, a collection of tools, or one or more functions within a tool” (12.2.1)

CToolCriterion1

Tool criterion 1- “Atool whose output is part of the airborne software” (12 2 2)

CToolCriterion2

Tool criterion 2- “Atool that automates verification process(es) . and whose output is used to justify
the elimination or reduction of [either] (1) verification process(es) other than that automated by the
tool or (2) development process(es) that could have an impact on the airthborne software” (12.2.2)

CToolCriterion3
Tool criterion 3: “Atool that, within the scope of its intended use, could fail to detect an emor” (12.2.2)

GTQLevBC1

Each tool satisfying
cnterion 1 is qualified to
TQL-2 (12.2.2)

I

GTQLevBC2

Each tool satisfying
criterion 2 but not
criterion 1 is qualified to
TQL-4 (12.2.2)

GTQLevBC3

Each tool satisfying
criterion 3 but not
criterion 1 or 2 is qualified
toTQL-5 (12.2.2)

A

[1¥

TQualTQL2

The tool performs its
intended function at an
acceptable level of
confidence for TQL-2

TQualTQL4

The tool performs its
intended function at an
acceptable level of
confidence for TQL-4

TQualTQL5

The tool performs its
intended function at an
acceptable level of
confidence for TQL-5

Figure B-5. ToolsQualifedLevB

B-6

ToolsQualifiedLevA

The tools used “provide confidence at least
equivalent to that of [sic] the processes eliminated,
reduced, or automated” for Level A (12 2.1)

Y

ArgByObjSat

Argument over the tool
qualification process

ToolsUsed

The tools used are identified in the PSAC and used to eliminate, reduce, or
automate a process of DO-178C without its output being verified (11.1, 12.2.1)

Process

A process is “a collection of activities performed in the software
life cycle to produce a definable output or product” (Glossary)

Tools
Atool is “a single tool, a collection of tools, or one or more functions within a tool” (12 2 1)

CToolCriterion1

Tool criterion 1: “Atool whose output is part of the airborme software” (12.2.2)

CToolCriterion2

Tool criterion 2: “Atool that automates verification process(es) ... and whose output is used to justify
the elimination or reduction of [either] (1) verification process(es) other than that automated by the
tool or (2) development process(es) that could have an impact on the aiborne software” (12.2.2)

CToolCriterion3
Tool criterion 3- “Atool that, within the scope of its intended use, could fail to detect an ermor” (12 2 2)

GTQLevAC1

Each tool satisfying
criterion 1 is qualified to
TQL-1 (12.2.2)

I

GTQLevAC2

Each tool satisfying
criterion 2 but not
criterion 1 is qualified to
TQL-4 (12.2.2)

GTQLevAC3

Each tool satisfying
criterion 3 but not
criterion 1 or 2 is qualified
toTQL-5 (12.2.2)

A

[1¥

TQualTQL1

The tool performs its
intended function at an
acceptable level of
confidence for TQL-1

TQualTQL4

The tool performs its
intended function at an
acceptable level of
confidence for TQL-4

TQualTQLs

The tool performs its
intended function at an
acceptable level of
confidence for TQL-5

Figure B-6. ToolsQualifedLevA

B-7

B.3. TOOL QUALIFICATION ARGUMENT FOR TQL-5

Figure B-7 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-5.” This argument is similar to the DO-178C
arguments in support of the conclusion that airborne software performs its acceptable level of
safety at the appropriate software level.

(IntFun A

Description of intended function of the
TQualTQL5 anl given in the airborne software PSAC

/
~

The tool performs its intended function at an
acceptable level of confidence for TQL-5 -

GlossaryApplies

Words / phrases are used consistently
with their descriptions in the Glossary

-

/

Y
ArgByCorrectness

Argue by correctness of the software
relative to Tool Operational Requirements
and derived requirements

\
AdqOpsTQLS

Tool operational processes
are adequate for TQL-5

Figure B-7. TQUALTQL5

Red color and italic type in this and subsequent figures indicate differences from the analogous
DO-178C arguments. In this cases, the main differences are:

. The argument applies to a tool at a TQL, not to the airborne software at a level.

. The tool’s intended function is documented in the airborne software’s PSAC rather than in
the tool’s own documentation.

. The tool is argued to be correct with regard to its tool operational requirements rather than
to allocated system requirements.

. Correctness is inferred from the adequacy of the tool operational processes (which is

supported by tool-level verification and validation results among other evidence).

Section B.3.1 gives the argument for the adequacy of the tool operational process. Section B.3.2
gives the argument for confidence in the TQL-5 tool-qualification argument.

B.3.1. EVIDENCE OF CORRECTNESS FOR TQL-5

Figure B-7 gives the argument that the tool performs its intended function at an acceptable level
of confidence for TQL-5. This functionality is inferred from the tool’s correctness with respect to
its tool operational requirements. That correctness is in turn inferred from the adequacy of the tool
operational processes. Figure B-8 presents the argument supporting that premise, which argues
over satisfaction of tool operational process objectives that apply at TQL-5. Premises representing
each objective show that:

o The tool is identified, its intended use described, the need for tool qualification defined,
the TQL determined, the stakeholders identified, and the tool operational requirements
described (TQNeedEst).

. The tool operational requirements are defined in sufficient detail (TORsDefined) and are
correct (TORsCorrect).

. The tool has been installed correctly in the airborne software development environment
(TEOCInstd).

o The functionality and outputs of the installed tool are verified to comply with the tool

operational requirements (TOpComplies), and the tool’s satisfaction of the airborne
software-development process needs is validated (SWLCPNMeet)

That is, the tool operational process is adequate because the highest-level tool requirements are

adequate and the tool has been installed correctly, verified, and validated in its airborne software-
development context.

B-9

07-d

@olOps

Tool operational processes are concerned with the development,
verification, and validation of tool operational requirements, the
verification of the tool against these, and validation of the tool as

Tool operational processes
are adequate for TQL-5

AdqOpsTQL5 Kffwn‘l be used in the [airborne] software development process

ﬁ'ooIOpReqs

“The Tool Operational Requirements ... identify how the toolis ...
used within the [airborne] software lifecycle process. Validation
and verification of the Tool Operational Requirements are
necessary to confirm that the tool satisfies the needs of the
@irbome software life cycle process” (5.0.a)

A
ArgByObjSat OpsObjsTQL-5
Argue by satisfaction of the The fool operational process objectives that apply at TQL-5
operational process objectives that are4.1(T-0.1), 5.1.1.a (1-0.2), 5.3.1.a (T-0.3), 6.2.1.b (T-0.5),
are applicable to TQL-5 tools QE. 1.aa (T-0.6), and 6.2.1.bb (T-0.7)

TQNeedEst

“The tool
qualification
needis
established”
(4.1, T-0.1)

i
O

Data Item 10.1.1
(178C 11.1)

Plan for Software
Aspects of
Certification

4.1

“During the [airborne]
software planning process,
the tools [to be] used ... are
identified, each tool’s
intended use is described,
the need for tool qualification
is defined, the TQLs are
determined, ... stakeholders
... are identified, and the fool
operational requirement is
described.”

[5.1.2.b, 5.1.2¢
Tool Operational

TORsDefined Requirements should include TEOCInstd TOpComplies TORsCorrect SWLCPNMet
“Tool gg.g?g ggﬁgg rfc:mgfeig'}‘g:‘ity “Tool Executable The “functionality and the “Tool Operational “Software life
Operational and the outputs of the tool Object Code is outputs of the fool Requirements are cycle process
Requirements correspond to the identified installed in the installed in the tool sufficient and correct” needs are met
are defined” [software life cycle activities tool operational operational environment” (6.2.1.aa, T-0.6) ‘to by the tool”
and include to be performed by the tool” environment” ;6.2. 1.b) “complfy] with eliminate, reduce, or (6.2.1.bb, T-0.7)
sufficient and “support verification of (5.3.1.a, T0.3) he Tool Operg,ﬂonaf automate the process(es)
B vz | | e toolscapaly o sty Requtornts anied e
(5.1.18 T-0.2) taking credit for satisfying the i (6.21.5, T-0.5) (6.2.1.28) i
process(es) aufomated,
* Ke!fmfnafed, or reduced”.

% e e

Data tem 10.3.1 Data ltems Data Items 10.3.3, 10.3.4 Data Items 10.3.4 Data ltems 10.3.3, 10.3.4

Tool Operational 10.24,10.3.2 Tool Operational Veerification and Tool Operational Tool Operational Verification and

Requirements Tool Executable Validation Cases and Procedures, Verification and Validation Cases and Procedures,
Object Code, Tool Tool Operational Verification and Validation Results Tool Operational Verification and
Installation Report Validation Results Validation Results

Figure B-8. AdqOpsTQLS5B.3.2. Confidence in Tool-Qualification Argument for TQL-5

As in the DO-178C argument, confidence in demonstrating that software is correct with respect to
its requirements is sufficient to show that the software will perform its intended function would be
undermined by the use of inadequate processes. Figure B-9 depicts the confidence argument for
TQL-5. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-5" on the grounds that
adequate configuration management has been conducted, adequate tool quality-assurance is in
place, and the certification liaison process is adequate.

JustifiedConfidence TQL5

The evidence provided is adequate for justifying
confidence that the correctness of the fool has been
demonstrated to the extent needed for TQL-5

A
ArgByProcesses

Argue by adequacy of
established processes

AdqConfigManTQL5 AdqTQATQLS AdgCertLiasTQL5
Adequate configuration management Adequate tool quality assur- The certification liaison process
has been conducted for TQL-5 ance is in place for TQL-5 is adequate for TQL-5

Figure B-9. JustifiedConfidenceTQL5

B-11

Figure B-10 depicts the argument that configuration management is adequate for a TQL-5 tool.
This argument—Iargely analogous to the corresponding DO-178C argument (namely
AdgConfigManLevD)—infers the adequacy of configuration management from satisfaction of the
applicable objectives. Premises representing these objectives cite evidence to show that:

. The versions of configuration items, such as requirements and the source code, are
identified unambiguously (ConfltemsLabeled).
o Configuration allows identification of the development artifacts associated with any tool

release and ensures that only authorized tool releases are used to develop the airborne
software (ArcRelEst).

AdqConfigManTQL5

Adequate configuration
management is in place for TQL-5

L /TQLSSecTObjs
The objectives in Section 9 that apply to
ArgByObjSat \TQI_-5 toolsare 7.1.a (T-8.1) and 7.1.g (T-8.4)

Argue by satisfaction of the
objectives from Section 7

that are applicable for AssumeCCAssign

TQL-5tools . .
All data items have been properly assigned to a Data
Control Category (CC1/CC2) as required by Section 7.3

ConfltemsLabeled ArcRelEst ArcRelEstFullObj

" L . . " . . "Archival and retrieval ensures that the tool life cycle data

Each configuration item and its successive Archive, retrieval, associated with the fool product can be retrieved in case of a

versions are labeled unambiguously so that a and re_Iease”are | need to duplicate, regenerate, retest or modify the foo!

basis is established for the control and established product. The objective of the release activity is to ensure that

reference of configuration items™ (7.1.a, 7-8.7) (T-8.4) only authorized tool is used in the software lifecycle practice, in
addition to being archived and retrievable" (7.1.9)

l l
O O

Data Item 10.1.13 Data Item 10.1.13
Tool Configuration Tool Configuration
Management Records Management Records

Figure B-10. AdgqConfigManTQL5

B-12

Figure B-11 depicts the argument that tool quality-assurance processes are adequate for a TQL-5
tool. This argument—also largely analogous to the corresponding DO-178C argument (namely
AdgSQALevD)—infers the adequacy of tool quality assurance from satisfaction of the applicable
objectives. Premises representing these objectives cite evidence from an independent review of
processes compliance with approved plans (AssureCompPlans) and an independent conformity
review (AssureConfRef).

AdqTQATQLS

Adequate fool quality assur-
ance is in place for TQL-5

Y

ArgByObjSat TQL5Sec70bjs
Argue by satisfaction of the The objectives in Section 9
objectives from Section 8 that that apply to TQL-5 tools are
are applicable for TQL-5 fools 8.1.b(7T-9.2) and 8.1.d (T-9.5)
AssureCompPlans AssureConfRef
Independent “assurance is obtained Independent assurance is obtained
that tool processes comply with that “fool conformity review [has been]
approved plans” (8.1.b, 7-9.2) conducted” (8.1.d, 7-9.5)

i l
O O

Data Item 10.1.14 Data Item 10.1.14
Tool Quality Assurance Records Tool Quality Assurance Records

Figure B-11. AdqTQATQLS5

B-13

Figure B-12 depicts the argument that the certification liaison process is adequate for a TQL-5
tool. This argument—somewhat analogous to the corresponding DO-178C argument (namely
AdqCertLiasLevD)—infers the adequacy of the liaison process from satisfaction of the applicable
objectives. Premises representing these objectives cite evidence to show that:

. There is communication and understanding between the applicant and the certification
authority (CertAutComm).

o The means of compliance is proposed and agreed (ComplianceAgree).

o Evidence of compliance is provided (ComplianceSubs).

o Known problems are examined to determine whether they undermine satisfaction of the

tool operational requirements (ImpactAssessed).

Section B.1. discusses key differences between the DO-330 and DO-178C certification contexts.
Those differences are reflected in differences between this argument and its DO-178C analogue:

. Documentation of the tool’s means of compliance to DO-330 is contained in part in the
Plan for Software Aspects of Certification of the airborne software it is used to develop.
. Analysis of the impact of reported problems is explicitly a DO-330 process.

AdqCertLiasTQL5

The certification liaison process
is adequate for TQL-5

'

ArgByObjSat AllSec90bjsApply

Argue by satisfaction of the All objectives in Section 9 apply at
objectives from Section 9 that are TQL-5, just as they do for TQL-4,
applicable to TQL-5 tools \TQL-G. TQL-2, and TQL-1

CertAutComm ComplianceAgree MOCINPSACAndTGR ComplianceSubs ImpactAssessed
“ L p The means of compliance . . .

Communication and The means of to be agreed with are Compliance Impact of known problems
understanding between compliance is || specified in the (airborne) substantiation is on the [tool’s satisfaction of
the applicant and the proposed and Plan for Software Aspects provided” (9.0, T-10.3) its] Tool Operational
certification authority is agreement is of Certification (PSAC) Requirements is identified
established” (9.0, T-10.1) obtained” (9.0, T-10.2) and the Tool Qualification and analyzed” (9.0, T-10.4)

¢ i Plan (TQP) (9.0.b) l

:
O O O O

Data ltem 10.1.1 Data Item 10.1.1 Data Item 10.1.11, 10.1.15, 10.1.16 Data Item 10.1.16
(178C 11.1),10.1.2 (178C 11.1),10.1.2 (178C 11.20), 10.1.17 (178C 11.16) (178C 11.20)

Plan for Software Plan for Software Tool Configuration Index, Tool Software

Aspects of Certification, Aspects of Certification, Accomplishment Summary, Accomplishment
Tool Qualification Plan Tool Qualification Plan Software Accomplishment Summary

Summary, Software Life Cycle
Environment Configuration Index

Figure B-12. AdqCertLiasTQL5

B-14

B.3.2 CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-5

As in the DO-178C argument, confidence that demonstrating that software is correct with respect
to its requirements is sufficient to show that the software will perform its intended function would
be undermined by the use of inadequate processes. Figure B-13 depicts the confidence argument
for TQL-5. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-5" on the grounds that
adequate configuration management has been conducted, adequate tool quality assurance is in
place, and the certification liaison process is adequate.

JustifiedConfidenceTQLS

The evidence provided is adequate for justifying
confidence that the correctness of the fool has been
demonstrated to the extent needed for TQL-5

Y

ArgByProcesses
Argue by adequacy of
established processes

AdqgConfigManTQL5 AdqTQATQLS5 AdqCertLiasTQL5
Adequate configuration management Adequate fool quality assur- The certification liaison process
has been conducted for TQL-5 ance is in place for TQL-5 is adequate for TQL-5

Figure B-13. JustifiedConfidenceTQL5

B.4. TOOL QUALIFICATION ARGUMENT FOR TQL-4

Figure B-14 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-4.” This argument is similar to the tool
qualification argument for TQL-5 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

This argument revises the TQL-5 argument’s premise about tool operational process adequacy to
reflect the higher tool qualification level. It also adds two new premises, namely that the tool
requirements are a satisfactory refinement of the tool operational requirements and the tool
executable object code satisfactorily refines the tool requirements. The addition of a layer of more
detailed requirements and evidence of their satisfaction at a higher tool qualification level reflects
similar additions in the DO-178C argument as the software level increases.

Section B.4.1 presents the argument for the adequacy of the tool operational process. Section B.4.2
presents the argument for confidence in the TQL-4 tool-qualification argument.

B-15

IntFun

Description of intended function of the
TQualTQL4 tool given in the airbome software PSAC
The tool performs its intended function at an
acceptable level of confidence for TQL-4

GlossaryApplies

Words / phrases are used consistently
with their descriptions in the Glossary

Y

ArgByCorrectness :rTRDf; i developed” (5.2.1.1.a, T-2.1
Argue by correctness of the ool Requirements are developed” (5.2.1.1.a, T-2.1)
software relative to Too/

Operational Requirements

and derived requirements DerTRDefd

“Derived tool requirements are defined, if needed” (5.2.1.1.b, T-2.2)

1]]
AdqOpsTQL4 TRSatRefTORTQL4 TEOCSatRefTRTQL4
Tool operational Tool Requirements are (for TQL-4) Tool Exectuable Object Code is (for
processes are a satisfactory refinement of the Too/ TQL-4) a satisfactory refinement of
adequate for TQL-4 Operational Requirements the Tool Requirements

Figure B-14. TQualTQL4

B-16

B.4.1. EVIDENCE OF CORRECTNESS FOR TQL-4

Figure B-14 presents the argument that the tool performs its intended function at an acceptable
level of confidence for TQL-4. This functionality is inferred from the tool’s correctness with
respect to its tool operational requirements, which is in turn inferred from:

o The adequacy of the tool operational processes
o The tool requirements adequate refining the tool operational requirements
o The tool satisfying its tool requirements

Figure B-15 presents the argument supporting the first of those premises. This argument extends
the corresponding TQL-5 argument (see figure B-8) with one additional evidence-supported
premise, namely that the “Tool Operational Requirements are complete, accurate, verifiable, and
consistent” (TORsAdequate).

GoolOps

Tool operational processes are concerned with the development,
verification, and validation of tool operational requirements, the
verification of the tool against these, and validation of the tool as
it will be used in the [airborne] software development process

AdqOpsTQL4

Tool operational processes
are adequate for TQL-4

/ToolOpReqs

“The Tool Operational Requirements ... identify how the tool is ...
used within the [airborne] software lifecycle process. Validation
and verification of the Tool Operational Requirements are
necessary to confirm that the tool satisfies the needs of the
@'rbome] software life cycle process” (5.0.a)

ArgByObjSat

Argue by satisfaction of the six tool operational process
objectives that are applicable to TQL-5 tools and the
additional objective that applies to TQL-4 tools

AdqOpsTQLS AddOpsObj TQL4Sat
Tool operational processes The additional tool operational objective
are adequate for TQL-5 applicable to TQL-4 tools are satisfied

TORsAdequate

“Tool Operational Requirements are complete,
accurate, verifiable, and consistent” (6.2.1.a, T-0.4)

i
O

Data Item 10.3.4

Tool Operational Verification
and Validation Results

Figure B-15. AdqOpsTQL4

B-17

Figure B-16 presents the argument supporting the premise that the “Tool Requirements are (for
TQL-4) a satisfactory refinement of the Tool Operational Requirements.” The support for this
conclusion comes from satisfaction of the applicable objectives and is largely analogous to the
corresponding parts of the DO-178C argument (HLRSatSRRefLevC and HLRSatSRRefLevD):

. The compliance (TRComply), consistency (TRAccCons), and traceability (TRAccCons)
premises have analogues in the DO-178C Level D argument.

o The verifiability (TRVerifiable) and algorithm accuracy (AlgorAcc) premises have
analogues in the DO-178C Level C argument.

. The requirements compatibility (TROECompatDef), error conditions (TRErrCondDef),
and user instructions (TRUIDef) premises are tool-related analogues to the compatibility
with target computer premises that apply to the (embedded) airborne software at Level B.

. TQL-4 does not have an analogue to the DO-178C Level B argument’s premise that high-
level airborne software requirements conform to the Software Requirements Standards.
(That requirement is introduced at TQL-3.)

B-18

67-9

TRSatRefTORTQL4

Tool Requirements are (for TQL-4)
a satisfactory refinement of the Tool
Operational Requirements

TRComply

“Tool Requirements
comply with Tool
Operational Require-
ments” (7-3.7) and
“derived tool require-
ments, and the reason
for their existence, are
correctly defined”
(6.1.3.1.a)

Y

ArgByObijSat TQL40bjs6131

Argue by satisfaction of The only objectives for TOL-4 are 6.1.3.1.a (T-3.1)

objectives in Section 6131Db(T7-32),6131¢(T-33),6131d(T-34)

6.1.3.1 that are applicable 6131e(1-35) 61.31f(1-36),61.31h(1-3.8)

to TQL-4 tools and 6.1.3.1.i (T-3.9)
TRAccCons -
. ExtDefAccurate TROECompatDef TRErrCondDef TRUIDef TRVerifiable TRTrace2TOR AlgorAcc
az%i’rigq;']??ueﬂn;issgf I There exists an Requirements for “Tool Requirements “Tool Require- “Tool Require- “Tool Requirements ‘Algorithms are
(T-3.2) “each Tool external, agree compatibility with define the behavior ments define ments are are traceable to accurate” (7-3.9):
Requwrément is accurate, |- definition of the tool operational of the tool in user instructions verifiable” Tool Operational ‘the accuracy and
unambiguous, and ' accurate environment are response o error and error (61311 Requirements” behavior of the
sufficiently detailed and requirements defined” (T-3.3) if conditions” messages” T-3.6) (6.1.3.1.h, T-3.8) proposed algorithms,

the requirements do (neither DO-178C needed to address (6.1.31.d T-34) (613 1e T-35) especially in the area

nat conflict with each nor DO-330 has compatibility of disconti-nuities” is
other™ (6.1.3.1.h) such a definition) A (6.1.3.1.c) ensured (6.1.3.1.i)

!
O

Data Item 10.2.6

Tool Verification
Results

!
O

Data Item 10.2.6

Tool Verffication
Results

l
O

Data Item 10.2.6

Tool Verification
Results

Data ltem 10.2.6

Tool Verification
Results

i
O

Dataltem 10.2.6

Tool Verification
Results

Figure B-16. TRSatRefTORTQLA4

O

Data Item 10.2.6

Tool Verffication
Results

O

Data Item 10.2.6

Tool Verification
Results

i
O

Data ltem 10.2.6

Tool Verification
Results

Figure B-17 presents the argument supporting the premise that the “Tool Executable Object Code
is (for TQL-4) a satisfactory refinement of the Tool Requirements.” This argument is largely
analogous to the DO-178C argument that the airborne software’s executable object code refines
its high-level requirements (EOCSatHLRefLevD). The most prominent differences are:

. Whereas DO-178C is concerned with “software partitioning integrity,” DO-330’s
analogous concern is about “protection mechanisms” (if used), particularly “in multi-
function tools” (ProtMechConf).

. DO-178C includes an objective related to the correctness and completeness of parameter
data item files (if any) that have no direct analogue in DO-330, although the text of the
standard makes it clear that any configuration files are to be treated as part of the tool
executable object code (see TEOCISTEOCETC in figure B-16).

. DO-178C includes an objective related to the executable object code’s compatibility with
the target computer that has no analogue in DO-330.

B-20

@OCProduced

“Tool Executable Object Code is produced” (5.2.4.1.a, T-2.7) “from the
Tool Source Code and the compiler and linking instructions” (5.2.4.1.a)

GEOCISTEOCEtc

TEOCSatRefTRTQLS “It should be noted that the Tool Executable Object Code sometimes

Tool Exectuable Object Code is (for
TQL-4) a satisfactory refinement of
the Tool Requirements

includes other files, such as configuration files” (5.2.4.1.a)

(TEOCLoaded

“Tool Executable Object Code is installed in the tool operational environment”
@3. 1.a, T-0.3) “and the tool verification environment(s)” (5.2.4.1.b, T-2.8)

ToolArchDevel
“Tool architecture is developed” (5.2.2.1.a, T-2.3)

¥

:rgay:b’s:tf fon of the abect { TaL4EOCHLObjs

frg%hleseg'ﬁsoan:ss ;‘;gg c;nd g_?_ffhla\ﬂfes The only objectives for TQL-4 are 6.1.3.3.d

are applicable to TQL-4 tools (T-4.10), 6.1.4.1.a (T-6.1), 6.1.4.1.b (T-6.2)
AccOutTDTQL4 AccOutiPTQL4
Outputs of the Too! Design Qutputs of the Integration Process
Process are acceptable for TQL-4 are acceptable for TQL-4

Y

ProtMechConf TEOCCompliesTR TEOCRobustTR
“Protection mechanisms, if used, “Tool Executable Object Code “Tool Executable Object Code is
are confirmed” (6.1.3.3.d, T-4.10) complies with Too/ Requirements” robust with Too/ Requirements”
so that “protection breaches are (6.1.4.1.a, T-6.1) (6.1.4.1.b, T-6.2)
prevented or isolated,” especially
in muiti-function tools (6.1.3.3.d)

'
O

Data ltem 10.2.6
Tool Verification Results

l i
O O

Data Item 10.2.5, 10.2.6, 10.2.7 Data Item 10.2.5, 10.2.6, 10.2.7
Tool Verification Cases and Procedures, Toof Verification Cases and Procedures,
Tool Verification Results, Trace Data Tool Verification Results, Trace Data

Figure B-17. TEOCSatRefTRTQLA4

B-21

B.4.2. CONFIDENCE IN TOOL-QUALIFICATION ARGUMENT FOR TQL-4

As in the DO-178C argument, confidence demonstrating that software is correct with respect to its
requirements is sufficient to show that the software will perform its intended function would be
undermined by the use of inadequate processes. Figure B-18 depicts the confidence argument for
TQL-4. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-4" on the grounds of
three premises applied at TQL-5 and two additional premises. The existing premises are:

1. Adequate tool quality assurance is in place (AdgTQATQLD5).

2. The certification liaison process is adequate (AdqCertLiasTQLS5).

3. Adequate configuration management has been conducted (AdqConfigManTQL4).

The supporting argument for the former two premises applies unchanged from TQL-5. The
supporting argument for the latter premise, given below, adds additional evidence to its TQL-5
analogue.

The new premises that apply at TQL-4 are:

4. Adequate planning has been conducted (AdgPlanningTQL4).
5. Adequate outputs of tool testing have been achieved (AdqTestingTQL4).

The supporting argument for these new premises is given below.

JustifiedConfidenceTQL4 TQL4Evidence
The evidence provided is adequate forjustifyin% 1| The required data items for TQL-4
confidence that the correctness of the fool has been provided in a form described in the Tool
demonstrated to the extent needed for TQL-4 Qualification Plan (TQF) (10.1.2)
Y
ArgByProcesses
Argue by adequacy of
established processes
AdgPlanningTQL4 AdqTestingTQL4 AdqConfigManTQL4 AdqTQATQLS AdqCertLiasTQL5
Adequate planning Adequate outputs of Adequate configuration Adequate fool quality The certification
has been conducted tool testing have been management has been assurance is in place liaison process is
to TQL-4 achieved for TQL-4 conducted for TQL-4 for TQL-5 adequate for TQL-5

Figure B-18. JustifiedConfidenceTQL4

B-22

Figure B-19 depicts the argument supporting the conclusion that “adequate planning has been
conducted to TQL-4.” The argument is analogous to the DO-178C argument supporting the
conclusion that “adequate planning has been conducted for Level D” (AdgPlanningLevD). There
are two differences, both reflecting the differences in certification context between DO-178C and
DO-330. First, whereas the DO-178C argument is concerned with the adequacy of the planning
given the system into which the airborne software will be embedded, the DO-330 argument is
concerned with the adequacy of planning given the airborne software the tool will be used to
develop. Second, DO-330 defines a different set of “additional considerations” than DO-178C.
Some of the DO-330 additional considerations, such as qualifying COTS tools, have DO-178C
analogues. Others, such as multi-function tools, do not.

AdgPlanningTQL4
Adequate planning has been conducted to TQL-4

ArgByObjSat

Argue by satisfaction of the tool planning
objectives that are applicable for TQL-4 tools

4.1

ActivitiesDef o . . AddConAddressed 11

o “During the [airborne] software planning N . i . .
“The activities of the foo/ process: the tools used in the scope of the “Additional considerations, Section 11 discusses
development and integral software life cycle process are identified!: such as those discussed in muiti-function tools,
processes are defined” (7-1.7) 1| each tool's infended use is described; the section 77" have been 1| previously-qualified
‘in compliance with its infended need for tool qualification Is defined: the addressed, as has ‘the need fo tools, qualifying COTS
use as defined in the PSAC, TQLs are determined: the tool qualification qualify any tool(s) used in the tools, setvice history,
including the items specified in stakeholders and their assigned roles and framework of the tool lifecycle and alternative methods
section 4.17(4.3.a) responsibilities are identified: and the tool process” (4.3.d, T-1.4) for tool qualification

operational environment is described.”

Data Item 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.1.6 Data Item 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.1.6
Tool Qualification Plan, Too/ Development Plan, Too! Qualification Plan, Too/ Development Plan,
Tool Verification Plan, Tool Configuration Tool Verification Plan, Too/ Configuration

Management Plan, Too/ Quality Assurance Plan Management Plan, Tool Quality Assurance Plan

Figure B-19. AdgPlanningTQL4

B-23

Figure B-20 depicts the argument supporting the conclusion that “adequate planning has been
conducted to TQL-4.” The argument is analogous to the DO-178C argument supporting the
conclusion that “sufficient verification of verification results [has] been achieved for Level D”
(AdgVerVerResLevD). The main difference is that at TQL-4, DO-330 requires evidence that the
test plan achieves coverage of the tool requirements. The DO-178C analogue is required only at
Level C and above, at which level data coupling, control coupling, and statement coverage is also
required.

AdqgTestingTQL4

Adequate outputs of tool testing
have been achieved for TQL-4

A J

ArgByObjSat

Argue by satisfaction of the two ouiputs of testing
objectives that are applicable to TQL-4 tools

TestResultsCor TRTestCov
“Test results are correct and ... discrepancies between the “Test coverage of Too/ Requirements”
actual and expected results are explained” (6.7.4.4.c, T-7.2) is achieved” (6.7.4.4.a, T-7.3)

5 &

Data Item 10.2.6 Data Item 10.2.6
Tool Verification Results Tool Verification Results

Figure B-20. AdqTestingTQL4

Figure B-21 depicts the argument supporting the conclusion that *“adequate configuration
management is in place for TQL-4.” This argument extends a similar argument for TQL-5 (see
figure B-10) and is largely analogous to the DO-178C argument supporting the conclusion that
“adequate configuration management is in place for Level D” (AdgConfigManLevD). To the
evidence required at TQL-5, this argument adds evidence showing that configuration baselines
have been defined (BaseTraceEst); that problem reporting, change control, change review, and
configuration status accounting have been established (ProbRepEtAIllEst); and that environmental
control has been established (EvnControlEst).

B-24

G¢-4

1

AdqConfigManTQL4

Adequate configuration
management is in place for TQL 4

L TQL4Sec7Objs

ArgByObjSat

Argue by satisfaction of the

The objectives in Section 9 that are added at TQL-4
are 7.1.b (T-8.2), 7.1.c—f(T-8.3), and 7.1.h (T-8.5)

objectives from Section 7 that

are applicable for TQL-5 fools
and the additional objectives
that apply fof TQL-4 tools

AssumeCCAssign

All data items have been propery assigned fo a Data
Control Category (CC1/CC2) as required by Section 7.3

@bRe portingWhy

AdqConfigManTQL5

Adeguate
configuration
management is in
place for TQL-5

BaseTraceEst
"Baselines are defined for

further fool life cycle process
activity and allow reference fo,

control of, and traceability

between, configuration items”

(T1b, 7:8.2)

"The problem reporting process records non-compliance with fool plans
and standards, records deficiencies of outputs of fool life-cycle process

ProbRepEtAlIEst

"Problem reporting,
change control,
change review, and
configuration status
accounting are
established" (T-6.3)

@59 problems” (7.1.c)

records anomalous behavior of foo/ products, and ensures resolution of

rChangeControlWhy

"Change control provides for recording, evaluation, resolution, and

@prova\ of changes throughout the fool life cycle” (7.1.d)

Y

O

Data Item 10.1.11, 10.1.13
Tool Configuration Index,

Tool Configuration
Management Records

Figure B-21. AdgqConfigManTQLA4B.5. Tool-Qualification Argument for TQL-3

I\

EnvControlEst

“Tool life cycle
environment control is
established” (7-8.5) : "the
other tools used to
produce the fool itself are
identified, controlled, and
retrievable” (7.7 h)

ﬁangeReviewWhy

control methods defined during the fool planning process” (7.1.e)

"Change review ensures problems and changes are assessed, approved
or disapproved, approved changes are implemented, and feedback is
provided to affected processes through problem reporting and change

N

@tusAchhy

problem reports, and change control” (7.1.f)

"Status accounting provides data for the configuration management of foo/
life cycle processes with respect to configuration identification, baselines,

N

Y

O

Data Item 10.1.12,10.1.13

Tool Problem Reports, Tool
Configuration Management
Records

Y

O

Data Item 10.1.10, 10.1.13

Tool Life Cycle Environment
Configuration Index, Configuration
Management Records

Figure B-22 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-3.” This argument is similar to the tool-
qualification argument for TQL-4 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

IntFun

Description of intended function of the
TQualTQL3 tool given in the airborne software PSAC
The tool performs its intended function at an
acceptable level of confidence for TQL-3

GlossaryApplies

Words / phrases are used consistently
with their descriptions in the Glossary

A4

TRDev
ArgByCorrectness “To0] Reat ; developed” (5.2 -
Argue by correctness of the ool Requirements are developed” (5.2.1.1.a, T-2.1)
software relative to Too/
Operational Requirements
and derived requirements DerTRDefd
“Derived tool requirements are defined, if needed” (5.2.1.1.b, T-2.2)

AdqOpsTQL4 TRSatRefTORTQL3 TEOCSatRefTRTQL4 AddedObjsTQL3Sat
Tool operational Tool Requirements are (for Tool Exectuable Object Additional objectives
processes are TQL-3) a satisfactory Code is (for TQL-4) a added for TQL-3 tools
adequate for TQL-4 refinement of the Too/ satisfactory refinement of are satisfied
Operational Requirements the Tool Requirements
¥
ArgByVerTQL30bjs

Argue by satisfaction of the new
objectives added for TQL-3

SCcConf2stand SCAccurate QutiPComCor

“Tool Source Code conforms to Tool Code “Source Code is “Output of fool integration
Standards” (7-5.4): “the Tool Code accurate and process is complete and
Standards were followed and ... deviations consistent” correct” (T-5.7), i.e. free of, e.g.
from the standards are justified” (6.1.3.4.d) (6.1.3.4.f, T-5.6) compiler warnings (6.1.3.5.a)

i i i
O O O

Data Item 10.2.6 Data Item 10.2.6 Data Item 10.2.6
Tool Verification Results Tool Verification Results Tool Verification Results

Figure B-22. TQualTQL3

B-26

This argument revises the TQL-4 argument’s premise about the adequacy of tool requirements to
reflect the higher tool qualification level (TRSatRefTORTQL3). It also adds new premises to
reflect three source-code related objectives that are added at TQL-3:

1. The tool source code conforms to the tool code standards, except where deviations are
justified (SCConf2Stand).

2. The (tool) source code is accurate and consistent (SCAccurate).

3. The output of the tool integration is complete and correct (OutiPComCor).

These new premises have analogues in the DO-178C argument supporting the conclusion that the
source code and related outputs are satisfactory for Level C (SCSatLevC).

Section B.3.1 presents the argument that the tool requirements are a satisfactory refinement of the

tool operational requirements. Section B.3.presents the argument for confidence in the TQL-3 tool-
qualification argument.

B-27

B5. TOOL QUALIFICATION ARGUMENT FOR TQL-3

Figure B-23 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-3.” This argument is similar to the tool
qualification argument for TQL-4 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

IntFun

Description of intended function of the
TQualTQL3 tool given in the airborne software PSAC

The tool performs its intended function at an
acceptable level of confidence for TQL-3

GlossaryApplies

Words / phrases are used consistently
with their descriptions in the Glossary

¥

TRDev
ArgByCorrectness
“Tool Requirements are developed” (5.2.1.1.a, T-2.1)

Argue by correctness of the
software relative to Too/

Operational Requirements
and derived requirements DerTRDefd
“Derived tool requirements are defined, if needed” (5.2.1.1.6, T-2.2)

AdqOpsTQL4 TRSatRefTORTQL3 TEOCSatRefTRTQL4 AddedObjsTQL3Sat
Tool operational Tool Requirements are (for Tool Exectuable Object Additional objectives
processes are TQL-3) a satisfactory Code is (for TQL-4) a added for TQL-3 fools
adequate for TQL-4 refinement of the Tool satisfactory refinement of are satisfied
Operational Requirements the Tool Requirements
\d
ArgByVerTQL3Objs

Argue by satisfaction of the new
objectives added for TQL-3

SCConf2stand SCAccurate OutlPComCor

“Tool Source Code conforms to Too/ Code “Source Code is “Output of tool integration
Standards” (7-5.4): “the Tool Code accurate and process is complete and
Standards were followed and ... deviations consistent” correct” (T-5.7), i.e. free of, e.g.
from the standards are justified” (6.7.3.4.d) (6.1.3.4.f, T-5.6) compiler warnings (6.1.3.5.a)

| l l
O O O

Data ltem 10.2.6 Data Item 10.2.6 Data ltem 10.2.6
Tool Verification Results Tool Verification Results Tool Verification Results

Figure B-23. TQualTQL3

B-28

This argument revises the TQL-4 argument’s premise about tool requirements adequacy to reflect
the higher tool qualification level (TRSatRefTORTQL3). It also adds new premises to reflect
three source-code related objectives that are added at TQL-3:

1. The Tool Source Code conforms to the Tool Code Standards except where deviations are
justified (SCConf2Stand)

2. The (Tool) Source Code is accurate and consistent (SCAccurate)

3. The output of the tool integration is complete and correct (OutlPComCaor)

These new premises have analogues in the DO-178C argument supporting the conclusion that the
Source Code and related outputs are satisfactory for Level C (SCSatLevC).

Section B 5.1 gives the argument that the Tool Requirements are a satisfactory refinement of the
Tool Operational Requirements. Section B 5.2 gives the argument for confidence in the TQL-3
tool qualification argument.

B.5.1. EVIDENCE OF CORRECTNESS FOR TQL-3

Figure B-22 presents the argument that the tool performs its intended function at an acceptable
level of confidence for TQL-3. This functionality is inferred from the tool’s correctness with
respect to its tool operational requirements, which is in turn inferred from several premises. Among
these is the proposition that “tool requirements are (for TQL-3) a satisfactory refinement of the
tool operational requirements” (TRSatRefTORTQL3). Figure B-24 presents the argument
supporting that proposition. The argument adds an additional premise to the analogous TQL-4
argument (see figure B-16), namely that the “Tool Requirements Standards were followed during
the tool requirements process and deviations from the standards are justified”
(TRSatRefTORTQLS3).

B-29

TRSatRefTORTQL3

Tool Requirements are (for TQL-3)
a satisfactory refinement of the Too/
Operational Requirements

l

ArgByObjSat TRTQL30bjs
Argue by satisfaction of objectives in Section 6.7.3.7 .
that are applicable to TQL-4 tools and the additional B The objectives added for
objective that is applicable to TQL-3 tools TQL-3/56.1.3.1.9 (T-3.7)
TRSatRefTORTQL4 TRVCnfmStd
Tool Requirements are (for TQL-4) “Tool Requirements conform to Too/ Requirements
a satisfactory refinement of the Too/ Standards” (7-3.7): “Tool Requirements Standards were
Operational Requirements followed during the fool requirements process and ...
deviations from the standards are justified” (6.7.3.7.9)

l
O

Data Item 10.2.6
Tool Verification Results

Figure B-24. TRSatRefTORTQL3

B-30

B.5.2. CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-3

As in the DO-178C argument, confidence that demonstrating that software is correct with respect
to its requirements is sufficient to show that the software will perform its intended function would
be undermined by the use of inadequate processes. Figure B-25 depicts the confidence argument
for TQL-3. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-3” on the grounds of
five premises applied at TQL-4 and one additional premise. The existing premises are:

Adequate planning has been conducted (AdgPlanningTQL3).

Adequate outputs of tool testing have been achieved (AdqTestingTQL3).
Adequate tool quality assurance is in place (AdgTQATQLZ3).

Adequate configuration management has been conducted (AdqConfigManTQLA4).
The certification liaison process is adequate (AdqCertLiasTQLS5).

arODE

The supporting argument for the latter two premises applies unchanged from TQL-4. The
supporting arguments for the former three premises, given below, add additional evidence to their
TQL-4 analogues.

(TQL3Evidence
[he required data items for TQL-3

JustifiedConfidenceTQL3

The evidence provided is adequate for justifying
confidence that the correctness of the fool has been
demonstrated to the extent needed for TQL-3

ArgByAdditionalRef
Argue by additional refinement
steps added for TQL-3

provided in a form described in the Tool
Qualification Plan (TQP) (10.1.2)

ArgByProcesses
Argue by adequacy of
established processes

AdgPlanning TQL3 AdqTestingTQL3 AdqConfigManTQL4 AdqTQATQL3 AdqCertLias TQL5 AddRefineTQL3Sat
Adequate planning Adequate oufputs of Adequate configuration Adequate fool quality The certification Additional refinement steps
has been conducted fool testing have been management has been assurance is in place liaison process is required at TQL-3 are

to TQL-3 achieved for TQL-3 conducted for TQL-4 for TQL-3 adequate for TQL-5 satisfactory refinements

Figure B-25. JustifiedConfidenceTQL3

The premise that has no TQL-4 analogue is that “additional refinement steps required at TQL-3
are satisfactory” (AddRefineTQL3Sat). The supporting argument for this premise follows.

Figure B-26 depicts the argument supporting the conclusion that “adequate planning has been
conducted to TQL-3. This argument extends the analogous argument for TQL-4 (see figure B-19)

B-31

and is analogous to DO-178C’s Level C adequate planning argument (AdgPlanningLevC). The
argument adds five new evidence-supported premises to its TQL-4 analogue:

APwnh e

The tool’s life cycle is defined (LifeCycleDef).
The tool-development environment is selected and defined (LifeCycleEnv).
Tool development standards have been defined (ToolDevStds).
Tool plans comply with DO-330 §10, which describes typical and minimum content for
tool-qualification life cycle data items (ToolPlansComply).
Development and revision of tool plans are coordinated (DevRevCoord).
AdgPlanningTQL3
Adequate planning has been conductedto TQL-3
ArgByObjSsat
Argue by satisfaction of the fool planning objectives that are
applicable for TOL-4 fools and the additional five objectives
that are applicable to TQL-3 and above fools
1

AdgPlanningTQL4

Adequate planning
has been conducted

to TQL-4

LifeCycleDef

*The tool’s life cycle,
including the
interrelationships
between [sic] the
processes, their
sequencing, feedback
mechanisms, and
transition criteria”
(4.3b, T-1.2)

)
O

Data Item 10.1.2,
10.1.3, 10.1.4, 10.1.5,
10.1.6

Tool Qualification Plan,

Tool Development Plan,

Tool Verification Plan,
Tool Configuration

Management Plan, Tool

Quality Assurance Plan

LifeCycleEnv

environment is selec-
ted and defined”
(7T-1.3), “including the
methods and tools to
be used for the acti-
vities of each fool life
cycle process” (4.3.c)

*The tool development

ToolDevStds

“Tool development
standards have been
defined” (436, T-1.5)

ToolPlansComply

*Tool plans comply
with section 10 of
this document”

O

Data ltem 10.1.2,
10.1.3, 10.1.4, 10.1.5,

O

Data Item 10.1.7,

10.1.8,10.1.9

(4.3F T-1.6)

10.1.6

Tool Qualification Plan,
Tool Development Plan,
Tool Verification Plan,
Tool Configuration
Management Plan, Too!
Quality Assurance Plan

Tool Requirements
Standards, Tool
Design Standards,
Tool Code Standards

Figure B-26. AdgPlanningTQL3

B-32

Data Item 10.2.6

DevRevCoord

*Development and
revision of fool
plans are
coordinated”
(4.3.9, T1.7)

O

Data ltem 10.2.6

Tool Verification Results Tool Verification Results

Figure B-27 depicts the argument supporting the conclusion that “adequate outputs of tool testing
have been achieved for TQL-3.” This argument extends the analogous argument for TQL-4 (see
figure B-20) and is analogous to DO-178C’s Level C sufficient verification argument
(AdgVerResVerLevC). The argument adds four new evidence-supported premises to its TQL-4
analogue:

The test cases were correctly developed into test procedures (TestProcCorr).

The test cases cover the low-level tool requirements (TRTestCovLLTR).

The test cases achieve statement coverage of the tool source code (StatementCov).
The test cases achieve coverage of data and control coupling (TestCovCoupling).

Apwnh e

AdqTestingTQL3

Adequate outputs of tool testing
have been achieved for TQL-3

ArgByObjSat

Argue by satisfaction of the fwo ouiputs of testing objectives
that are applicable to TQL-4 fools and the four additional
objectives that are applicable to TQL-3 fools

AdgTestingTQL4 TestProcCorr TRTestCovLLTR StatementCov TestCovCoupling
Adequate outputs of ‘Test procedures are corect” (7-7.1) “Test coverage of low- “Structural coverage fo Test coverage of foo/
fool tesfing have been ‘the test cases, including expected level fool require- the level of statement structure “(data and control
achieved for TQL-4 results, were correctly developed into ments” is achieved” coverage is achieved” coupling) is achieved”

test procedures” (6.7.4.4.b) (6.1.4.4.a, T-7.4) (6.1.4.3.1, T-7.8) (6.1.4.3.1, T-7.9)

l l i
O O O

Data Iltem 10.2.6 Data Item 10.2.6 Data Iltem 10.2.6 Data Item 10.2.6
Tool Verification Results Tool Verification Results Tool Verification Results Tool Verification Results

Figure B-27. AdqTestingTQL3

B-33

Figure B-28 depicts the argument supporting the conclusion that “adequate tool quality assurance
is in place for TQL-3.” This argument extends the analogous argument for TQL-5 (see figure B-
11) and is analogous to DO-178C’s Level C adequate software quality assurance argument
(AdgSQALevC). The argument adds three new evidence-supported premises to its TQL-4
analogue:

1. Tool plans and standards are developed and reviewed for consistency (AssurePlansRev).

2. Tool development processes comply with approved tool standards (AssureCompsStans).

3. Transition criteria for the tool life-cycle process are satisfied (AssureTransCrit).
AdqTQATQL3

Adequate fool quality assur-
ance is in place for TQL-3

¥

ArgByObjSat ﬁ)bjBAIITQLS
Argue by satisfaction of the All five Section 8 objectives are applicable to TQL-3 tools and
objectives from Section 8 that to TQL-2and TQL-1 tools. These objectives include 2 that are
are applicable for TQL-3 tools also applicable to TQL-5 tools and 3 that first appear at TQL-3.
AdqTRATQLS AssurePlansRev AssureCompStans AssureTransCrit
Adequate fool quality Independent assurance is Independent assurance is obtained Independent assurance is
assurance is in place obtained “that tool plans and that “fool development processes and obtained that ‘transition
for TQL-5 standards are developed integral processes, including those of criteria for the fool life
and reviewed for suppliers, comply with sg:proved tool cycle processes are
consistency” (8.1.a, 7-9.7) ... standards” &.W.b‘ T-9.3) satisfied” (8.1.c, T-9.4)

i l i
O O O

Data Item 10.1.14 Data Item 10.1.14 Data Item 10.1.14
Tool Quality Assurance Records Tool Quality Assurance Records Tool Quality Assurance Records

Figure B-28. AdqQTQATQL3

B-34

Figure B-29 depicts the argument supporting the conclusion that “additional refinement steps
required at TQL-3 are satisfactory refinements.” This argument has no analogue at lower TQLSs.
The three additional refinement steps are:

1. The low-level tool requirements refine the tool requirements (LLRSatTQL3).

2. The tool source code and related outputs are satisfactory (TSCSatTQL3).

3. The tool executable object code refines the low-level tool requirements
(TEOCSatLLTRTQL3).

The arguments supporting each of these premises are presented below.

AddRefineTQL3Sat
Additional refinement steps required at s
TQL-3 are satisfactory refinements LLTRDev
“Low-level fool requirements are
kde\relopecl” (8.221b, T-2.4)
¥ (

ArgByEachRefineStep DerLLTRDefd

Argue by satisfaction of the —t>| “Derived low-level foof requirements are

refinement steps added at TQL-3 Cleﬁned. if needed” (5.2.2.1.c, T-2.5)

/SourceCOdeDev
“Tool source code is developed” from the

tool low-level requirements (5.2.3.1.a, T-2.6)

LLTRSatTQL3 TSCSatTQL3 TEOCSatLLTRTQL3

Low-level tool requirements are (for Tool Source Code and related Tool Executable Object Code is (for
TQL-4) a satisfactory refinement of outputs are satisfactory for TQL-3 TQL-3) a satisfactory refinement of
the Tool Requirements the low-level tool requirements

Figure B-29. AddRefineTQL3Sat

Figure B-30 depicts the argument supporting the conclusion that the “low-level tool requirements
are (for TQL-3) a satisfactory refinement of the Tool Requirements.” This argument has no
analogues at lower TQLs but is analogous to a combination of two DO-178C arguments: the
argument showing that low-level requirements are satisfactory (LLRAdgLevelC) and the
argument that the software architecture is satisfactory (SwArchAdgLevelC). The argument
depends on eight evidence-supported premises:

The low-level tool requirements comply with the tool requirements (TLLRComply).

The low-level tool requirements are accurate and consistent (TLLRAccurate).

The low-level tool requirements conform to the tool design standards (LLTRConfStand).
The low-level tool requirements are traceable to the tool requirements (LLTRTraceTR).
The algorithms specified are accurate (AlgorAcc).

The tool architecture is compatible with the tool requirements (TArchCapatTR).

The tool architecture is (internally) consistent (TArchCnsstnt).

The tool architecture conforms to the tool design standards (TArchConforms).

NN E

B-35

9¢-4

LLTRSatTQL3

Low-level fool requirements are (for TOL-3) a
satisfactory refinement of the Too/ Requirements

Y

DefLowlLevelReq

“Low-level requirements terminology corresponds roughly
with terms like software design, detailed design, etc.”
“While software architecture description does have some
correspondence to the same terminology in standard
software engineering practices, other terms such as high-
level design are also used” DO-248C, 5.5.1.

ArgByTLLRANndTArch

Argue by showing low-level
tool requirements and {oo/
architecture are satisfactory

TLLRAdqTQL3

The low-level {ool requirements
are satisfactory for TQL-3

ToolArchDevel

“Tool architecture is developed” (5.2.2 1.a, T-2.3)

TArchAdqTQL3

The ool architecture is
satisfactory for TOL-3

TLLRComply

“Low-level fool requirements
comply with Tool Require-
ments” (7-4. 7). “the low-level
tool requirements satisfy the
Tool Requirements and ...
derived jow-level tool
requirements and the design
basis for their existence are
correctly defined” (6.1.3.2.a)

TLLRAccurate LLTRConfStand LLTRTraceTR AlgorAcc

“Low-level tool
requirements are accurate
and consistent” (T-4.2):
“each low-level ool
requirement is accurate
and unambiguous, and ...
the low-level {ool require-
ments do not conflict with
each other” (6.1.3.2.b)

“Low-level {ool requirements
conform to Tool Design
Standards” (7-4.4). “Tool
Design Standards were
followed during the tool
design process and ...
deviations from the
standards are

justified” (6.1.3.2.d)

*Low-level fool require-
ments are traceable to
Tool Requirements”
(T-4.5) *Tool Require-
ments and derived too/
requirements were
developed info the low-
level fool requirements”
(6.1.3.2e)

“Algorithms are
accurate” (7-4.6):
‘the accuracy and
behavior of the
proposed algo-
rithms, especially in
the area of discon-
tinuities, is ensured”
(6.1.3.2.f)

TArchCapatTR

“Tool architecture is
compatible with Tool
Requirements”
(T-4.7): “the tool
architecture does
not conflict with the
Tool Requirements”
(6.1.3.3.3)

TArchCnsstnt

“Tool architecture
Is consistent”
(7-4.8): “a correct
relationship
exists between
the components
of the fool
architecture”
(6.1.3.3.h)

TArchConforms

“Tool architecture
conforms to standards”
(7-4.9): “the Tool
Design Standards were
followed during the fool
design process and ...
derivations from the
standards are justified”
(6.1.3.3.c)

O

Data Item 10.2.6

Tool Verffication
Results

O

Data ltem 10.2.6

Tool Verification
Results

O

Data Item 10.2.6

Tool Verification
Results

O

Data ltem 10.2.6

Tool Verification
Results

O

Data ltem 10.2.6

Tool Verification
Results

Figure B-30. LLTRSatTQL3

O

Data Item 10.2.6

Tool Verification
Results

O

Data Item 10.2.6

Tool Verification
Results

O

Data ltem 10.2.6

Tool Verification
Results

Figure B-31 depicts the argument supporting the conclusion that the “Tool Source Code and
related outputs are satisfactory for TQL-3.” This argument has no analogue at lower TQLs but is
analogous to part of DO-178C’s argument that the airborne software source code and related
outputs are satisfactory (SCSatLevC/SCmatchesDesign). The argument depends on three
evidence-supported premises:

1. The tool source code complies with low-level tool requirements (TSCCompLLTR).

2. The tool source code complies with the tool architecture (TSCCompTA).

3. The tool source code is traceable to the low-level tool requirements (TSCTraceLLTR).
TSCSatTQL3

Tool Source Code and related outputs
are satisfactory for TQL-3

ArgBySCObjs

Argue by satisfaction of objectives
related to Tool Source Code for TQL-3

TsCCompLLTR TsCCompTA TSCTraceLLTR

“Tool Source Code complies with low-level tool “Tool Source Code complies with “Tool Source Code is traceable to
requirements” (7-5.1): “the Tool Source Code is [the] tool architecture” (T-5.2): ‘the low-level tool requirements” (T-5.5):
accurate and complete with respect to the low-level Tool Source Code imatches the “the low-level tool requirements were
tool requirements and ... does not implement any data defined in the fool developed into the Tool Source
undocumented functions” (6.7.3.4.a) architecture” (6.7.3.4.b) Code” (6.1.3.4.e)

' ' '
O O O

Data Item 10.2.6 Data Item 10.2.6 Data Item 10.2.6
Tool Verification Results Tool Verification Results Tool Verification Results

Figure B-31. TSCSatTQL3

B-37

Figure B-32 depicts the argument supporting the conclusion that the “Tool Executable Object Code
is (for TQL-3) a satisfactory refinement of the low-level tool requirements.” Although this
argument has no analogue at lower TQLS, it is analogous to DO-178C’s argument that the airborne
software’s Executable Object Code satisfactorily refines its low-level requirements
(EOCSatLLLevC). The argument depends on two evidence-supported premises:

1. The tool executable object code complies with the low-level tool requirements
(TEOCCompliesLLTR).
2. The tool executable object code is robust with the low-level tool requirements
(TEOCRObUSLLLTR).
/TI_EOCF'roduced
“Tool Executable Object Code is produced” (5.2.4.1.a, T-2.7) “from the
@of Source Code and the compiler and linking instructions” (5.2.4.1.a)
TEOCSatLLTRTQL3 GEOCISTEOCEtc
Tool Executable Object Code is (for TQL-3) a satisfactory “It should be noted that the Tool Executable Object Code sometimes
refinement of the low-level fool requirements chudes other files, such as configuration files” (5.2.4.1.a)
EOCLoaded
P “Tool E. table Object Code is installed in the tool tional envi it
ArgByObjSat (53 1.6, T.0.3) ‘and the tool venficaton environment(s) (52415, T28)
Argue by satisfaction of the fesfing of \

outputs of integration process objectives
that relate Tool/ Executable Object Code
to low-level fool requirements

TEOCCompliesLLTR TEOCRobustLLTR
“Tool Executable Object Code complies with “Tool Executable Object Code is robust with
low-level ool requirements” (6.71.4.7.c, T-6.3) lowevel tool requirements” (6 7.4 7.d, T-6 4)

i J
O O

Data Item 10.2.5,10.2.6,10.2.7 Data Item 10.2.5,10.2.6,10.2.7
Tool Venfication Cases and Procedures, Tool Verification Cases and Procedures,
Tool Verification Results, Trace Data Tool Verification Results, Trace Data

Figure B-32. TEOCSatLLTRTQL3

B-38

B.6. TOOL QUALIFICATION ARGUMENT FOR TQL-2

Figure B-33 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-2.” This argument is similar to the tool-
qualification argument for TQL-3 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

o

IntFun
TQualTQL2 @cription of intended function of the tool given in the airborne software PSAC

The tool performs its intended function at an
acceptable level of confidence for TQL-2

GlossaryApplies

5
_/

Words / phrases are used consistently with their descriptions in the Glossary

Y
ArgBySatTQL3plusNew

IndepRationale
‘Independence may detect more errors due to objectivity of

N

Argue by acceptability for TQL-3 augmented by evaluation.” DO-248C, 3.74 (FAQ #74), p. 39; Also see “Independence
:gg:g:gn:: ggﬁ%'l‘fgfscigttahﬁeﬁﬂsmirg;fg'-'memw in DO-178C/DO-278A" DO-248C, 4.19 (DP #19), pp. 103-109
independence requirements, and additional
objectives in the confidence argument
TRDev
“Tool Requirements are developed” (5.2.1.1.a, T-2.1)
DerTRDefd
“Derived tool requirements are defined, if needed” (5.2.1.1.h, T-2.2)
TQualTQL3 AddedObjsTQL2Sat
The tool performs its intended function at an Additicnal objectives added
acceptable level of confidence for TQL-3 for TQL-2 tools are satisfied
ExtComponents ExtClfaceDefd LLTRVerifiable SourceCodeVerifiable
External components are P w . M .
components that “are not under “External component Low-level fool require- Tool Source Code is
{the] control of the developer of <1—| interface is correctly and ments are verifiable” verifiable”
the tool”, e.g. “operating system completely defined” (6.1.3.2.c, T-4.3) (6.1.3.4.c, T-5.3)
functions or an external software (6.1.3.3.8, T4.11)

® O o

Data Item 10.2.6 Data Item 10.2.6 Data Item 10.2.6
Tool Verification Resulfs Tool Verification Results Tool Verification Results

Figure B-33. TQualTQL2

This argument extends the TQL-3 argument with three new evidence-supported premises:

1. The low-level tool requirements are verifiable (LLTRVerifiable).
2. The tool source code is verifiable (SourceCodeVerifiable).
3. The external component interface is correctly and completely defined (ExtClfaceDefd).

These former two of these premises have analogues in the DO-178C argument supporting the
conclusion that additional objectives added for Level B are satisfied (AddedObjs-LevBSat). The

B-39

remaining premises in that DO-178C argument have no analogue in the DO-330 argument. That
is, there is no requirement to ensure that tools are compatible with their target computers. DO-330
also does not require tool software architectures to be verifiable. The latter premise has no analogue
in the DO-178C argument.

Section B.6.1 presents an argument for confidence in the TQL-2 tool-qualification argument.

B.6.1. CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-2

As in the DO-178C argument, confidence [demonstrating that software is correct with respect to
its requirements is sufficient to show that the software will perform its intended function] would
be undermined by the use of inadequate processes. Figure B-34 depicts the confidence argument
for TQL-2. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-2" on the grounds of
six premises that applied at TQL-3 and one additional premise.

JustifiedConfidenceTQL2 (TQL2Evidence
The evidence provided is adequate for justifying --| The required data items for TQL-2
confidence that the correctness of the fool has been provided in a form described in the Tool
demonstrated to the extent needed for TQL-2 Q}uaﬂfr‘camn Plan (TQP) (10.1.2)
ArgByProcesses
Argue by adequacy of

esfablished processes

ObjsSat4NoTQL2Diffs AdqTestingTQL2 IndeptSatTQL2
Obijectives are satisfied for Adequate outputs of Additional independence
processes for which TQL-2 does tool testing have been requirements for TQL-2
not add objectives or independence achieved for TQL-2 are satisfied

AdgPlanningTQL3 AdqConfigManTQL4 AdqTQATQL3 AdqCertLiasTQL5 AddRefineTQL3Sat
Adequate planning Adequate configuration Adequate foo/ quality The certification Additional refinement steps
has been conducted management has been assurance is in place liaison process is required at TQL-3 are

for TQL-3 conducted for TQL-4 for TQL-3 adequate for TQL-5 satisfactory refinements

Figure B-34. JustifiedConfidenceTQL2

B-40

The existing premises are:

Adequate outputs of tool testing have been achieved (AdqTestingTQL?2).

Adequate planning has been conducted (AdgPlanningTQL3).

Adequate configuration management has been conducted (AdqConfigManTQL4).
Adequate tool quality assurance is in place (AdgTQATQL3).

The certification liaison process is adequate (AdqCertLiasTQLS5).

Additional refinement steps required at TQL-3 are satisfactory (AddRefineTQL3Sat).

Uk~ wd P

The supporting argument for the latter five premises are unchanged from TQL-3. The supporting
argument for the former premise, which follows, adds additional evidence to its TQL-3 analogue.

Figure B-35 presents the argument supporting the conclusion that “adequate outputs of tool testing
have been achieved for TQL-2.” This argument extends the analogous argument for TQL-3 (see
figure B-27) and is analogous to DO-178C’s Level B sufficient verification of verification results
argument (AdgVerVerResLevB). The argument adds one new evidence-supported premise to its
TQL-3 analogue, namely that testing achieves decision coverage (DecisionCov).

AdqgTestingTQL2

Adequate outputs of tool testing
have been achieved for TQL-2

Y

ArgByObjSat

Argue by satisfaction of the six outputs of testing
objectives that are applicable to TQL-3 tools and the
additional objective that is applicable to TQL-2 tools

AdqTestingTQL3 DecisionCov

Adequate outputs of tool testing Independent assurance is obtained that

have been achieved for TQL-3 “Structural coverage to the level of decision
coverage is achieved” (6.1.4.3.1, T-7.7)

'
O

Data Item 10.2.6
Tool Verification Results

Figure B-35. AdqTestingTQL2

B-41

Figure B-36 depicts the argument that “additional independence requirements for TQL-2 are
satisfied.” This argument has no analogue at TQL-3, but is broadly similar to DO-178C’s Level B
additional independence argument (IndepSatLevB). The argument and its supporting arguments
(shown in figures B-37-B-42) model the requirement that 16 objectives that applied at TQL-3
must be satisfied with independence at TQL-2.

IndeptSatTQL2

Additional independence requirements
for TQL-2 are satisfied

l

ArgOverTables

Argue over tables in which
independence requirements appear

TOIndeptSatTQL2 T3IndeptSatTQL2 T4IndeptSatTQL2 TsIndeptSatTQL2 TéindeptSatTQL2 T7IndeptSatTQL2
Additional T-0 Additional T-3 Additional T-4 Additional T-5 Additional T-6 Additional T-7
independence independence independence independence independence independence
requirements for requirements for requirements for requirements for requirements for requirements for
TQL-2 are satisfied TQL-2 are satisfied TQL-2 are satisfied TQL-2 are satisfied TQL-2 are satisfied TQL-2 are satisfied

Figure B-36. IndeptSatTQL?2

B-42

TOIndeptSatTQL2

Addltional T-0 independence
requirements for TQL-2 are satisfied

ArgByTQL2IndObjs

Argue over over objectives that must be shown
with independence at TQL-2 and higher

TORsAdequatelnd

“Tool Operational Requirements
are complete, accurate, verifiable,
and consistent” is satisfied with
independence (6.2.1.a, T-0.4)

TOpCompliesind

The “functionality and the outputs of the tool installed
in the tool operational environment” (6.2.1.b) “compl{fy]
with the Tool Operational Requirements” is satisfied
with independence (6.2.1.b, T-0.5)

TORsCorrectind

“Tool Operational Requirements are sufficient and
correct” (6.2.1.aa, T-0.6) “to eliminate, reduce, or
automate the process(es) identified in the PSAC” s
satisfied with independence (6.2.1.aa)

:
O

Data Item 10.3.4

Tool Operational Verification
and Validation Results

:
O

Data Items 10.3.3, 10.3.4

Tool Operational Verification and
Validgation Cases and Procedures,
Tool Operational Verification and
Validation Results

Figure B-37. TOIndeptSatTQL?2

T3IndeptSatTQL2

Additional T-3 independence
requirements for TQL-2 are satisfied

.
O

Data Items 10.3.4

Tool Operational
Verification and
Validation Results

ArgByTQL2IndObjs

Argue over over objectives that must be shown
with independence at TQL-2 and higher

TRAccConsind
“Tool Requirements

TRComplylnd
“Tool Requirements

TRErrCondDeflnd
“Tool Requirements

TROECompatDefind
‘Requirements for

comply with Tool
Operational Require-
ments” is shown with
independence
(6.1.3.1.a, T-3.1)

are accurate and
consistent” is
shown with
indepdendence
(6.1.3.1.b, T-3.2)

compatibility with the tool
operational environment
are defined” is shown
with independence
(6.1.31¢c, T-3.3)

define the behavior of the
tool in response to error
conditions” 1s show n with
independence

(6.1.3.1d, -3.4)

TRUIDefInd

“Tool Requirements
define user instructions
and error messages” is
shown with
independence
(6.1.31e, T-3.5)

AlgorAccind

‘Algorithms are
accurate” is
shown with
independence
(6.1.3.14, T-3.9)

i
O

Data Item 10.2.6

Tool Verification
Results

l
O

Data Item 10.2.6

Tool Verffication
Results

i
O

Data Item 10.2.6

Tool Verification
Results

Figure B-38. T3IndeptSatTQL?2

i
O

Data Item 10.2.6

Tool Verification
Results

B-43

i
O

Data Item 10.2.6

Tool Verffication
Results

O

Data ltem 10.2.6

Tool Verification
Results

T4indeptSatTQL2

Additional T-4 independence
requirements for TQL-2 are satisfied

ArgByTQL2IndObjs

Argue over over objectives that must be shown

with independence at TQL-2 and higher

TLLRComplyind

“Low-level tool requirements comply
with Tool Requirements” is show with
independence (6.1.3.2.a, T-4.1)

TLLRComplyind

“Low-level tool requirements are
accurate and consistent” is shown

with independence (6.7.3.2.b, T-4.2)

AlgorAccDesind

“Algorithms are accurate” is
shown with independence
(6.1.3.2.f T-4.6)

l
O

Data Item 10.2.6

Tool Verification
Results

Figure B-39. T4IndeptSatTQL?2

l
O

Data Item 10.2.6

Tool Verification
Results

T5IndeptSatTQL2

Additional T-5 independence
requirements for TQL-2 are satisfied

l
O

Data Item 10.2.6

Tool Verification
Results

ArgByTQL2IndObjs

Argue over over objectives that must be shown
with independence at TQL-2 and higher

TSCCompLLTRInd

“Tool Source Code complies with low-level tool require-
ments” is shown with independence (6.1.3.4.a, T-5.1)

Figure B-40. T5IndeptSatTQL?2

O

Data Item 10.2.6
Tool Verification Results

B-44

TéindeptSatTQL2

Additional T-6 independence
requirements for TQL-2 are satisfied

ArgByTQL2IndObjs

Argue over over objectives that must be shown
with independence at TQL-2 and higher

TEOCCompliesLLTRInd

“Tool Executable Object Code complies with low-level tool
requirements” is shown with independence (6.7.4.7.c, T-6.3)

l
O

Data Item 10.2.5, 10.2.6, 10.2.7

Tool Verification Cases and Procedures,
Tool Verification Results, Trace Data

Figure B-41. T6IndeptSatTQL?2

T7IndeptSatTQL2

Additional T-7 independence
requirements for TQL-2 are satisfied

ArgByTQL2IndObjs

Argue over over objectives that must be shown
with independence at TQL-2 and higher

StatementCovind TestCovCouplingind
“Structural coverage to the level of statement coverage is Test coverage of tool structure “(data and control coupling) is
achieved” is shown with independence (6.1.4.3.1, T-7.8) achieved” is shown with independence (6.1.4.3.1, T-7.9)

O O

Data Item 10.2.6 Data ltem 10.2.6
Tool Verification Results Tool Verification Results

Figure B-42. T7IndeptSatTQL?2

B-45

B.7. TOOL QUALIFICATION ARGUMENT FOR TOL-1

Figure B-43 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-1.” This argument is similar to the tool-
qualification argument for TQL-2 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

/_

IntFun

\

Description of intended function of the
TQualTQL1 QJOI given in the airborne software PSA

The tool performs its intended function at an
acceptable level of confidence for TQL-1 -

GlossaryApplies

v,
\

Words / phrases are used consistently
with their descriptions in the Glossary

J

v TQL1-TQL2DiffsConf
All of the differences between objectives for
ArgBySatTQL1plusNew TQL-1 and TQL-2 address matters of confidence

Argue by acceptability for TQL-2 augmented /
by two additional objectives and eleven new

independence requirements in the IndepRationale \
confidence argument

“Independence may detect more errors due to
objectivity of evaluation.” DO-248C, 3.74 (FAQ
#74), p. 39; Also see “Independence in DO-178C/
DO-278A" DO-248C, 4.19 (DP #19), pp. 1031 09/

] A

TQualTaQL2

The tool performs its intended function at an
acceptable level of confidence for TQL-2

Figure B-43. TQualTQL1

This argument repeats the TQL-2 argument without adding any new premises; the differences are
matters of confidence.

Section B.7.1 presents the argument for confidence in the TQL-2 tool-qualification argument.

B.7.1. CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-2

As in the DO-178C argument, confidence [that demonstrating that software is correct with respect
to its requirements is sufficient to show that the software will perform its intended function] would
be undermined by the use of inadequate processes. Figure B-44 depicts the confidence argument
for TQL-1. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-2" on the grounds of
seven premises that applied at TQL-3:

B-46

NogakowhE

Adequate outputs of tool testing have been achieved (AdqTestingTQL1).
Additional independence requirements for TQL-1 are satisfied (IndeptSatTQL1).
Adequate planning has been conducted (AdgPlanningTQL3).
Adequate configuration management has been conducted (AdqConfigManTQLA4).
Adequate tool-quality assurance is in place (AdgTQATQLZ3).
The certification liaison process is adequate (AdqCertLiasTQLS5).

Additional refinement steps required at TQL-3 are satisfactory (AddRefineTQL3Sat).

The supporting argument for the latter five premises are unchanged from TQL-2. The supporting
argument for the former two premises, given below, add additional evidence to their TQL-2

analogues.

JustifiedConfidenceTQL1

The evidence provided is adequate for justifying
confidence that the correctness of the ool has been
demonstrated to the extent needed for TQL-1

TQL1Evidence

The required data items for TQL-1
provided in a form described in the Tool
Qualification Plan (TQP) (10.1.2)

ArgByProcesses
Argue by adequacy of
established processes

ObjsSat4No TQL1Diffs AdqgTestingTQL1 IndeptSatTQL1
Objectives are satisfied for Adequate oufputs of Additional independence

processes for which TQL- dogs
not add objectives or independence

tool testing have been
achieved for TQL-1

requirements for TQL-1
are satisfied

AdgPlanningTQL3 AdqConfigManTQL4 AdqTQATGQL3 AdqCertLiasTQL5 AddRefineTQL3Sat
Adequate planning Adequate configuration Adequate fool quality The certification Additional refinement steps
has been conducted management has been assurance is in place liaison process is required at TQL-3 are

for TQL-3 conducted for TQL-4 for TQL-3 adequate for TQL-5 satisfactory refinements

Figure B-44. JustifiedConfidenceTQL1

B-47

Figure B-45 gives the argument supporting the conclusion that “adequate outputs of tool testing
have been achieved for TQL-1.” This argument extends the analogous argument for TQL-2 (see
figure B-35) and is analogous to DO-178C’s Level A sufficient verification of verification results
argument (NewVVAODbjsSat). The argument adds one new evidence-supported premise to its
TQL-2 analogue, namely that testing achieves modified condition/decision coverage
(MCDCCov). The main difference between this argument and its DO-178C analogue is that the
DO-178C argument’s premise that “verification of additional code, that cannot be trace to Source
Code is achieved” has been replaced with the premise that “analysis of requirements-based testing
of external components” confirms that “the tool’s code structure was verified to the degree
required.”

AdgTestingTQL1

Adequate outputs of tool testing
have been achieved for TQL-1

Y

ArgByObjsat

Argue by satisfaction of the seven outputs of testing
objectives that are applicable to TQL-2 tools and the two
additional objectives that are applicable to TQL-1 tools

¥
AdgTestingTQL2 ExternalCompCov MCDCCov
Adequate outputs of Independent assurance is obtained that Independent assurance is
tool testing have been “analysis of requirements-based testing of obtained that “structural coverage
achieved for TQL-2 external components” (T-7.5) confirms that to the level of MC/DC is achieved”
“the tool’s code structure was verified to (6.1.4.3.1, T-7.6)
the degree required” (6.1.4.3.1)

Data Item 10.2.6 Data Item 10.2.6
Tool Verification Results Tool Verification Results

Figure B-45. AdqTestingTQL1

Figure B-46 depicts the argument that “additional independence requirements for TQL-1 are
satisfied.” This argument extends an analogous TQL-2 argument (IndepSatTQL1) and is broadly
similar to DO-178C’s Level A additional independence argument (IndepSatLevA). The argument
and its supporting arguments (shown in figures B-47-B-50) model the requirement that 11
objectives that applied at TQL-2 must be satisfied with independence at TQL-1.

B-48

IndeptSatTQL1

Additional independence requirements
for TQL-7 are satisfied

1
IndeptSatTQL2

Addttional independence
requirements for TQL-2
are satisfied

1

ArgOverTables

Argue over fables in which

independence requirements appear

1

1

1

T4IndeptSatTQL1

satisfied

Additional T-4 independence
requirements for TQL-1 are

T5IndeptSatTQL1

Additional T-5 independence
requirements for TQL-1 are
satisfied

TéIndeptSatTQL1

Additional T-6 independence
requirements for TQL-1 are
satisfied

T7IndeptSatTQL1

Additional T-7 independence
requiremenis for TQL-1 are
satisfied

Figure B-46. IndeptSatTQL1

T4indeptSatTQL1

Additional T-4 independence
requirements for TQL-1 are satisfied

Y

ArgByTQL1IndObjs

Argue over over objectives that must be
shown with independence at TQL-1

TArchCapatTRInd

“Tool architecture is compatible
with Tool Requirements” is
shown with independence
(6.1.33.a, T4.7)

TArchCapatTRInd

“Tool architecture is
consistent” is shown
with independence
(6.1.3.3.b, T-4.8)

ProtMechConfind

“Protection mechanisms, if
used, are confirmed” is
shown with independence
(6.1.3.3.d, T-4.10)

ExtClfaceDefdIind

“External component interface is
correctly and completely defined”
is shown with independence
(6.1.3.3.e, T-4.11)

i
O

Data Item 10.2.6
Tool Verification Results

l
O

Data Item 10.2.6
Tool Verification Results

i
O

Data Item 10.2.6
Tool Verification Results

Figure B-47. T4IndeptSatTQL1

B-49

l
O

Data Item 10.2.6
Teol Verification Results

T5IndeptSatTQL1

Additional T-5 independence
requirements for TQL-1 are satisfied

Y
ArgByTQL1IndObjs

Argue over over objectives that must be
shown with independence at TQL-1

TsCcompTAInd TSCAccuratelnd
“Tool Source Code complies with fool architecture" has

“[Tool] Source Code is accurate and consistent”
been shown with independence (6.71.3.4.b, T-5.2)

has been shown with independence (6.7.3.4.f,
T-5.6)

' :
O O

Data Item 10.2.6 Data Item 10.2.6
Tool Verification

Tool Verification
Results Results

Figure B-48. T5IndeptSatTQL1

TéindeptSatTQL1

Additional T-6 independence
requirements for TQL-1 are satisfied

¥
ArgByTQL1IndObjs

Argue over over objectives that must be
shown with independence at TQL-1

TEOCRobustLLTRsInd

“Tool Executable Object Code is robust with tool low-level
requirements” has been shown with independence (6.1.4.1.d, T-6.4)

O

Data Items 10.2.5, 10.2.6, 10.2.7

Tool Verification Cases and Procedures,
Tool Verification Results, Trace Data

Figure B-49. T6IndeptSatTQL1

B-50

T7IndeptSatTQL1

Additional T-7 independence
requirements for TQL-1 are satisfied

v
ArgByTQL1IndObjs

Argue over over objectives that must be
shown with independence at TQL-1

TestProcCorrind

“Test procedures are
correct” is shown with
independence
(6.1.4.4.b,T-7.1)

TestResultsCorind TRTestCovind

“Test results are correct and ... “Test coverage of Toof
discrepancies between the actual and Requirements” is achieved” is
expected results are explained” is shown shown with independence
with independence (6.1.4.4.c, T-7.2) (6.1.4.4.3, T-7.3)

TRTestCovLLTRInd

“Test coverage of low-level
toof requirements” is shown
with independence
(6.1.4.4a, T-7.4)

l
O

Data Item 10.2.6
Tool Verification Results

l l
O O

Data Item 10.2.6 Data Item 10.2.6
Tool Verification Results Tool Verification Results

Figure B-50. T7IndeptSatTQL1

B-51

i
O

Data ltem 10.2.6
Tool Verification Results

APPENDIX C—PREVIOUS PAPERS

Three conference papers related to the Explicate 78 work have been published previously. These
papers are included in this appendix in reverse chronological order.

Holloway, C. M. (2015). “Explicate “78: Uncovering the Implicit Assurance Case in DO-
178C.” Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems
Symposium. M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225.
Available at <http://hdl.handle.net/2060/20150009473>. (Last accessed 27 October 2015).

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for
DO-178C.” Proceedings of the 31st International System Safety Conference. August 12-
16. Boston, Massachusetts. Available at <http://hdl.handle.net/2060/20140002745>. (Last
accessed 27 October 2015).

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance
Case.” 7th IET International Conference on System Safety, Incorporating the Cyber
Security Conference. October 15-18. Edinburgh, Scotland. Available at
<http://hdl.handle.net/2060/20120016708>. (Last accessed 27 October 2015).

C-1

http://hdl.handle.net/2060/20120016708
http://hdl.handle.net/2060/20140002745
http://hdl.handle.net/2060/20150009473

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

Explicate ‘78: Uncovering the Implicit
Assurance Case in DO-178C

C. Michael Holloway

NASA Langley Research Center
Hampton, VA, USA

Abstract For about two decades, compliance with Sofiware Considerations in
Airborne Systems and Equipment Certification (DO—178B/ED—12B} has been the
primary means for receiving regulatory approval for using software on commer-
cial airplanes. A new edition of the standard, DO—178C/ED—12C, was published
in December 2011, and recognized by regulatory bodies in 2013. The purpose
remains unchanged: fo provide guidance for the production of software for air-
borne systems and equipment that performs its intended function with a level of
confidence in safety that complies with airworthiness requirements.” The fext of
the guidance does not directly explain how its collection of objectives contributes
to achieving this purpose; thus, the assurance case for the document is implicit.
This paper presents an explicit assurance case developed as part of research
jointly sponsored by the Federal Aviation Administration and the National Aero-
nautics and Space Administration.

1 Imtroduction

Software Considerations in Airbome Systems and Equipment Certification (DO
178B) (RTCA 1992)! was published in 1992. Compliance with this document has
been the primary means for receiving regulatory approval for using software on
commercial airplanes ever since. Despite criticisms of the DO—-178B from various
quarters, the empirical evidence suggests strongly that it has been successful, or at
worst, has not prevented successful deployment of software systems on aircraft.
Not only has no fatal commercial aircraft accident been attributed to a sofiware
failure, many of the technological improvements that have been credited with sig-
nificantly reducing the accident rate have relied heavily on software. For exam-

1 The European Organisation for Civil Aviation Equipment (EUROCAE) uses a different
document numbenng scheme, but the content of the documents is equivalent. For example, DO—
178C is equivalent to ED-12C. For simplicity, only the DO numbering scheme is used in the
body of this paper. Also, please note that although once upon a time RTCA was an abbreviation
for Radio Technical Commission for Acronamtfics, since 1991 the four letters have been the
freestandmmg name of the organization.

This 1s a work of the U.S. Government and is not subject to copyright protection m the Umted
States. Published by the S afety-Cntical Systems Club.

C-2

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

2 C. Michael Holloway

ple, controlled flight into terrain—once one of the most common accident catego-
ries—has been nearly eliminated by software-intensive Enhanced Ground Proxim-
ity Warning Systems (Rushby 2011).

A new edition of the standard, DO-178C, was published by the issuing bodies
in late 2011 (RTCA 2011a). New editions of two existing associated documents
and four entirely new guidance documents were also published at the same time.
More information about these documents is provided later in this paper. The rele-
vant documents received official regulatory authority recognition in 2013 (Federal
Aviation Administration 2013b, European Aviation Safety Agency 2013).

The stated purpose of DO-178C remains essentially unchanged from its prede-
cessor: to provide guidance ‘for the production of software for dgirborne systems
and equipment that performs its intended function with a level of confidence in
safety that complies with airworthiness requirements.’ The text of the guidance
provides little or no rationale for how it achieves this purpose. A new section in
the revised edition of DO-248C (RTCA 2011b), “Rationale for DO-178C / DO—
278A’, contains brief discussions of the reasons behind some specific objectives
and collection of objectives; nevertheless, the overall assurance case for why DO-—
178C achieves its purpose is almost entirely implicit.

Although empirical evidence suggests that this implicit assurance case has been
adequate so far, its implicitness makes determining the reasons for this adequacy
quite difficult. Without knowing the reasons for past success, accurately predict-
ing whether this success will continue into the future is problematic, particularly
as the complexity and autonomy of software systems increases. Equally problem-
atic is deciding whether proposed altemate approaches to DO—178C are likely to
provide an equivalent level of confidence in safety.

As a potential way forward for addressing these problems, the Federal Aviation
Administration (FAA)} and the National Aeronautics and Space Administration
{NASA) are jointly sponsoring an effort, called the Explicate *78 project within
NASA, to uncover and articulate explicitly (that is, explicate) DO—178C’s implicit
assurance case. Early work in this effort was described in (Holloway 2012, Hol-
loway 2013).

This paper describes the current status of the research, and is organized as fol-
lows. Section 2 provides background material. Section 3 presents the key con-
cepts underlying, and several excerpts from, the explicit assurance case developed
to date. Section 4 discusses the next steps in the research and makes concluding
remarks.

2 Background

Fully understanding (his paper requires al least a passing [amiliarity with DO—
178B/C and the assurance case concept. This section provides background infor-
mation on these two subjects for readers who do not already possess the requisite

C-3

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

Exphcate “78 3

knowledge. This section also provides a brief discussion of prior related published
work.

Although some excerpts from the assurance case are expressed using the Goal
Structuring Notation (GSN), background material about GSN is not provided be-
cause of space limitations. Readers unfamiliar with GSN should consult (GSN
Committee 2011).

2.1 About DO-178C

The information in this section is based on Appendix A in DO-178C, which con-
tains a summary of the history of the DO-178 series of documents. The initial
document in the 178 series was published in 1982, with revision A following in
1985. Work on revision B began in the fall of 1989; the completed document,
which was a complete rewrite of the guidance from revision A, was published in
December 1992. Among many other changes, the B version expanded the number
of different software levels based on the worst possible effect that anomalous
software behaviour could have on an aircraft Level A denoted the highest level of
criticality (for which satisfying the most rigorous objectives was required), and
Level E denoted the lowest level (which was objective-free). The B version also
introduced annex tables to summarize the required objectives by software level.

Twelve years after the adoption of DO—178B, RTCA and EUROCAE moved to
update the document by approving the creation of a joint special committee /
working group in December 2004 (SC-205/WG-71). This group started meeting
in March 2005, and completed its work in November 2011. The terms of refer-
ence for the group called for (among other things) maintaining the “objective-
based approach for software assurance’ and the “technology independent nature’
of the objectives. SC-205/WG-71 was also directed to seek to maintain “backward
compatibility with DO—178B’ except where doing so would fail to ‘adequately
address the current states of the art and practice in software development in sup-
port of system safety’, “to address emerging trends’, or “to allow change with
technology

Ultimately the effort produced seven documents. In addition to DO—178C, new
editions were written of two existing, associated documents: DO-278A: Software
Integrity Assurance Considerations for Communication, Navigation, Surveillance
and Air Traffic Management (CNS/ATM) Systems (RTCA 20l1c), and DO—
248C: Supporting Information for DO-178C and DO-278A (RTCA 2011b). The
former is very similar to DO-178C, but addresses software in certain ground-
based systems, which operate within a different regulatory scheme from airtborne
systems. The latter provides answers to various questions and concerns raised
over the years by both industry and regulatory authorities. It contlains 84 [requent-
ly asked questions, 21 discussion papers, and, as noted above, a brief rationale.

Four new guidance documents were also published to address specific issues
and techniques: DO-330: Sofiware Tool Qualification Considerations (RTCA

c-4

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

4 C. Michael Holloway

2011d); DO-331: Model-Based Development and Verification Supplement to
DO-178C and DO-278A (RTCA 2011e); DO-332: Object-Oriented Technology
and Related Techniques Supplement to DO—178C and DO-278A (RTCA 20111);
and D0O-333: Formal Methods Supplement to DO-178C and DO-278A (RTCA
2011g). The subject matter of these documents is evident from their titles.

As a result of the terms of reference and operating instructions under which
DO-178C was developed, the document is only an update to, as opposed to a re-
write or substantial revision of, DO—178B. Differences between the B and C ver-
sions include corrections of known errors and inconsistencies, changes in wording
intended for clarification and consistency, an added emphasis on the importance
of the full body of the document, a change in qualification criteria for tools and
the related creation of a separate document for tool qualification, modification of
the discussion of system aspects related to sofiware development, closing of some
perceived gaps in guidance, and the creation of the technology-specific supple-
ments enumerated above for formal methods, object-oriented technology, and
model-based design and verification.

2.2 About assurance cases

The concept of an assurance case is a generalization of the safety case concept. A
common definition of a safety case is 'a structured argument, supported by a body
of evidence that provides a compelling, comprehensible and valid case that a sys-
tem is safe for a given application in a given operating environment' (UK Ministry
of Defence 2007). Claims are made concerning the achievement of an acceptable
level of safety, and arguments and evidence are focused on providing justified
confidence that those safety claims are satisfied. A more general assurance case is
concerned about providing justified confidence that claims are satisfied about oth-
er desired attributes such as correctness, functionality, performance, or security.
Claims, arguments, evidence?, context, and assumptions constitute five compo-
nents of a well-structured assurance case (Knight 2012} Claims are statements
about desired attributes. Other names that are used for the same concept include
goals, propositions, and conclusions. In a full assurance case, there will likely be
many claims that must be shown to hold, at varying levels of generality. An ex-
ample of a high-level claim is The software performs its intended function at
an acceptable level of safety (bold Arial font is used throughout the paper to
denote assurance case text). Examples of claims with an increasing level of speci-
ficity are as follows: High-level requirements are a satisfactory refinement of

2 The claims, argument, evidence distinction (perhaps using slightly different words) is well
established within the Literature. A strong case can be made that argumernt 1s more properly
thought of as a broad term, of which claims and evidence are components; however, this particu-
lar paper is not the place to try to clean up the terminology, so the standard terms and distinctions
are maintained.

C-5

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

Exphcate ‘78 5

system requirements; Adequate configuration management is in place; and
Configuration items are identified.

An argument explains how a stated claim is supported by, or justifiably in-
ferred from, the evidence and associated sub-claims. Other terms sometimes used
for the same concept include strategies, warrants (Toulmin 2003), and reasors.
Just as a system nearly always consists of multiple sub-systems, an argument near-
ly always consists of multiple sub-arguments; but the term sub-argument is almost
never used.

Evidence refers to the available body of known facts related to system proper-
ties or the system development processes. Data, facts, and solutions are synony-
mous terms. Examples of evidence include hazard logs, testing results, and math-
ematical theorems.

Context generally refers to any information that is needed to provide definitions
or descriptions of terms, or to constrain the applicability of the assurance case to a
particular environment or set of conditions. As example, the context for the claim
The software performs its intended function with a level of confidence in
safety that complies with airworthiness requirements would likely include the
applicable airworthiness requirements (Federal Aviation Administration 2013a), a
description of the intended function of the software, and any constraints on the
environment in which the software is expected to be used. Some recent research
defines context more strictly than has been done previously (Graydon 2014).

Assumptions are statements on which the claims and arguments rely, but which
are not elaborated or shown to be true in the assurance case. As an example, an
argument concerning safety that shows that all identified hazards have been elimi-
nated may rely on the assumption All credible hazards have been identified.

Claims, arguments, evidence, context, and assumptions are all present implicit-
ly in the collective minds of the developers of any successful engineered system.
An assurance case simply provides a means for ensuring that this implicit
knowledge is documented explicitly in a form that can be examined carefully and
critically, not only by the developers, but also by others. An active research
community is exploring how to best create, express, analyze, improve, and main-
tain assurance cases. Examples include (Matsuno 2014, Ayoub et al. 2013, Den-
ney et al 2013, Hawkins et al. 2013, Rushby 2013, Goodenough et al_ 2012, Yuan
and Kelly 2011, Bloomfield and Bishop 2010, Hawkins and Kelly 2009, Hol-
loway 2008).

2 3 Previous work

No published work was found that has attempted to accomplish the same goals as
the current efforl, bul lwo previous projects did address relaled aspects concerning
DO-178B and assurance cases.

The MITRE Corporation tried to map three different standards into an assur-
ance case framework (Ankrum and Kromholz 2005). The primary purpose of this

C-6

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

6 C. Michael Holloway

effort was to explore two primary hypotheses: all assurance cases have similar
components, and an assurance standard implies the structure. One of the three
standards used in the study was DO—178B. The created assurance case was struc-
tured rigidly around the DO-178B chapters. For example, the top-level claim was
DO-178B Software Considerations are taken into account. Sub-claims were
given for each of the DO-178B chapters 2 — 9; for example: 2.0 System Aspects
are taken into account; 5.0 Software Development Process is executed as
planned; and 9.0 Cerlification Liaison process is properly established & exe-
cuted.

The effort appears to have concentrated on translating the textual and tabular
form of DO-178B into a graphical form with as little interpretation or abstraction
as possible. This differs substantially from the current research, which is concen-
trating on discovering the underlying implicit assurance case, not rigidly translat-
ing one form of concrete expression into another form.

Researchers at the University of York and QinetiQQ in the United Kingdom
conducted the other related previous work (Galloway et al. 2005). The primary
goal of this research was to explore ways to justify substitution of one technology
for another. In particular, a major emphasis was placed on developing arpuments
showing that the evidence produced by replacements for testing (such as formal
proof) could be at least as convincing as the evidence produced by testing. As part
of this research, certain aspects of the testing-related objectives of DO—178B were
explored and GSN representations were produced. Unpublished results from the
research were submitted to SC-205/WG—71, and considered by the Formal Meth-
ods sub-group, which wrote the document that eventually become DO-333. This
material was also considered during the process of developing the assurance case
for DO-178C that will be discussed in the next section.

3 The explicit case

The first version of a complete, explicit assurance case in the Explicate 78 project
was completed and expressed in GSN at the end of 2013. It was structured in a
modular fashion, with separate arguments for each of the four main software lev-
els A-D. To the extent consistent with the 178C text, arguments from lower soft-
ware levels were referenced directly in the arguments for higher software levels.
This version was reviewed in varying levels of detail and rigor by a handful of
FAA personnel and other interested parties over a period of six months.

Revisions based on the review yielded a version (called €78-1.5) that was sub-
stantially similar in overall structure to the original, but which differed in some
subtle ways and in several specific details. This version also introduced generic
primary and confidence arguments, which were not stoctly necessary, bul which
served to illustrate a consistent argument structure across levels. A lengthy presen-
tation describing ¢78-1.5 was delivered to over 100 people at the FAA-sponsored
2014 National Systems, Software, and Airborne Electronic Hardware Conference

C-7

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

Exphecate <78 7

in September 2014. Comments received at the conference prompted several mi-
nor modifications to the GSN structures, and the creation of textual representa-
tions of portions of the case, yielding version ¢78-1.6, which is the version de-
scribed here.

The section is organized as follows:

1} Four fundamental concepts that greatly influence the structure and content

of the €78-1.6 assurance case are discussed.
2} Salient characteristics about the case itself are provided.
3} Five excerpts from the case are presented.

3.1 Fundamental concepts

The following four concepts provide the foundation on which the explicit assur-
ance case is built: transforming safety into correctness, allowing life cycle flexibil-
ity, using confidence arguments, and explicating before evaluating. The first two
of these concepts permeate the DO—178C guidance itself. The latter two concepts
arose as solutions to difficulties encountered in the early days of trying to structure
an explicit assurance case. All four are discussed below.

3.1.1 Transforming safety into correciness

A fundamental assumption of DO—178C is discernable only through inferences
from the text; it involves the relationship between safety and correctness. Alt-
hough in the general case, these two concepts are not equivalent (Knight 2012),
DO-178C rests implicitly on the assumption that within the constraints estab-
lished by the guidance, establishing justifiable confidence in the correctness of the
software with respect to its requirements is sufficient to establish justifiable confi-
dence that the software does not contribute to unsafe conditions.

The validity of this assumption rests on the further assumption that adequate
system safety processes have been followed in determining the requirements
placed on the software and its associated criticality level. As stated in the Ra-
tionale: “Software/assurance levels and allocated system requirements are a result
of the system development and safety assessment processes’ (RTCA 2011b, p. 9).

The system requirements allocated to software are further assumed by DO-—
178C to include all of the requirements that must be satisfied by the software to
ensure an adequate level of safety is maintained. DO-178C is not concerned with
determining or analysing these safety requirements, but only in satisfying them.
Hence it is strictly true, as is often asserted, that the standard is not a safety stand-
ard. Conducling syslem salely analysis is inlentionally outside the scope of the
guidance. Guidance for it is expected from other documents (SAE International
1996, SAE International 2010).

C-8

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

8 C. Michael Holloway

Any new requirements that arise during software development must be passed
back to the system processes, including system safety processes, for analysis of
{among other things) potential safety implications. Such requirements were called
derived requirements in DO—178B; the term is retained in 178C. (This choice of
terminology has been a frequent source of confusion, because the phrase derived
requirements is not commonly used in the broader software engineering commu-
nity. When encountering the term for the first time, many people assume that it
means requirements derived from higher level requirements, as opposed to new
requirements that are explicitly not derived from higher level ones. Some mem-
bers of SC-205/WG-71 tried, but failed, to change the terminology.}

With these assumptions understood, DO-178’s emphasis on software correct-
ness is consistent with its stated purpose. Given that all the requirements necessary
for ensuring adequate safety are eventually specified, then developing sofiware
that is correct with respect to those requirements is sufficient to ensure that the
software does not negatively affect safety. Transforming safety into correctness is
valid in this particular case.

As will be shown below, the £€78-1.6 assurance case makes the transformation
explicit. It also highlights the special role played by derived requirements.

3.1.2 Allowing life cycle flexibility

Another foundational concept of DO-178C may come as a surprise to people
whose only exposure to the guidance and its ancestors comes through criticisms
by academics: developers are permitted wide flexibility in choosing how to devel-
op their software. Neither specific development methods nor life cycles are pre-
scribed by the guidance. As stated in the Rationale,

The committee wanted to avoid prescribing any specific development methodology. [The
guidance] allows for a software life cycle to be defined with any suitable life cycle
model(s) to be chosen for software development. This is further supported by the
introduction of “transition critenia”. Specific transition critenia between one process and
the next are not prescribed, rather [the guidance] states that transition criteria should be
defined and adhered to throughout the development life cycle(s) selected .’ (RTCA 2011b,
p- 126)

The guidance does include detailed descriptions of specific activities that may
be performed in order to satisfy particular objectives. References to the text of
these activities are even included in the Ammex A tables in 178C. However, the
guidance also explicitly states that the activities themselves may be changed:

The applicant should plan a set of activities that satisfy the objectives. This document
descnibes activities for achieving those objectives. The applicant may plan and, subject to
approval of the certification authority, adopt altemative activities to those descnbed in
this document. The applicant may also plan and conduct additional activities that are
determined to be necessary. (RTCA 20114, p. 3).

C-9

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

Exphcate ‘78 9

To emphasize the flexibility allowed by the guidance, the €78-1.6 assurance
case does not explicitly include accomplishing any activities as goals that must be
satisfied. Activities are only referenced within contextual items in the case.

3.1.3 Using confidence arguments

Researchers from the University of York and the University of Virginia (Hawkins
et al. 2011} introduced the idea of a confidence argument to accompany a primary
safety argument. The primary safety argument documents the arguments related to
direct claims of safety; the confidence argument documents the arguments related
to the sufficiency of confidence in the primary argument.

This separation into two different argument structures differs from the prevail-
ing practice of intermixing concerns of safety and confidence in a single unified
argument, and offers the potential promise of eliminating or mitigating some of
the difficulties recognized in the prevailing approach (Haddon-Cave 2009). Alt-
hough the original research concentrated on safety arguments, the general concept
applies equally to any property of interest.

Even a cursory reading of DO—178C reveals that the guidance contains a mix-
ture of objectives about the desired properties of the final software product, objec-
tives related to intermediate products, and objectives concerning the processes
used to develop the product. A more careful reading, keeping the notion of sepa-
rating primary and confidence arguments in mind, suggests that some of these
objectives naturally fit well into a primary argument about properties of the final
software, and some naturally fit well into a confidence argument that affects the
degree of belief in the sufficiency of the primary argument. Only a comparatively
few objectives are difficult to classify.

These observations make using confidence arguments a foundational concept
for the explicit assurance case. Reviewers of previous versions of the case com-
mented favorably on this approach.

3.1.4 Explicating before evaluating

The fourth foundational concept is that accurately articulating the implicit case
contained in DO—178C must precede trying to evaluate the sufficiency of the case.
Evaluation is an important eventual goal of the research, but unless agreement can
be reached about what the guidance really says, reaching agreement on whether it
says the right thing is impossible.

The €78-1.6 assurance case is intended to properly capture what 178C says.
Great effort was made to represent accurately the implicit arguments in the guid-
ance, withoul trying o comrect any perceived deficiencies. The coherence and co-
gency of this explicit case should be neither greater nor lesser than that of the
guidance itself.

C-10

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

10 C. Michael Holloway

3.2 Characteristics of the case

The ¢78-1.6 assurance case expression in GSN consists of a primary argument
module and a confidence argument module for each software level (A, B, C, D),
generic primary and confidence argument modules, and a simple primary argu-
ment for software level E. Additional modules support the Level A-D primary
and confidence arguments as follows:

e Level D

— Primary argument: five supporting modules
— Confidence argument: five support modules

o Level C:

— Primary argument: two unique and two directly referenced level D sup-
porting modules

— Confidence argument: eight unique and five directly referenced level D
supporting modules

e Level B:

— Primary argument: one unique supporting module and a direct reference to
the level C primary argument

— Confidence argument: three unique, four directly referenced level C, and
one directly referenced level D supporting modules

e Level A:

— Primary argument: no unique supporting modules and a direct reference to
the level B primary argument

— Confidence argument: two unique, two directly referenced level B, two di-
rectly referenced level C, and one directly referenced level D supporting
modules

Overall the 34 GSN modules for Levels A-D comprise 131 goals, 42 strategies,
176 context items, 34 justifications and assumptions, and 161 references to evi-
dence. In some instances, the style of the GSN representation used in the project
may rightly displease purists. Strict adherence to standard practices has been sacri-
ficed in places under the belief that the sacrifice better achieves visual simplicity
and enhances readability for the primary intended audience of the work, few of
whom are experts in the notation.

Also, for the benefit of the intended audience, textual representations have been
manually created for 15 of the GSN modules, with more in the works. For two of
the five examples presented in the next section, a textual representation accompa-
nies the GSN structure.

C-11

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-12

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

12 C. Michael Holloway

case, the primary arguments for levels D (shown below) and C (not shown) are
expressed in this way. The primary arguments for levels B and A are not, because
using a different structure that highlights the specific ways these levels differ from
the lower levels seemed more enlightening_

Using the structured textual format developed for the project, the simple gener-
ic argument may also be expressed as shown in Figure 2. Note that the text con-
tained in item C within the “if’ clause corresponds to the top-level goal of the as-
sociated confidence argument, which is not shown here.

The conclusion
Software performs its intended function at acceptable level of safety for {level X}
is justified by an argument
by correctness of the software relative to allocated system requirements and
derived requirements
if
A_. Highdevel requirements are a satisfactory for {level X} refinement of the
allocated system requirements; and
B. Executable Object Code is a satisfactory for {level X} refinement of the high-
level requirements; and
C. The evidence provided is adequate for justifying confidence that the
correctness of the software has been demonstrated to the extent needed for
{Level X}

Fig. 2. Simplified genenc pnmary argument in structured text

3.3.2 Level D) primary argument

A GSN expression of the primary argument for software Level D is shown in Fig-
ure 3.

Text contained within double quotation marks is quoted directly from either
DO-178C if no document is specified, or from the specified document otherwise.
The location of the quotation is given in parentheses. For example, the text in
MeaningAnomBeh comes from page 109 in the Glossary of DO-178C, and the
text in HLRDev comes from Annex A table 2 row 1 of 178C. The text in 3.1 Ref-
erences comes from bullet 6 in section 5.4 of DO-248C. To keep the size of some
elements reasonably small, quotations are not always given, but instead references
to document locations are listed.

The Level D primary argument follows the structure illustrated in the previous
section, but with appropriate context and assumptions added. Five salient points
about the argument are as follows.

(1) The five context elements attached to the top-level claim in the GSN repre-
sentation emphasize that the meaning of the claim can only be understood within
an environment containing a description of the intended function of the software
and definitions for acceptable level of safety, Level D, and anomalous behavior.
Also, the top-level claim is relevant only for software that has been assigned to

C-13

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-14

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

14 C.Michael Holloway

satisfies the ReAllocValidSuff assumption than to identify propositions that must
be shown to be true as part of the argument.

{4) HLRSatLevD and EOCSatLevD arc the two prongs of the correctness ar-
gument. If the high-level requirements are a satisfactory refinement of the system
requirements, and the executable object code is in tum a satisfactory refinement of
these high-level requirements then the software can be said to be correct with re-
spect to the allocated system requirements. By the safety to correctness transfor-
mation previously discussed, the software can therefore be said to perform its in-
tended function at an acceptable level of safety for Level D.

(5) The associated confidence argument is not shown here, but its goal is iden-
tified in the textual representation as The evidence provided is adequate for
justifying confidence that the correctness of the software has been demon-
strated to the extent needed for level D.

Figure 4 presents an equivalent structured text representation of the same ar-
gument.

The conclusion
Software performs its intended function at acceptable level of safety for Level D
given
Description of intended function of the software
Definition of acceptable level of safety from airworthiness regulations
The software has been assigned to Level D
Description of the meaning of Level D: “Software whose anomalous behavior,
as shown by the system assessment process, would cause or contribute to a
failure of system function resulting in a minor failure condition for the aircraft
for the aircraft.™ (2.3.3.d)
E. “Anomalous behavior: behavior that is inconsistent with specified
requirements” (Glossary, p. 109.)
is justified by an argument
by cormrectness of the software relative to allocated system requirements and
derived requirements

comp

if

A_ Highdevel requirements are a satisfactory for Level D refinement of the
allocated system requirements; and

B. Executable Object Code is a satisfactory for Level D refinement of the high-
level requirements; and

C. The evidence provided is adequate for justifying confidence that the
correctness of the software has been demonstrated to the extent needed for
Level D

The argument assumes

A_. System requirements allocated to software augmented by any derived
requirements are valid and sufficient to define intended function and ensure
acceptable level of safety [see DO—248C 5.4 bullet 6]

B. “High-evel requirements are developed™ (A-2.1) [see 5.1.1.a; Activities 5.1.2 a,
5.1.2b,512¢c, 51.2d,5.1.2e,51.21 51.2g, 5.1.2], 5.5a; Glossary, 248C
5.51]

C. “Derived high-level requirements are defined and provided to the system
processes, including the system safety assessment process™ (A-2.2) [see
5.1.1.b; Activities 5.1.2.h, 5.1.2.i; Glossary; DO—248C 5.5.1]

Fig. 4. Level D pnmary arpument m structured text

C-15

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-16

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-17

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-18

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

18 €. Michael Holloway

4 Next steps and concluding remarks

The e¢78-1.6 assurance case discussed in this paper is not the final product of
the Explicate *78 research. The case needs to be subjected to careful scrutiny by
aviation industry and regulator experts, as well as assurance case and GSN ex-
perts. For the former, the existing textual representations most likely will need to
be expanded to include the entire case. For the latter, the somewhat loose use of
GSN elements that characterize the current case will likely need to be tightened.

The current case, however, seems to be sufficiently stable and complete to
permit two concurrent activities to be undertaken during the heightened scrutiny
period:

1. Beginning to evaluate the sufficiency of the case, not just as an accurate reflec-
tion of what DO-178C requires, but also as to whether what it requires is
strong enough at each software level to provide justified assurance that soft-
ware that complies with the document will perform ‘its intended function with
a level of confidence in safety that complies with airworthiness requirements._

2. Extending the existing case to include the guidance from one or more of the
supplement documents.

If all goes well, good progress on all of these activities will be made before this
paper is published. The goal is to complete the research before the end of 2015.

At lcast four bencefits may arisc from sucecssful complction of this rescarch,
two of which are specific to DO-178C, and two of which are more general. First,
the existence of an explicit assurance case for the DO-178C guidance should fa-
cilitate intelligent conversations about the relative efficacy of DO-178C and pro-
posed alternative approaches for demonstrating compliance with airworthiness
regulations. The likelihood of this benefit truly happening increases with the num-
ber of people within industry and the regulatory authorities who accept the Expli-
cate '78 assurance case as an accurate reflection of the guidance.

Second, effectively analysing the adequacy of the assurance case should pro-
vide a solid foundation for future modifications to the guidance. When the time
comes to create DO—178D, perhaps the Explicate "78 results will help provide the
committee with a more structured and systematic basis for making changes than
an unordered list of issues.

Third, more generally the existence of an assurance case representation for one
guidance document may motivate the creation of such representations for other
guidance documents. This, in turn, may result in clearer understanding of and
more systematic updates to such documents.

Fourth, and most generally of all, perhaps the Explicate '78 work may help
serve as a catalyst for prompting improved cooperation and mutual understanding
between supporters of prescriptive standards and supporters of goal-based stand-
ards. One might even go so far as to hope for a lasting peace.

C-19

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

Explicate ‘78 19

Acknowledgments This work is partially funded by the Remmbursable Interagency Agreement
DTFACT-10-X-00008, Modification 0004, Space Act IAI-1073, between the Federal Aviation
Administration and the National Acronantics and Space Administration, Langley Research Cen-
ter, for Design, Venfication, and Validation of Advanced Digital Airborne Systems Technology:
Annex 2, Assurance Case Applicability to Digital Systems. This paper, however, did not undergo
any official review by FAA personnel

References

Ankmum T, Kromholz A (2005) Structured Assurance Cases: Three Common Standards. Pro-
ceedings of the Ninth IEEE Intecrnational Symposium on High-Assurance Systems Engineer-
ing (HASE’05). Heidelberg, Germany

Ayoub, A, Chang, J, Sokolsky, O, & Lee, I (2013) Assessing the Overall Sufficiency of Safety
Arguments. Assunng the Safety of Systems: Proceedings of the Twenty-first Safety Cntical
Systems Symposium. C. Dale & T. Anderson (Eds.). February 5-7. Bnistol, UK. Spnnger

Bloomfield R, Bishop P (2010) Safety and Assurance Cases: Past, Present and Possible Future.
Making Systems Safer. C. Dale and T. Anderson (eds). Spninger-Verlag

Denney, E, Pai, G, Habli, 1, Kelly, T, & Knight, J (2013). 1st International Workshop on Assur-
ance Cases for Software-intensive Systems (ASSURE 2013). Proceedings of the 2013 Inter-
national Conference on Software Engineening. May 18-26. San Francisco, California

Europesn Aviation Safety Agency (2013) AMC 20-115C Software Considerations for Certifica-
tion of Airbome Systems and Equpment. ED Decision 2013/026/R http://easa europa
eu/system/files/dfu/Annex%2011%620-%20AMC%2020-115C pdf (last accessed December 2,
2014)

Federal Aviation Administration (2013a) Standard Airworthiness Certification: Regulations —
Title 14 Code of Federal Regulations. http://www_ faa gov/aircraft/air cert/airworthiness
certification/std awcert/std awcert regs/regs/ (last accessed December 5, 2014)

Federal Aviation Administration (2013b) Adwvisory Circular 20-115C Arbome Software Assur-
ance. http://www.faa gov/documentLibrary/media/Advisory Circular/AC 20-115C . pdf (last
accessed December 2, 2014)

Galloway A, Paige R, Tudor, N, Weaver R, McDermid, J. (2005) Proof vs. Testing in the Con-
text of Safety Standards. The 24th Digital Avionics Systems Conference (DASC), Washing-
ton D.C.

Goodenough J, Weinstock C, Klein A (2012) Toward a Theory of Assurance Case Confidence.
CMU-SEI-2002-TR-002, September

Graydon, P (2014) Towards a Clearer Understanding of Context and Its Role in Assurance Ar-
gument Confidence. Computer Safety, Rehability, and Secunty, 139-154.

GSN Committee (2011) Draft GSN Standard Version 1.0. http://www _goalstructuringnotation.
info/ (last accessed December 2, 2014)

Haddon-Cave C (2009) The Nimrod Review. London: The Stationary Office http://www official-
documents.gov.uk/document/hc0809/hc10/1025/1025 pdf (last accessed December 1, 2014).

Hawkins R, Habh I, Kelly T, McDemid J (2013) Assurance cascs and prescnptive software
safety certification: A comparative study. Safety Science. Vol 59

Hawkins R, Kelly T (2009) A Systematic Approach for Developing Software Safety Arguments.
Proceedings of the 27th International System Safety Conference. Huntsville, Alabama

Hawkins R, Kelly T, Knight J, Graydon P (2011) A New Approach to Creating Clear Safety
Arpuments. Advances in Systems Safety. C. Dale and T. Anderson (eds). Springer-Verlag

C-20

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.
M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

20 C. Michael Holloway

Holloway CM (2013) Making the Implicit Explicit: Towards an Assurance Case for DO-178C.
Proceedimgs of the 3 1st International System Safety Conference. August 12-16. Boston, Mas-
sachusetts (ref. z)

Holloway CM (2012) Towards Understanding the DO—178C / ED—12C Assurance Case. 7th IET
International Conference on System Safety, Incorporating the Cyber Secunity Conference.
Edinburgh

Holloway CM (2008) Safety Case Notations: Alternatives for the Non-Graphically Inclined?
Proccedings of the 3rd IET International System Safety Conference. Birmingham, UK

Knight J (2012) Fundamentals of Dependable Computing for Software Engineers. Boca Raton,
Flonda: CRC Press

Matsuno, Y (2014) A Design and Implementation of an Assurance Case Language. Dependable
Systems and Networks (DSN). Atlanta, Georgia

RTCA (1992) Softwarc Considerations in Airborne Systems and Equipment Certification. DO—
178B.

RTCA (2011a) Software Considerations in Airborne Systems and Equipment Certification. DO—
178C.

RTCA (2011b) Supporting Information for DO-178C and DO-278A. DO-248C

RTCA (2011c) Softiware Integrity Assurance Considerations for Communication, Navigation,
Surveillance, and Air Traffic Management (CNS/ATM) Systems. DO-278A

RTCA (20114d) Software Tool Qualification Considerations. DO-330

RTCA (2011e) Model-Based Development and Venfication Supplement to DO—-178C and DO—
278A.D0O-331

RTCA (2011f) Object-Oniented Technology and Related Techniques Supplement to DO-178C
and DO-278A.DO-332

RTCA (2011g) Formal Methods Supplement to DO-178C and DO-278A. D0O-333

Rushby, J (2013) Logic and cpistemology in safety cases. Computer Safety, Reliability, and
Secunity, 32nd SAFECOMP. Toulouse, France

Rushby J (2011) New Challenges in Certification of Aircraft Software. Proceedings of the 11th
International Conference on Embedded Software (EMSOFT). Taipei, Taiwan

SAE Intemational (1996) Guidelines and Mecthods for Conducting the Safety Assessment Pro-
cess on Civil Airbome Systems and Equipment. SAE ARP 4761

SAE International (2010) Guidelines for Deveopment of Civil Aircraft and Systems. SAE ARP
4754a

Toulmin 8 (2003) The Uses of Argument, Updated Edition. Cambnidge University Press

UK Ministry of Defence (2007) Defence Standard 00-56 Issue 4: Safety Management Require-
ments for Defence Systems

Yuan T, Kelly T (2011) Argument Schemes in Computer System Safety Engineenng. Informal
Logic 31 (2)

C-21

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

Making the Implicit Explicit: Towards An Assurance Case for DO-178C
C. Michael Holloway; NASA Langley Research Center; Hampton, Virginia, USA
Keywords: assurance case, translation, aviation, correctness, standards
Abstract

For about two decades, compliance with Software Considerations in Airborne Systems and Equipment Certification
(DO-178B) has been the primary means for receiving regulatory approval for using software on commercial
airplanes. A new edition of the standard, DO-178C, was published in December 2011, and regulatory bodies have
started the process towards recognizing this edition. The stated purpose of DO-178C remains unchanged from its
predecessor: providing guidance “for the production of software for airborne systems and equipment that performs
its intended function with a level of confidence in safety that complies with airworthiness requirements.” Within the
text of the guidance, little or no rationale is given for how a particular objective or collection of objectives
confributes to achieving this purpose. Thus the assurance case for the document is implicit. This paper discusses a
current effort to make the implicit explicit. In particular, the paper describes the current status of the research
seeking to identify the specific arguments contained in, or implied by, the DO-178C guidance that implicitly justify
the assumption that the document meets its stated purpose.

Introduction

For about two decades, compliance with Software Considerations in Airborne Systems and Equipment Certification
(DO-178B) (ref. 1) has been the primary means for receiving regulatory approval for using software on commercial
airplanes. Despite frequent and occasionally strident criticisms of the standard from various quarters, the empirical
evidence is quite strong that it has been successful. Not only has no fatal commercial aircraft accident been
aftributed to a software error, many of the technological improvements that have been credited with significantly
reducing the accident rate have relied heavily on software. For example, controlled flight into terrain—once one of
the most common accident categories—has been nearly eliminated by Enhanced Ground Proximity Warning
Systems, which are software-intensive (ref. 2).

A new edition of the standard, DO-178C, was published by the issuing bodies in late 2011 (ref. 3). New editions of
two associated documents were also published at the same time: DO-278A—Software Integrity Assurance
Considerations for Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) Systems
(ref. 4), and DO-248C—Supporting Information for DO-178C and DO-278A (ref. 5). Additionally four new
guidance documents were published simultaneously to address specific issues and techniques: DO-330—Software
Tool Qualification Considerations (ref. 6); DO-331—Model-Based Development and Verification Supplement to
DO-178C and DO-278A (ref. 7); D0-332—Object-Oriented Technology and Related Techniques Supplement to
DO-178C and DO-278A (ref. 8); and D0O-333—Formal Methods Supplement to DO-178C and DO-278A (ref. 9).
These seven documents have not yet received official regulatory authority approval at the time of this writing, but
the regulatory bodies are well along in the process towards recognizing them'.

The stated purpose of DO-178C remains essentially unchanged from its predecessor: providing guidance “for the
production of software for airborne systems and equipment that performs its intended function with a level of
confidence in safety that complies with airworthiness requirements.” In DO-178B little or no rationale is given for
how a particular objective or collection of objectives contributes to achieving this purpose. Thus, the assurance case
for the document is implicit. Although empirical evidence suggests that this implicit assurance case has been
adequate so far, its implicitness makes determining the reasons for this adequacy quite difficult. Without knowing
the reasons for past success, accurately predicting whether this success will continue into the future is problematic.

DO-178C is also mostly rationale-free, but the revised edition of DO-248C includes a new section: “Rationale for
DO-178C / DO-278A°. This rationale section provides a basis from which building an explicit assurance case may

! The European Organisation for Civil Aviation Equipment (EUROCAE) uses a different document
numbering scheme, but the content of the documents is otherwise identical. For example, DO-178C is identical to
ED-12C. For simplicity, only the DO-numbering is referenced in this paper.

C-22

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

be feasible. An effort to build such a case began in September 2012, under the joint sponsorship of the Federal
Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA)*. Preliminary
work was described in (ref. 10). This paper describes the current status of the research. The remainder of the paper
is organized as follows. Section 2 provides background material. Section 3 describes the process followed so far in
uncovering the implicit assurance case. Section 4 provides excerpts from the current draft assurance case. Section 5
presents concluding remarks.

Background

Fully understanding this paper requires at least a passing familiarity with DO-178B/C, the assurance case concept,
and the Goal Structuring Notation (GSN) for expressing assurance cases. This section provides background
information on these subjects for readers who do not already possess the requisite knowledge.

About DO-178C: Appendix A in DO-178C (ref. 3) contains a summary of the history of the DO-178 series of
documents. The information in this section is derived from the appendix. The initial document in the series was
published in 1982, with revision A following in 1985. Work on revision B began in the fall of 1989; the completed
document, which was a complete rewrite of the gunidance from revision A, was published in December 1992.
Among many other changes, the B version introduced the notion of five different possible software levels, with
Level A denoting the highest level (for which satisfying the most rigorous objectives was required), and Level E
denoting the lowest level (for which satisfying no objectives was required). The B version also introduced annex
tables to summarize the required objectives by software level.

Twelve years after the adoption of DO-178B, RTCA® and EUROCAE moved to update the document by approving
the creation of a joint special committee / working group in December 2004 (SC-205/WG-71). This group started
meeting in March 2005, and completed its work in November 2011. The terms of reference for the group called for
(among other things) maintaining an “objective-based approach for software assurance” and the “technology
independent nature” of the objectives. The special committee/working group was also directed to seek to maintain
“backward compatibility with DO-178B” except where doing so would fail to “adequately address the current states
of the art and practice in software development in support of system safety”, “to address emerging trends”, or “to
allow change with technology.” The seven documents produced by the efforts—three updates and four entirely
new—were enumerated in the introduction.

As a result of the terms of reference and operating instructions under which it was produced, DO-178C is an update
to, as opposed to a re-write or substantial revision of, DO-178B. Differences between the B and C versions include
corrections of known errors and inconsistencies, changes in wording intended for clarification and consistency, an
added emphasis on the importance of the full body of the document, a change in qualification criteria for tools and
the related creation of a separate document for tool qualification, modification of the discussion of system aspects
related to software development, closing of some perceived gaps in guidance, and the creation of technology-
specific supplements for formal methods, object-oriented technology, and model-based design and verification.

About assurance cases: The concept of an assurance case is a generalization of the safety case concept. A safety
case is “a structured argument, supported by a body of evidence that provides a compelling, comprehensible and
valid case that a system is safe for a given application in a given operating environment” {ref. 11). Safety is the
paramount attribute. Claims are made concerning the achievement of an acceptable level of safety, and the
arguments and evidence are focused on providing justified confidence that those claims are satisfied. An assurance
case, on the other hand, is concerned about providing justified confidence that claims are satisfied about additional
desired attributes such as functionality, performance, or security.

Claims, arguments, evidence, context, and assumptions constitute five necessary components of a good assurance
case (ref 12). Claims are statements about desired attributes. Other names that are used for the same concept include

% The joint sponsorship is under the auspices of Interagency Agreement IAI-1073: Verification and
Validation for Complex Systems. Although the FAA has partially funded the work described in this paper, it played
no part in the approval process for this paper.

* Once upon a time, RTCA was an abbreviation for Radio Technical Commission for Aeronautics; since
1991 the four letters have been the freestanding name of the organization.

C-23

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

goals, propositions, and conclusions. In a full assurance case, there will likely be many claims that must be shown to
hold, at varying levels of generality. An example of a high-level claim is The system is sufficiently safe to satisfy
airworthiness requirements within its intended environment. Examples of claims with an increasing level of
specificity are as follows: Credible hazards have been identified; Hazard H has been eliminated by design; and
Hardware component M has an acceptably long expected mean-time-to-failure.

Arguments show how the stated claims are supported by, or justifiably inferred from, the available evidence. Other
terms sometimes used for the same concept include strategies, warrants (ref. 13), and reasons. Evidence refers to the
available body of known facts related to system properties or the system development processes. Data, facts, and
solutions are synonymous terms. Examples of evidence include hazard logs, testing results, properties of materials,
and mathematical theorems.

Context refers to any information that is needed to provide definitions or descriptions of terms, or to constrain the
applicability of the assurance case to a particular environment or set of conditions. As example, the context for the
claim The software performs its intended function with a level of confidence in safety that complies with
airworthiness requirements would likely include the applicable airworthiness requirements, a description of the
intended function of the software, and any constraints on the environment in which the software is expected to be
used. Assumptions are statements on which the claims and arguments rely, but which are not elaborated or shown to
be true in the assurance case. As an example, an argument concerning safety that shows all identified hazards have
been eliminated relies on the assumption All credible hazards have been identified.

Each of these components is present implicifly in the collective minds of the developers of any successful
engineered system. An assurance case simply provides a means for ensuring that all of this implicit knowledge is
documented explicifly in a form that can be examined carefully and critically, not only by the developers, but also
by others. An active research community is exploring how to best create, express, analyze, improve, and maintain
assurance cases (refs. 14-22).

About GSN: The Goal Structuring Notation is one of the most popular notations for expressing assurance cases (ref.

23). Some of the primary symbols of the notation are illustrated in figure 1. Text within these symbols is used to
provide content and a convenient means of referring to individual elements.

/ O Sol\de by

Goal Strategy olution
In context of
@ © © u "dud“m’d
entity
Context Assumption Justification

Figure 1: Main elements of GSN

The concepts represented by most of these elements have already been described. A justification gives the rationale
for why a particular strategy or goal is acceptable. To construct an argument, the elements of the GSN potation are
linked together using the iz context of or solved by directed lines. The undeveloped entity symbol is appended to the
bottom of a goal or strategy to indicate that the particular line of argument requires further development. GSN will
be used in the rest of this paper to express selected portions of the preliminary assurance case that has been
developed in the research. The next section explains the process that has been followed so far.

The Process

The work to date has included the following five primary activities:

C-24

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

Careful and contimiing study of D0-178C and D0-248C
Review of previous work

Assessment of applicability of confidence argument concept
Preliminary classification of objectives

Selection of an approach for creating arguments

The rest of this section describes each of these activities in appropriate detail.

Study: Careful study of the text of DO-178C and relevant sections of DO-248C was the first activity in the project,
and will continue throughout it. The initial study was focused on finding important context and assumptions on
which the guidance rests. The results of the study were described fully in (ref. 10). For the purposes of this current
paper, one item of context and one fundamental assumption are worth repeating .

The stated purpose of DO-178C, which was quoted in the introduction section of this paper, identifies a critical item
of context: the airworthiness requirements. These airworthiness requirements are defined outside of DO-178C in the
Code of Federal Regulations Title 14 (ref. 24). Different parts of Title 14 apply depending on the category of
vehicle. Applicable categories include transport category airplanes (part 25); normal, wutility, acrobatic, and
commuter airplanes {part 23); transport category rotorcraft (part 29); nommal category rotorcraft (part 27); products
and parts (part 21); and engines (part 33). These differences mean that the top-level context for an explicit
assurance case for software for a transport category airplane will be different from the context for a commuter
category airplane. The former will refer to part 25, while the latter will refer to part 23.

Whereas the airworthiness context is clearly stated in DO-178C, a fundamental assumption of the guidance is
discernable only through inferences from the text. This assumption involves the relationship between safety and
correctness. Although in the general case, these two concepls are not equivalent (ref. 12), DO-178C rests on the
assumption that within the constraints established by the guidance, establishing justifiable confidence in the
correciness of the software is sufficient to establish justifiable confidence that the software does not contribute to
unsafe conditions. The constraints underlying this assumption include the adequacy of the system safety processes
conducted outside of the scope of DO-178C (refs. 25, 26), the effective allocation of requirements (including the
requirements needed to ensure safety) to software, and the analysis by system safety processes of any new
requirements that arise during software development®.

Review: Another activity undertaken was the review of previous, related research. No published work was found
that attempted to accomplish identical goals to the current effort, but two projects were uncovered that dealt with
related aspects of assurance cases and DO-178B.

The MITRE Corporation conducted an effort to map three different standards into an assurance case framework (ref.
27). The primary purpose of this effort was to explore two primary hypotheses: all assurance cases have similar
components, and an assurance standard implies the structure. One of the three standards used in the study was DO-
178B. The created assurance case was structured rigidly around the 1)0-178B chapters. The top- level claim was
DO-178B Software Considerations are taken into account. Sub-claims were given for each of the DO-178B
chapters 2 — 9. For example, sub-goals included the following: 2.0 System Aspects are taken into account, 4.0
Software Planning Process is executed, 5.0 Software Development Process is executed as planned, and 9.0
Certification Liaison process is properly established & executed.

As best as can be determined from the published material, the effort concentrated on translating the textual and
tabular form of DO-178B into a graphical form with as little interpretation or abstraction as possible. This differs
substantially from the current research, which is concentrating on discovering the underlying implicit assurance
case, not rigidly translating one form of concrete expression into another form.

* In DO-178C (and B) terminology, such requirements are called derived requirements. Derived
requirements must be passed back to system processes, including system safety processes, for analysis of (among
other things) potential safety implications.

C-25

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

Researchers at the University of York and QinetiQQ in the United Kingdom conducted the other related previous
work (ref 28). The primary goal of this research was to explore ways to justify substitution of one technology for
another. In particular, the emphasis was to develop arguments showing that the evidence produced by replacements
for testing (such as formal proof) could be at least as convincing as the evidence produced by testing. As part of this
research, certain aspects of the testing-related objectives of DO-178B were explored and GSN representations were
produced. Unpublished results from the research were submitted to SC-205/WG-71, and considered by the sub-
group responsible for creating the document that eventually become D0-333. These results have been helpful in
considering various approaches to discovering and expressing a full assurance case for DO-178C.

Assess: Recent research from the University of York and the University of Virginia (ref. 18) has been even more
helpful towards that end. This research introduces the idea of a confidence argument to accompany a primary safety
argument. The safety argument documents the arguments and evidence related to direct claims of safety; the
confidence argument documents the arguments and evidence related to the sufficiency of confidence in the primary
argument. This separation into two different argument structures differs from the prevailing practice of intermixing
concerns of safety and confidence in a single unified argument, and offers promise of eliminating or mitigating some
of the difficulties recognized in the prevailing approach (ref. 29). Although the paper is presented in temms of a
safety case, the authors acknowledge that the general concept applies equally to any property of interest.

Assessing whether the concept is appropriate for expressing the assurance argument for DO-178C was the third
major activity undertaken to date. The answer was a definite yes. Even a cursory reading of the guidance reveals
that it contains a mixture of objectives about the desired properties of the final software product, intermediate
products, and the processes used to develop the product. A more careful reading shows that some of these
objectives are naturally part of a primary argument about correctness of the final software, some are naturally part of
a confidence argument that justifies appropriate belief in the sufficiency of the correctness argument, and some are a
bit difficult to classify.

Classify: Conducting a preliminary classification of DO-178C objectives thus became the fourth major activity in
the project. The first attempt at classification was based on the notion that every objective would likely comrespond
to a claim in either a correctness or confidence argument. It did not take very long to realize that this notion was too
simplistic. The range of possibilities for logical correspondence of objectives not only includes claims, but also
evidence, context, assumptions, and justifications. Based on this realization, the first classification was abandoned,
and a second attempt was completed using the following three categories:

{1} The objective is likely to appear in some form as a claim or evidence in the primary argument.

{2} The objective is likely to appear in some form as a claim or evidence in a confidence argument.

{3} The objective is likely to appear as context, assumption, or justification in an argument (rather than as a
claim or evidence).

Three examples of objectives placed in to category {1} are the following: High-level requirements comply with
system requirements (this objective is summarized in row 1 of Table A-3, and thus often referred to as A-3.1);
Executable Object Code complies with high-level requirements (A-6.1); and Executable Object Code complies with
high-level requirements (A-6.5). Each of these objectives concerns properties of the final software product, and thus
is directly related to a primary assurance argument. If one of these objectives is not satisfied, then it is not possible
for the software to satisfy goals concerning its correctness.

Category {2} objectives include, for example, Software plans comply with this document (A-1.6); Test coverage of
software structure (statement coverage} is achieved (A-7.7); and Problem reporting, change control, change
review, and configuration status accounting are established {A-8.3). The reasons for the classification of these three
differ. Objectives A-1.6 and A-8.3 refer to a property of the process not the product, and thus properly relate to
confidence. Objective A-7-7 concerns a property of the product, but the objective does not necessarily have to be
satisfied in order for the final software to satisfy goals about its correctness. It is possible for the running software to
correctly implement its requirements even if the testing of the software did not cover all statements; however, higher
confidence in the correctness of the software is justified if the objective is satisfied than if it is not.

C-26

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

Finally, the following two objectives are examples of category {3}: The activities of the software life cycle processes
are defined (A-1.1); and The means of compliance is proposed and agreement with the Plan for Software Aspects
of Certification is obtained (A-102). These objectives set part of the context within which the primary and
confidence arguments reside, but are not appropriate as either claims or evidence in those arguments.

The full initial classification is summarized as follows:

s Of the 71 Level A objectives, 21 were determined to be likely to appear in some form in a primary
argument, 36 in a confidence argument, and 14 as context.
For Level B’s 69 objectives, the breakdown was 20 primary, 35 confidence, and 14 context.
For Level C’s 63 objectives, the breakdown was 18 primary, 31 confidence, and 14 context.
For Level I)’s 26 objectives, the breakdown was 8 primary, 10 confidence, and 8 context.

Whether these results will remain consistent throughout the remainder of the project is an open question. It seems
likely that some changes will result as the primary and confidence arguments are developed and reviewed. Potential
changes include not only reclassification from one category to another, but also combining multiple objectives into a
single entity within an argument, and removal of some objectives from the argument entirely.

Select Based on the results of the four activities already described, the fifth activity undertaken was determining
how best to proceed in creating the initial candidate arguments. Three main questions were considered in making
this determination.

Question 1 was, “What software level should be considered first?” In favor of starting with level A is the fact that
the higher the level, the more important the assurance case is; thus, articulating an explicit assurance case for level A
has more value than for lower levels. In favor of starting with level D is the fact that its relatively small number of
objectives simplifies the tasks of discovering and articulating the explicit case, and makes reviewing the case by
others easier. By increasing the likelihood of receiving constructive feedback on the initial effort, starting with level
D seems likely to provide the best chance that the final product will be of high quality. So, the answer to the
question was determined to be “Level D.”

The second question considered was, “What notation will be used?” No single notation is ideal for everyone who
may be interested in the results of the work (ref. 22); however, insufficient resources are currently available to allow
expression in multiple notations. As has been already noted earlier in the paper, the answer to this question was
determined to be “GSN.”

“Will the developed assurance cases necessarily adhere to the DO-178C chapter / table format?” was the third main
question considered. Adherence to such a format has characterized the previously published work, and dominated
initial thinking in this project. Structuring sub-goals to correspond to the Annex A objectives tables seemed a
natural way to proceed at first. Further reflection, however, suggested that such a structure would have two
significant disadvantages: it would tend to emphasize the tables at the expense of the full text (avoiding such an
emphasis was one of the poals of the C revision), and it would likely overly constrain the expression of the
arguments. So, the answer to this question was determined to be “No.”

With the answers determined to these questions, the initial arficulation of a primary assurance argument and
associated confidence arguments for Level D software could begin. The cumrent results from that effort are
presented in the next section.

A Partial Case

The current draft primary assurance argument is presented first, divided into three parts. Afterwards a portion of one
confidence argument is presented.

Primary argument: The top-level of the primary assurance argument created so far is shown in Figure 2. The overall

goal Software performs intended function at acceptable level of safety for level D is derived from the stated purpose
of DO-178C, modified for the software level. Three items of context are identified as necessary for this goal to

C-27

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-28

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-29

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-30

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

References
1. RTCA. “Software Considerations in Airborne Systems and Equipment Certification.” DO-178B. 1992.

2. Rushby, J. “New Challenges in Certification of Aircraft Software” Proceedings of the 11th Imternational
Conference on Embedded Sofiware (EMSOFT). Taipei, Taiwan, 2011

3. RTCA. “Software Considerations in Airbome Systems and Equipment Certification.” DO-178C. 2011.

4. RTCA. “Software Integrity Assurance Considerations for Communication, Navigation, Surveillance, and Air
Traffic Management {CNS/ATM) Systems.” DO-278A.2011.

5. RTCA. “Supporting Information for DO-178C and DO-278A.” DO-248C_2011.
6. RTCA. “Software Tool Qualification Considerations.” DO-330_2011.
7. RTCA. “Model-Based Development and Verification Supplement to DO-178C and DO-278A ” DO-331. 2011.

8_RTCA. “Object-Oriented Technology and Related Techniques Supplement to DO-178C and DO-278A ” DO-332.
2011.

9. RTCA. “Formal Methods Supplement to DO-178C and DO-278A . DO-333. 2011.

10. Holloway, C M. “Towards Understanding the DO-178C / ED-12C Assurance Case” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. Edinburgh, 2012.

11. UK Ministry of Defence. Defence Standard 00-56 Issue 4: Safety Management Requirements for Defence
Systems. 2007

12 Knight, J. Fundamentals of Dependable Computing for Software Engineers. Boca Raton, Florida: CRC Press,
2012.

13. Toulmin, 8. E. The Uses of Argument, Updated Edition. Cambridge University Press, 2003 .

14. Hawkins, R.; Habli, I; Kelly, T_; McDenmid, J. “Assurance cases and prescriptive software safety certification:
A comparative study.” Safety Science. Vol 59, 2013.

15. Goodenough, J. B.; Weinstock, C. B_; Klein, A. Z. “Toward a Theory of Assurance Case Confidence.” CMU-
SEI-2002-TR-002, September 2012.

16. Graydon, P; Habli, I; Hawkins, R ; Kelly, T; Knight. J. “Arguing Conformance.” IEEE Software 29 (3), 2012.
17. Denney, Ewen; Pai, Ganesh. “A Lightweight Methodology for Safety Case Assembly.” Proceedings of the 3Ist
International Conference on Computer Safety, Reliability and Security (SafeComp '12), Magdeburg, Germany,
2012.

18. Hawkins, R; Kelly, T; Knight, J; Graydon, P. “A New Approach to Creating Clear Safety Arguments.”
Advances in Systems Safety. C. Dale and T. Anderson (eds). Springer-Verlag, 2011.

19. Yuan, T.; Kelly, T. “Argument Schemes in Computer System Safety Engineering ” Informal Logic 31 (2), 2011.

20. Bloomfield, R.; Bishop, P. “Safety and Assurance Cases: Past, Present and Possible Future” Making Systems
Safer. C. Dale and T. Anderson (eds). Springer-Verlag, 2010.

C-31

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

21. Hawkins, R.; Kelly, T. “A Systematic Approach for Developing Software Safety Arguments.” Proceedings of
the 27" International System Safety Conference. Huntsville, Alabama, 2009.

22. Holloway, C. M. “Safety Case Notations: Alternatives for the Non-Graphically Inclined?” Proceedings of the
3rd IET International System Safety Conference. Birmingham, UK, 2008.

23. GSN Committee. Draft GSN Standard Version 1.0. <http://www goalstructuringnotation.info/> (last accessed
June 3, 2013).

24 Federal Aviation Administration. “Standard Airworthiness Certification: Regulations — Title 14 Code of Federal
Regulations.” <http://fwww faa gov/aircraft/air cert/airworthiness certification/std awcert/std_awcert regs/regs/>
(last accessed June 12, 2013).

25. Society of Automotive Engineers. “Guidelines for Development of Civil Aircraft and Systems” SAE ARP
4754a, 2010.

26. Society of Automotive Engineers. “Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airbome Systems and Equipment.” SAE ARP 4761, 1996.

27. Ankrum, T. Scott; Kromholz, Alfred H. “Structured Assurance Cases: Three Common Standards.” Proceedings
of the Ninth TEEE International Symposium on High-Assurance Systems Engineering (HASE’05). Heidelberg,
Germany, 2005.

28. Galloway, A; Paige, R. F; Tudor, N. I; Weaver, R. A; McDermid, J. “Proof vs. Testing in the Context of
Safety Standards ” The 24™ Digital Avionics Systems Conference (DASC}, Washington D.C ., 2005.

29. Haddon-Cave, C. The Nimrod Review. London: The Stationary Office, 2009. <hitp://www.official-
documents_gov uk/document/hc0809/hc10/1025/1025 pdf> (last accessed June 12, 2013).

Biography

C. Michael Holloway, Senior Research Engineer, NASA Langley Research Center, 100 NASA Road, Hampton VA
23681-2199, telephone — (757) 864-1701, facsimile — (757) 864-4234, e-mail — c.m holloway{@nasa gov.

C. Michael Holloway is a senior research computer engineer at NASA Langley Research Center. His primary

professional interests are system safety and accident analysis for software-intensive systems. He is a member of the
IEEE, the IEEE Computer Society, and the International System Safety Society.

C-32

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

TOWARDS UNDERSTANDING THE DO-178C / ED-12C
ASSURANCE CASE

C.M. Holloway

NASA Langley Research Center, Hampton

Keywords: assurance case, software, standards, certification,
confidence

Abstract

This paper describes initial work towards building an explicit
assurance case for DO-178C / ED-12C. Two specific
questions are explored: (1) What are some of the assumptions
upon which the puidance in the document relies, and (2) What
claims are made concerning test coverage analysis?

1 Introduction

For about two decades, compliance with Software
Considerations in Airborne Systems and Equipment
Certification (DO-178B / ED-12B) [7] has been the primary
means for receiving regulatory approval for using software on
commercial airplanes. Despite frequent and occasionally
strident criticisms of the standard from various quarters, the
empirical evidence is quite strong that it has been successful.
Not only has no fatal commercial aircraft accident been
attributed to a software error, many of the technological
improvements that have been credited with significantly
reducing the accident rate have relied heavily on software.
For example, controlled flight into terrain—once one of the
most common accident categoriecs—has been nearly
eliminated by Enhanced Ground Proximity Warning Systems,
which are software-intensive [15].

The next edition of the standard, DO-178C / ED-12C, has
been published by the issuing bodics [8]. New editions of
two associated documents have also been published: Software
Integrity Assurance Considerations for Commurication,
Navigation, Surveillance and Air Traffic Management
(CNS/ATM) Systems (DO-278A / ED-109A) [10], and
Supporting Information (DO-248C / ED-94C) [9].
Additionally four new guidance documents have been
published to address software tool qualification
considerations (DO-330 / ED-215) |[11], model-based
development and verification (D0O-331 / ED-216) [12],
object-oriented technology (D0-332 / ED-217) [13], and
formal methods (D0-333 / ED-218) [14]. These standards
have not yet received official regulatory authority approval,
but the granting of approval is expected in due course.

The stated purpose of DO-178C / ED-12C remains essentially

unchanged: providing guidance “for the production of
software for airbome systems and equipment that performs its

C-33

VA, USA, c.michael holloway@nasa gov

intended function with a level of confidence in safety that
complies with airworthiness requirements.” In DO-178B /
ED-12B little or no rationale is given for how a particular
objective or collection of objectives contributes to achieving
this purpose. Thus, the assurance case for the document is
implicit ~Empirical evidence suggests that this implicit
assurance case is adequate, but its implicilness makes
analysing why it is adequate quite difficult DO-178C / ED-
12C is also mostly rationale-free, but the revised edition of
DO-248C / ED9AC includes a new section: “Rationale for
DO-178C [ED-12C] / DO-278A [ED-94C]°. This rationale
section provides a basis from which building an explicit
assurance case may be feasible.

This paper describes preliminary work towards building such
an explicit assurance case for DO-178C / ED-12C. Two
specific questions are explored: (1) What are some of the
assumptions upon which the guidance in the document relies,
and (2) What claims are made conceming test coverage
analysis?

The remainder of the paper is organized as follows. Section 2
provides brief background material about the DO-178C / ED-
12C document and the assurance case concept. Section 3
explores question (1). Section 4 discusses some initial
possible answers to question (2). Section 5 explains potential
future work and presents concluding remarks.

2 Background

The primary intended audience of this paper is people who
are at least passingly familiar with both DO-178B / ED-12B
and the assurance case concept. This section provides
background information for readers who fall outside of this
primary audience.

2.1 About DO-178C / ED-12C

Appendix A in DO-178C / ED-12C [8] contains a summary
of the history of the D0-178 / ED-12 series of documents.
The information below is derived from, and all quotations are
taken from, this appendix.

The initial document in the series was published in 1982, with
revision A following only three years later in 1985. Work on
revision B began in the fall of 1989; the completed document,
which was a complete rewrite of the guidance, was published
in December 1992_ This version introduced the notion of five

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

different possible software levels, with Level A denoting the
highest level (on which the most ngorous objectives were
levelled), and Level E denoting the lowest level (on which no
objectives were levelled).

Twelve years after the adoption of DO-178B / ED-12B,
RTCA and EUROCAE moved to update it, when they
approved the creation of a joint special committee / working
group in December 2004 (SC-205/WG-71).

This group began meeting mm March 2005, and completed its
work in November 2011. It operated under directions that
called for (among other things) maintaining an “objective-
based approach for software assurance™ and the “technology
independent nature” of the objectives. The special
committee/working group was also directed to seck to
maintain “backward compatibility with DO-178B / ED-12B”
except where doing so would fail to “adequately address the
current states of the art and practice in software development
in support of system safety”, “to address emerging trends”, or
“to allow change wath technology.” The documents produced
by the efforts arc listed above.

As a result of the terms of reference and operating
instructions, DO-178C / ED-12C can be best thought of as an
update to, as opposed to a re-write or substantial revision of,
DO-178B / ED-12B. Differences between the documents
include simple comections of known emors and
inconsistencics, changes in wording intended for clanfication
and consistency, an added emphasis on the importance of the
full body of the document, a change in tool qualification
cniteria and the related creation of a separate document for
tool qualification, modification of the discussion of system
aspects related to software development, closing of some
perceived gaps in guidance, and the creation of fechnology-
specific supplements for formal methods, object-oniented
technology, and model-based design and venfication.

2.2 About the assurance case concept

The basic concept of an assurance case is simplelz provide a
structured argument supported by evidence explaiming why a
particular claim about a system property is true. The most
common instantiation of the concept involves claims about
the system property of safety; hence the specific term safety
case is perhaps more widely known than the more genenc
term.

Claims, arguments, and evidence constitute the three
necessary components of an assurance case. Each of these
components must be stated explicifly and clearly in order to
produce a cogent assurance case. A cntical aspect of an
explicit and clear statement is articulating the context within

1 Although the concept is simple, much active research is on-
going about how to best creale, express, analyse, mmprove,
and maintain assurance cases (for example, [1], [2], [4], 5],

[19D.

C-34

and assumpfions upon which the claims, arguments, and
evidence depend.

Some ecxisting approaches and notations for cxpressing
assurance cascs distinguish between context and assumptions
[3]. For the purposes of this paper, we consider such a
distinction to be unnecessary. Both refer to information that 1s
not directly part of the explicit claims, arguments, or
evidence, but without which the claims, arguments, and
evidence cannot be understood fully or evaluated properly.

As a simple example of the importance of context and
assumptions, consider the following claim: Improved helmet
design will reduce the sevenity of concussions in football.
Someone reading this claim in Edinburgh, Scofland, UK, is
likely to find it unintelligible. “Helmets m football? There
are no helmets in foothall™ In contrast, someone reading the
same claim mm Edinburgh, Indiana, USA, is likely to find it
easy to understand. They will assume that the claim is to be
interpreted within the context of American football, in which
helmets are a required piece of equipment (aka kit).

Because of the mmportance of explicifly emmnerating
assumptions, one of the first activities that must be
undertaken in trying to articulate the assurance case implicitly
contained in DO-178C / ED-12C is to understand the context
within and assumptions upon which the guidance rests.
Initials steps towards this articulation are descnbed in the
next section.

3 Foundational assumptions

The work towards identifying all the relevant context and
assumptions for the guidance has just begun. Thus far, four
mnportant categories have been discovered: the goal of
satisfying airworthiness requirements; an implied relationship
between safety and correctness; permission of process
flexibility; and reliance on standard sofiware engineenng
practices.

3.1 Satisfying airworthiness requirements

As noted in the introduction, the stated purpose of DO-178C /
ED-12C is to “provide puidance for the production of
software for aithome systems and equipment that performs its
intended function with a level of confidence in safety that
complics with airworthiness requirements™ [8, p. 1] The
document itself does not provide any additional details about
what constitutes the airworthiness requirements. Users of the
document are expected to know the specific requirements that
apply to the system they are developing. These requirements
must be mncluded as a cntical part of the context of any

ASSUrance Casc.

3.2 Relationship between safety and correctness

Section 2 of DO-178C / ED-12C and Section 52 of the
Rationale make clear that the puidance is based on the
assumption that adequate system safety processes have been
followed in determining the requirements placed on the

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

software and its cnticality level. For example, the Rationale
states that “Sofiware/assurance levels and allocated system
requirements are a result of the system development and
safety asscssment processes™ [9, p. 126]

These sections also make clear that all relevant safety-specific
requirements are expected to be included. That is, onc of the
mputs that must be available before the guidance is applied is
a comprehensive set of the requirements, including all of the
requirements that must be satisfied to ensure an adequate
level of safety is mamntained. DO-178C / ED-12C is not
concerned with determining or analysing these safety
requircments, but only in satisfying them. Hence, it is stnctly
true, as is often asserted, that the standard is not a safety
standard [6]- Conducting system safety analysis is
intentionally ouiside of the scope of the gmdance. Guidance
for it is expected from other documents (for example [16],

[17D)-

A recader may thus ask how safety can be legitimately
mentioned as an important part of the purpose of the
guidance. The answer to this question is based on the
following reasoning, which is not explicitly stated, but
definitely implied. Given a set of requirements that mclhudes
everything necessary to provide an adequate level of safety,
then ensuning that the requirements are met necessanly
ensurcs that the adequate level of safety is provided. So, the
guidance needs to be concemed only with ensunng that
software satisfics its requirements. Within the context to
which the puidance applics, software system comectness
necessanly implics software system safety. This implication
does not hold in the general case, but it does hold m this
specific case. Thus, the DO-178C / ED-12C assurance case
can concentrate on demonstrating comectness of
implementation.

3.3 Permission of process flexibility

Another foundational assumption of DO-178C / ED-12C may
come as a surpnse fo people whose only exposure to the
guidance and its ancestors comes through cnticisms by
academics: developers are permitted wide process flexibility.
As stated in the Rationale, “The committec wanted to avoid
prescribing any specific development methodology. [The
guidance] allows for a software life cycle to be defined with
any suitable life cyde modcl(s) to be chosen for software
development. This is further supported by the introduction of
‘transition cntenia’. Specific transition cnifena between one
process and the next are not prescribed, rather [the guidance]
states that transition cniteria should be defined and adhered to
throughout the development life cycle(s) selected” [9, p. 126].

The DO-178C / ED-12C puidance docs include detailed
descriptions of specific activities that may be performed m
order to satisfy particular objectives. However, the guidance
also exphcitly states that the activities themselves may be
changed: “The applicant should plan a set of activities that
satisfy the objectives. This document descnibes activities for
achieving those objectives. The applicant may plan and,

C-35

subject to approval of the certification authonity, adopt
altemative activitics to those described in this document. The
applicant may also plan and conduct additional activitics that
are determined to be necessary” [8, p. 3].

This flexibility must be considered in the creation of an
assurance case. It means that certain parts of the argument
should permit alternate instantialions. An mstantiation based
on the activities descnibed in the gmdance can be developed,
but it should be made clear that this is only an example, and
that other instantiations may be possible.

3.4 Reliance on standard software engineering practices

The fourth foundational assumption of DO-178C / ED-12C
that has been uncovered thus far is that it relies in substantial
part on the efficacy of standard sofiware engineering
practices. The overview section of the Rationale identifics
this reliance dearly: “Since DO-178C / DO-278A heavily
bommows from standard softwarc engincenng principles that
are well understood, rationale is only provided for those
clements within the document that are specific to areraft
certification (or CNS/ATM system approval). The reader is
directed to the public literature for rationale for items not
covered in this section” [9, p. 125].

In creating an assurance case, a decision must be made about
how to handle those parts of the puidance for which the
raionale lies in standard practice. One option is to terminate
the analysis of such parts with a reference to practice.
Another option is to continue the analysis by including
caims, arguments, and evidence provided in the ‘public
literature” mentioned in the Rationale (such as [6] [18]).

4 Test Coverage Analysis

Besides explonng the assumptions underdying the DO-178C /
ED-12C guidance, the other preliminary work that has been
conducted thus far is considenng a specific aspect of the
puidance, namely test coverage analysis. This arca was
chosen because test coverage has been among the most
frequently cniticised aspects of DO-178B / ED-12B, and is
likely to continue to be so for the updated guidance.

The particular question that guided the mitial work was,
“What claims are made concerning test coverage analysis?” A
carcful articulation of the actual claims conceming test
coverage should help clanfy whether the cnticisms are valid,
or simply based on misunderstandings. Valid criticisms will
definitely affect the assurance case that is eventually
produced, by identifying parts of the case in which confidence
should not be placed. The potential effect on the assurance
case of existing misunderstandings is less clearcut

Guidance for testing is provided in Section 6.4 [8, pp. 44-51],
with test coverage analysis guidance given in Section 6.4.4 [8,
Pp- 49-51]. Testing objectives are summanised in Table A-6
[8, p- 101]; test coverage objectives are summansed m Table
A-7 [8, p. 102). Supporting Information [9] contans a

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

discussion m the Rationale section [9, p. 129-130] and several
frequently asked questions and discussion papers related to
test coverage:

FAQ #42 What needs to be considered when performing
structural coverage at the object code level? [9, p. 22]
FAQ #43 What i1s the intent of structural coverage
analysis [9, pp. 23 — 24]

FAQ #44 Why is structural testing not a DO-178C / DO-
278A requirement? [9, p. 24]

FAQ #74 What is the difference between the
development and life cycle objectives stated in DO-178C
for Level A versus Level B software, and how does that
relate to safety? [9, pp. 38-39]

DP #8 Structural Coverage and Safety Objectives [9, pp.
70 -71].

DP #13 Discussion of Statement Coverage, Decision
Coverage, and Modified Condition/Decision Coverage
(MC/DC) [9, pp. 81- 88].

The guidance and supporting information distinguishes
between the purposes of testing and the purposes of test
coverage analysis. Testing is intended “to demonstrate that
the software satisfies its requirements and demonstrate that
emors that could lead to unacceptable failure conditions, as
determined by the system safety asscssment process, have
been removed” [8, p. 44]. The objectives associated with
testing involve the relationship between executable object
code and its requirements, along with the compatibility of the
executable object code with the target computer. Testing is
all about the software product itself.

Test coverage analysis, on the other hand, has different
purposes. Two types of coverage analysis are descnbed in
the gmidance: requirements-based test coverage analysis, and
structural coverage analysis. The purpose of the former is
simply to analyse the test cases that were used m the
requircments-based testing to confirm that they satisfy the
crtenia of the gnidance. The purpose of the latter is a bit less
well understood. Hence the abundance of popular eniticism of
the structural coverage cntena, and the amount of space
devoted to it in Supporting Information. Determining the
structural coverage claims that should be included in an
assurance case is difficult. The discussion in the rest of this
section is only a beginning towards that determination.

Conceming structural coverage analysis, the guidance states
that it “determines which code structure, including interfaces
between components, was not exercised by the requirements-
based test procedures. The requirements-based test cases may
not have completely exercised the code structure, including
interfaces, so structural coverage analysis is performed and
additional venfication produced to provide stmctural
coverage” [8, p. 49]-

It is important to recognize that structural coverage analysis is
not presented in the guidance as a form of testing. It is

presented as a means of determining whether the
requirements-based tesis covered the code to the extent

C-36

required by the software level. If the analysis shows that
adequate coverage has been achieved, no additional tests arc
required®.

Evaluating the thoroughness of requirements-based testing 1s
the purposc explicitly mentioned in the guidance. FAQ #43
mentions two additional purposcs: providing “evidence that
the code structure was venfied to the degree required for the
applicable software level”, and providing “a means to support
demonstration of absence of unintended functions

Conceming the first of these additional purposes, the
guidance requires demonstrating increasingly higher degrees
of coverage for higher software level. ILevel D does not
require any structural coverage analysis. Level C requires
achieving statement coverage (every statement in the program
is invoked at least once). Level B requires decision coverage
{every entry and exit point to the program is invoked at least
once and every decision in the program has taken on all
possible outcomes at least once). For Level A software,
achieving modified condition / decision coverage (MC/DC) 1s
required (decision coverage with the additional requirement
that “each condition in a decision has been shown fto
independently affect a deasion’s outcome” [8, p. 114]).

Intuitively, the notion of basing the thoroughness of coverage
requircments on the cnticality of the software makes sense.
Executing more code stmcture should justify higher
confidence that errors have not been missed than executing
less. For the Level C and B requirements, the Rationale
section [9, p. 130] provides little additional msight beyond
this mtuitive notion. For the Level C requirement it simply
states that statement coverage was “deemed satisfactory™, and
for Level B it says that decision coverage “was considered
sufficient to address the increase m the associated hazard
calegory.™

The Rationale’s discussion about the reasons behind the
MC/DC requirement does provide imsight. MC/DC was
mtroduced m DO-178B / ED-12B. Iis introduction 1s
identified as a compromise “based on expenence gained from
three aircraft programs, where an approach denved from
hardware logic testing that concentrated on showing that each
term in a Boolean expression can be shown to affect the
result, was applied to software™ This compromise was
between the committee’s desire that for level A software all
logic expressions should be fully explored, and the
recognition that “the use of technmiques such as multiple
condition decision coverage, or cxhaustive truth table
cvaluation to fully ecxplore all of the logic was
impractical .”

% If somcone says, for example, “You have to do MC/DC
testing on Level A software,” they are cither using the
language very looscly, or they do not know what they are
talking about (or perhaps both). Anyone doubting the truth of
this statement should consult FAQ #44 [9, p. 24].

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

Conceming demonstrating unintended function, structural
coverage analysis serves fo help close a gap that might be lefi
by requircments-based testing. As FAQ #43 states, “Code
that i1s implemented without being linked to requirements may
not be exercised by requirements-based tests. Such code
could result in unintended functionality” [9, p. 23]. Because
unintended functions could conceivably have a nepative
mpact on system safety, detecting and climinating them
increases in importance with higher software levels.
Structural coverage analysis i1s intended as a means fo
increase confidence that the code that really exisis in the
software has been reached, and thus any unintended
functionality has been exposed.

As mnoted at the beginming of this section, the motivating
question for the mitial exploration was “What claims are
made conceming test coverage analysis?” Claims identified
thus far indude the following:

Requirements-based test coverage analysis confirms that
the requirement-based tests satisfy the critena of the
guidance.

Structural coverage analysis confirms whether the
requirements-based tests covered the code to the extent
required by the software level.

Structural coverage analysis identifies unintended
functions that exist in the software.

Refinements and additions to these claims are likely to be
made as the effort continues.

S5 Future Work

This paper has descnbed preliminary work towards building
an explicit assurance case for DO-178C / ED-12C. The next
steps to be followed include receiving feedback from readers
of the paper; articulating the top-level claim of the assurance
case; completing the determination of the assumptions
undedying this claim, and deadng how to handle each of
these assumptions in the assurance case; deciding what
notation(s) to use; completing the test coverage analysis
work; and determining whether to take a breadth-first or
depth-first approach to discovenng sub-claims, arguments,
and evidence.

Once these steps are taken, the creation of a full assurance
case can commence. Readers inferested in collaborating m
the endeavour are encouraged to contact the author.

References

[1] R. Bloomfield, P. Bishop. “Safety and Assurance Cases:
Past, Present and Possible Future”, Making Systems
Safer, C. Dale and T. Anderson (eds), Spnnger-Verlag,
pp. 51-67, (2010).

[2] P. Graydon, 1. Habli, R. Hawkins, T. Kelly, and J. Knight

“Arguing Conformance”, IEEE Software, 29 (3), pp. 50-
57, (2012).

C-37

[3] GSN Commumity. GSN Community Standard Version 1,
(2011). [http://www_goalstructunngnotation.info/
documents/GSN Standard pdf] Visited 20 July 2012.

[4] R. Hawkins, T. Kelly, J. Knight, and P. Graydon. “A New
Approach to Creating Clear Safety Arpuments™,
Advances in Systems Safety, C. Dale and T. Anderson
{eds), Sponger-Verag, pp. 3-23, (2011).

[5] C. M. Holloway. “Safety Case Notations: Altematives for
the Non-Graphically Inclined?” Proceedings of the kel
IET International System Safety Conference, (2008).

[6] J. Kmight. Fundamenials of Dependable Computing for
Sofiware Engineers. CRC Press, (2012).

[7] RTCA / EUROCAE. “Software Considerations m
Airborne Systemns and Equipment Cerfification”, DO-
178B/ED-12B (1992).

[8] RTCA / EUROCAE. “Software Considerations in
Airborne Systemns and Equipment Certification”, DO-
1'78C/ED-12C, (2011).

[9] RTCA / EUROCAE. “Supporting Information for DO-
178C [ED-12C] and DO-178A [ED-109A]”, DO-
248C/ED-94C, (2011).

[10] RTCA / EUROCAE. “Softwarc Intcgrity Assurance
Considerations for Communication, Navigation,
Surveillance, and Air Traffic Management (CNS/ATM)
Systems”, DO-278A/ED-1094, (2011).

[11] RTCA / EUROCAE. “Sofiware Tool Qualification
Considerations™, DO-330/ED-215, (2011).

[12] RTCA / EUROCAE. “Model-Based Development and
Venfication Supplement to DO-178C [ED-12C] and
DO-178A [ED-109A]7, DO-331/ED-216, (2011).

[13] RTCA / EUROCAE. “Olject-Onented Technology and
Related Techniques Supplement to DO-178C [ED-12C]
and DO-178A [ED-109A17, DO-332/ED-217, (2011).

[14] RTCA / EUROCAE. “Formal Mecthods Supplement to
DO-178C [ED-12C] and DO-178A [ED-109A]”, DO-
333/ED-218, (2011).

[15] J. Rushby. “New Challenges in Certification of Aircraft
Soflware™, Proceedings of the 11" International
Conference on Embedded Sofiware (EMSOFT), pp. 211-
218, (2011).

[16] Socicty of Automotive Engincers. Guidelines jor
Development of Civil Aircrafi and Systems, SAE ARP
4754a, (2010).

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

[17] Society of Automotive Engineers. Guidelines and
Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipement, SAE ARP
4761, (1996).

[18] 1. Sommemville. Sofiware Engineering. 9™ cdition.
Addison-Wesley, (2011).

[19] T. Yuan, T. Kelly. “Argument Schemes in Computer

System Safety Engineenng™, Informal Logic, 31 (2), pp-
89-109, (2011).

C-38

	Abstract
	Key Words
	Table of Contents
	List of Figures

