

DOT/FAA/TC-17/67

Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport
New Jersey 08405

Explicate ’78: Assurance Case
Applicability to Digital Systems

January 2018

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.

This document is also available from the
Federal Aviation Administration William J. Hughes
Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation
Federal Aviation Administration

http:actlibrary.tc.faa.gov

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
U.S. Government assumes no liability for the contents or use thereof. The
U.S. Government does not endorse products or manufacturers. Trade or
manufacturers’ names appear herein solely because they are considered
essential to the objective of this report. The findings and conclusions in this
report are those of the author(s) and do not necessarily represent the views
of the funding agency. This document does not constitute FAA policy.
Consult the FAA sponsoring organization listed on the Technical
Documentation page as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

http:actlibrary.tc.faa.gov

Technical Report Documentation Page
1. Report No.

DOT/FAA/TC-17/67

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

EXPLICATE ’78: ASSURANCE CASE APPLICABILITY TO DIGITAL
SYSTEMS

5. Report Date

January 2018

6. Performing Organization Code

7. Author(s)

C. Michael Holloway & Patrick J. Graydon

8. Performing Organization Report No.

9. Performing Organization Name and Address

NASA Langley Research Center, 100 NASA Road, Hampton VA 23681

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

IAI-1073
12. Sponsoring Agency Name and Address

Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport, NJ 08405

13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code

Barbara Lingberg, AIR-6B4
15. Supplementary Notes

The FAA William J. Hughes Technical Center Aviation Research Division Technical Monitors were Charles Kilgore and Srini
Mandalapu.
16. Abstract

This report documents the results of the Explicate '78 project. The project was conducted by NASA Langley Research Center in
support of an annex (Assurance Case Applicability to Digital Systems) to the Reimbursable Interagency Agreement IA1-1073
(Design, Verification, and Validation of Advanced Digital Airborne Systems Technology). In particular, the report describes an
assurance case developed to express the arguments contained in, or implied by, DO-178C (Software Considerations in Airborne
Systems and Equipment Certification), which implicitly justifies the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment that performs its intended function with a
level of confidence in safety that complies with airworthiness requirements.” An appendix to the report provides an assurance case
for DO-330 (Software Tool Qualification Considerations).

17. Key Words

DO-178C, Assurance case, Argument, Software, Correctness, Safety,
DO-330

18. Distribution Statement

This document is available to the U.S. public through the
National Technical Information Service (NTIS), Springfield,
Virginia 22161. This document is also available from the FAA
William J. Hughes Technical Center at actlibrary.tc.faa.gov.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

191

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

Without the initial encouragement of Mike DeWalt (the retired Chief Scientist and Technical
Advisor for Software), the Explicate ’78 project would not have taken place. Without his careful
review of the work at several stages, the results would not have continued. Barbara Lingberg also
contributed important technical insights. Chuck Kilgore (now retired) and Srini Mandalapu
provided helpful program management support, particularly in accommodating schedule changes
necessitated by a variety of unexpected events that transpired during the project. To all of you,
thanks!

iii

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ix

1. INTRODUCTION 1

2. BACKGROUND 2

2.1 About DO-178C 2
2.2 About Assurance Case Principles 3
2.3 About the GSN 5
2.4 About Previous Work 7
2.5 Summary of Terms 8

3. THE IMPLICIT ASSURANCE CASE IN DO-178C 8

3.1 Guiding Principles 8
3.2 Level D Arguments 9
3.3 Level C Arguments 22
3.4 Level B Arguments 33
3.5 Level A Arguments 38

4. OBSERVATIONS AND ANALYSIS 43

4.1 About Fidelity 43
4.2 About Adequacy 44

4.2.1 Observation 1 – Foundational Reliance is Placed on a Separate Safety
Process 45

4.2.2 Observation 2 – Foundational Reliance is Placed on System
Requirements 46

4.2.3 Observation 3 – Critical Reliance is Placed on Data Item Integrity 46
4.2.4 Observation 4 – Warrants are Difficult to Discern 47
4.2.5 Observation 5 – Adequacy Depends on Specifics 47
4.2.6 Observation 6 – A Case-Based Alternative Approach Seems Feasible 48

5. THE OTHER DOCUMENTS 48

6. CONCLUDING REMARKS 53

7. REFERENCES 54

iv

APPENDICES

A—ARGUMENTS FOR DO-178C
B—ARGUMENTS FOR TOOL QUALIFICATION (DO-330)
C—PREVIOUS PAPERS

v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

LIST OF FIGURES

Figure Page

Some Elements of GSN 6

Example of a GSN Element 6

Level D: SWACCEPTABLELEVD 11

Level D: HLRSATSRREFLEVD 12

Level D: EOCSATHLREFLEVD 14

Level D: JustifiedConfidenceLevD 16

Level D: ADQPLANNINGLEVD 17

Level D: ADQVERVERLEVD 18

Level D: ADQCONFIGMANLEVD 19

Level D: AdqSQALevD 21

Level D: AdqCertLiasLevD 21

Level C: SwAcceptableLevC 23

Level C: HLRSatSRRefLevC 24

Level C: JustifiedConfidenceLevC 26

Level C: AdqPlanningLevC 27

Level C: AdqVerVerLevC 28

Level C: AddRefineLevelCSat 29

Level C: LLRSatLevC (top) 30

Level C: LLRSatLevC / LLRAdqLevelC (left) 31

Level C: LLRSatLevC / SWArchAdqLevelC (right) 32

Level C: EOCSatLLevC 33

Level B: SwAcceptableLevB 34

Level B: JustifiedConfidenceLevB 35

Level B: IndepSatLevB 37

Level B: AdqVerVerLevB 38

Level A: SWAcceptableLevA 39

Level A: JustifiedConfidenceLevA 40

Level A: IndepSatLevA 41

Level A: AdqVerVerLevA (top) 42

Level A: AdqVerVerLevA (left) 42

vi

31 Level A: AdqVerVerLevA (right) 43

32 Level D (FM): HLRSatSRRefLevDFM 49

33 Level D (OO): HLRSatSRRefLevDOO 50

34 Level D (FM & OO): HLRSatSRRefLevDFMOO 51

35 Level D (MBD): HLRSatSRRefLevDMB (PARTIAL) 52

vii

LIST OF ACRONYMS

CNS/ATM Communication, Navigation, Surveillance and Air Traffic Management
EUROCAE European Organisation for Civil Aviation Equipment
GSN Goal Structuring Notation
TQL Tool Qualification Level

viii

EXECUTIVE SUMMARY

The Explicate ’78 project was conducted by NASA Langley Research Center in support of an
annex (Assurance Case Applicability to Digital Systems) to a Reimbursable Interagency
Agreement IA1-1073 (Design, Verification, and Validation of Advanced Digital Airborne Systems
Technology) between NASA Langley Research Center and the FAA.

This report documents two of the main achievements of the Explicate ’78 research:

1. Expressing, as an assurance case, the arguments contained in, or implied by, DO-178C,
which implicitly justifies the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements”

2. Expressing as an assurance case the arguments contained in, or implied by, DO-330, whose
stated purpose “is to provide tool qualification guidance”

Substantial portions of the DO-178C assurance case are presented and explained in the body of
the report, with the entire case presented in appendix A. Brief but substantive explanatory materials
about DO-178C (and associated documents) and about assurance cases, evaluative observations
and analysis, and representative arguments from the technology supplements are also presented in
the body of the report. The complete DO-330 assurance case is presented and explained in
appendix B. Previous papers written about the work are reprinted in appendix C.

ix

1. INTRODUCTION

In September 2012 representatives from NASA Langley Research Center and the FAA signed an
annex (Assurance Case Applicability to Digital Systems) to the Reimbursable Interagency
Agreement IA1-1073 (Design, Verification, and Validation of Advanced Digital Airborne Systems
Technology). The annex initiated research to create an assurance case framework for the guidance
document DO-178C: Software Considerations in Airborne Systems and Equipment Certification
[1], and to develop educational materials and argument evaluation criteria. The research
collectively came to be called Explicate '78.

The specific activities agreed to be undertaken included the following:

• Expressing, as an assurance case, the arguments contained in, or implied by, DO-178C,
which implicitly justifies the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements”

• Determining whether there is a need to conduct an analysis similar to the DO-178C analysis
for any of the four supplementary documents associated with DO-178C, and, conducting
any such analysis deemed worthwhile

• Providing educational materials about the basic principles, terminology, and existing uses
of assurance/safety cases

• Developing argument evaluation criteria for determining whether an assurance case is
sufficient for purpose

This report fully documents the first two of these activities, while making use of results from the
third and fourth activities where appropriate. Full documentation of those two activities has been
previously provided to the FAA in the form of a separate series of video presentations and
transcripts [2–6], augmented by two NASA contractor reports [7, 8].

Deciding how to best organize the report was difficult. Specific difficulties included determining
how much background information to provide and in what form to provide it; selecting the style
and order of presentation for the individual elements of the DO-178C arguments; choosing the
depth, breadth, and detail of evaluation comments to present; and deciding how to present the
analysis of the chosen supplementary document. Many different potential solutions to these
difficulties were tried and found wanting. The solutions adopted in this report are not perfect but
should be adequate for the most likely readers of the report.

• Background information is provided at a fairly high level, with references given for the
benefit of readers who may need more details.

• The DO-178C arguments are presented in a graphical style nearly identical to the popular
Goal Structuring Notation (GSN) [9], with textual commentary added for further
explanation.

• The order of explication of the DO-178C arguments mimics the order in which the
arguments were originally created, namely beginning with the least critical software level
to which the document applies (Level D) and proceeding level-by-level to Level A.

1

Only a few selected arguments are presented in the main body of the report. The full
collection is contained in appendix A.

• Evaluation results are summarized and explained in a separate section.
• The analysis of the chosen supplementary document (DO-330: Software Tool Qualification

Considerations [10]) is presented in appendix B. A brief explanation of why it was chosen
for analysis, and why the other three supplements were not, is included in the main body
of this report.

• The three previously published conference papers about Explicate '78 [11–13]) are
reproduced in full in appendix C. Some material from these papers is used verbatim in this
report. Some other material was made obsolete as the project progressed.

2. BACKGROUND

Fully understanding this paper requires at least a passing familiarity with DO-178C, the assurance
case concept, and the GSN. This section provides background information on these three subjects
for readers who do not already possess the requisite knowledge. This section also provides a brief
discussion of prior related published work.

2.1 ABOUT DO-178C

For the benefit of the readers who are not familiar with DO-178C, a short discussion of the DO-
178C’s history is provided in this section. The information relies heavily on appendix A in DO-
178C, which contains a summary of the history of the DO-178 series of documents.

The initial document in the 178 series was published in 1982, with revision A following in 1985.
Work on revision B began in the fall of 1989; the completed document, which was a complete
rewrite of the guidance from revision A, was published in December 1992. Among many other
changes, the B version expanded the number of different software levels based on the worst
possible effect that anomalous software behavior could have on an aircraft. Level A denoted the
highest level of criticality (for which satisfying the most rigorous objectives was required), and
Level E denoted the lowest level (which was objective free). The B version also introduced annex
tables to summarize the required objectives by software level.

Twelve years after the adoption of DO-178B, RTCA and the European Organisation for Civil
Aviation Equipment (EUROCAE)1 moved to update the document by approving the creation of a
joint special committee/working group in December 2004 (SC-205/WG-71). This group started
meeting in March 2005 and completed its work in November 2011. The terms of reference for the
group include an “objective-based approach for software assurance” and the “technology
independent nature” of the objectives. The special committee/working group was also directed to
maintain “backward compatibility with DO- 178B” except where doing so would fail to

1 At one time, RTCA was an abbreviation for Radio Technical Commission for Aeronautics; since 1991 the four letters have been the
freestanding name of the organization. EUROCAE uses a different document numbering scheme, but the content of the documents is otherwise
identical. For example, DO-178C is called ED–12C. Only the DO numbering is used in this report.

2

“adequately address the current states of the art and practice in software development in support
of system safety,” “to address emerging trends,” or “to allow change with technology.”

Ultimately, the effort produced seven documents. In addition to DO-178C, new editions were
written of two existing associated documents, which are DO-278A: Software Integrity Assurance
Considerations for Communication, Navigation, Surveillance and Air Traffic Management
(CNS/ATM) Systems [14] and DO-248C: Supporting Information for DO-178C and DO-278A
[15]. The former is very similar to DO-178C, but addresses software in certain ground-based
systems, which operate within a different regulatory scheme from airborne systems. The latter
provides answers to various questions and concerns raised over the years by both industry and
regulatory authorities. It contains 84 frequently asked questions, 21 discussion papers, and a brief
rationale.

Four new documents were also published to address specific issues and techniques: DO-330:
Software Tool Qualification Considerations [10]; DO-331: Model-Based Development and
Verification Supplement to DO-178C and DO-278A [16]; DO-332: Object-Oriented Technology
and Related Techniques Supplement to DO-178C and DO-278A [17]; and DO-333: Formal
Methods Supplement to DO-178C and DO-278A [18]. The general subject matter of these
documents is evident from their titles.

As a result of the terms of reference and operating instructions under which DO-178C was
developed, the document is only an update to, as opposed to a rewrite or substantial revision of,
DO-178B. Differences between the B and C versions include corrections of known errors and
inconsistencies; changes in wording intended for clarification and consistency; an added emphasis
on the importance of the full body of the document; a change in qualification criteria for tools and
the related creation of a separate document for tool qualification; modification of the discussion of
system aspects related to software development; closing of some perceived gaps in guidance; and
the creation of the technology-specific supplements previously enumerated for formal methods,
object-oriented technology, and model-based design and verification.

The relevant documents received official regulatory authority recognition in 2013 [19, 20].

2.2 ABOUT ASSURANCE CASE PRINCIPLES

The concept of an assurance case is a generalization of the safety case concept. A common
definition2 of a safety case is “a structured argument, supported by a body of evidence that provides
a … case that a system is safe for a given application in a given operating environment” [21].
Conclusions are made concerning the achievement of an acceptable level of safety, and arguments
are focused on providing justified confidence that those safety conclusions are satisfied. A more
general assurance case concerns providing justified confidence about desired attributes in addition

2 The elided part of the quoted definition includes the adjectives “compelling, comprehensible and valid.” With those adjectives, the definition
embeds notions of goodness, which is inappropriate in a definition for a phrase that may be applied to something that only purports to be a good
safety case, but which may, after evaluation, be found to be neither compelling, comprehensible, nor valid. The main body of 00-56, issue 6,
implicitly recognizes this distinction, but the definition has not been changed.

3

to safety, such as correctness, functionality, performance, or security. Hereafter in this report, this
general term will be used.

Claims, arguments, evidence3, context, and assumptions constitute five components of a well-
structured assurance case [22]. A claim, within the assurance case literature, refers to a constative
statement about some attribute or aspect related to the system being considered. Goal is another
common name for the same concept within the assurance case community. Two terms commonly
used for centuries within the philosophy and logic communities for the same concept are
proposition and conclusion [23, 24]. The term conclusion is used in this report because it tends not
to have any of the negative connotations of the other terms.

In a full assurance case, there will likely be many conclusions that must be shown to hold4 at
varying levels of generality. An example of a high-level conclusion is: The software performs
its intended function at an acceptable level of safety (the sentences in bold throughout the report
denote assurance case text). Examples of conclusions with increasing levels of specificity are as
follows: High-level requirements are a satisfactory refinement of system requirements;
adequate configuration management is in place; and configuration items are identified.

In the assurance case literature, the term argument is overloaded. It is commonly used to refer to
the overall case or to portions of the case that can be described separately. It is also commonly
used in a more restrictive sense of that which explains how a conclusion is supported by, or
justifiably inferred from, the evidence and associated lower-level conclusions. Perhaps to partially
alleviate the overloading confusion, the GSN uses the term strategy for this latter situation. The
most appropriate term, however, is warrant [25], which is used in this report.

Evidence, as commonly used in the assurance case community, refers to the available body of
known facts relevant to the case being considered. Data, fact, and solution are synonymous terms.
Examples of evidence include hazard logs, testing results, and mathematical theorems. When
considered in light of traditional treatments of argumentation, evidence is nothing more than a
special type of premise. In such treatments, a premise is a statement cited in support of a
conclusion, which it is presumed the listener or reader will readily accept as true (either
immediately, or as the result of another argument supporting its truth). Both premise and evidence
are used in this report. The former is generally used for statements in which additional argument
is provided to justify their truth; the latter is used for premises at the “bottom” of an argument
structure.

3 The claims, argument, and evidence distinction are established within the safety case literature. The terms and distinctions are briefly addressed
in this section.
4 The phrase “shown to be true” and variants, such as “shown to hold,” are implicitly modified by “… to an appropriate degree of confidence for
the case under consideration.” Truth is of concern, in the practical, engineering sense, but not in an absolute philosophical or theological sense.

4

Context generally refers to any information that is needed to provide definitions or descriptions of
terms or to constrain the applicability of the assurance case to a particular environment or set of
conditions. For example, the context for a conclusion “the software performs its intended
function with a level of confidence in safety that complies with airworthiness requirements”
would likely include the applicable airworthiness requirements [26], a description of the intended
function of the software, and any constraints on the environment in which the software is expected
to be used. Some recent research defines context more strictly than has been done previously [27].
The looser, more common notion of context is used in this report.

An assumption is a statement on which the case relies but which is not elaborated or argued for in
the assurance case. It is simply assumed to hold. As an example, an argument concerning safety
that concludes that all identified hazards have been eliminated may rely on the assumption
that all credible hazards have been identified.

These five concepts, no matter which terms are used to express them, are all present implicitly in
the collective minds of the developers of any successful engineered system. An assurance case
simply provides a means for ensuring that this implicit knowledge is documented explicitly in a
form that can be examined carefully and critically, not only by the developers, but also by others.
The use of assurance cases is not a new way of engineering, but rather a way of documenting in
arguments what engineers already do. An active research community is exploring how to best
create, express, analyze, improve, and maintain assurance cases. Readers interested in learning
more about assurance case research are encouraged to explore the references cited in the papers
reproduced in appendix C of this report, along with other references cited directly in the main
body.

One additional assurance case concept—the confidence argument—plays an important role in the
DO-178C case. The idea of separating primary and confidence arguments was first introduced in
2011 by researchers from the Universities of Virginia and York [28]. It involves distinguishing
between arguments making direct conclusions about the attributes of interest (e.g., safety in a
safety case) and arguments related to sufficiency of confidence instead of intermingling these
different concerns into a single-argument structure. The Explicate ‘78 research did not apply the
specific proposed mechanisms, but it did make extensive use of the general concept. This general
concept is especially appropriate for DO-178C. Even a cursory reading of the guidance reveals
that it contains a mixture of objectives about the desired properties of the final software product,
intermediate products, and the processes used to develop the product. With only a few exceptions,
this mixture separates rather cleanly into primary and confidence arguments.

2.3 ABOUT THE GSN

The GSN is a popular graphical notation for expressing assurance cases. For developing GSN
diagrams for Explicate ‘78, a set of tools from Dependable Computing, Inc. (DCI) was used. Some
of the primary symbols of the notation as rendered by the tools are shown in figure 1. The standard
GSN names for the concepts are used in the figure. However, conclusion is used instead of goal
and warrant instead of strategy. The standard GSN uses ellipses, not rounded rectangles, for
assumptions and justifications, as is used by the DCI tools. Text within these symbols is used to
provide content and a convenient means of referring to individual elements.

5

The concepts represented by most of these elements have already been described. The new
concepts introduced in the figure are as follows. A justification gives the rationale for why a
particular strategy (warrant) or goal (conclusion) is acceptable. A module provides a means for
referring to a claim (conclusion) that is elaborated in a separate argument. To construct an
argument, the elements of the GSN notation are linked together using the in context of or supported
by directed lines. The undeveloped entity symbol is appended to the bottom of another element to
indicate that the particular line of argument requires further development.

Figure 1. Some Elements of GSN

The meaning of two or more supported by arrows proceeding from a goal (conclusion) or strategy
(warrant) is that all elements pointed to by the arrows are necessary to provide support. Also, all
elements at a lower level in the structure inherit the context and assumptions attached to their
ancestors in the structure.5

For the implementation of GSN used in Explicate ‘78, the text within each graphical element
consists of three parts, one numerical and two alphabetical, as shown in figure 2.

Figure 2. Example of a GSN Element

The number towards the lower right-hand side (32 in the example) is a unique identifier that is
used in producing a comprehensive index. It is called the GSN ID. The GSN ID distinguishes
among GSN elements across the entire collection of arguments. Whether GSN IDs are generated
is controlled by the argument developer. These are present in all of the DO-178C arguments
developed for Explicate ‘78.

5 This statement is not true of modules in standard GSN. For reasons of simplicity and readability, standard GSN practices have not been strictly
adhered to. The away goal and pattern constructs have not been used.

6

The two alphabetical parts are written when developing the argument. The bold text at the top
(SwAcceptableLevA in the example) simply serves as an identifier; it is optional, but used
throughout the Explicate ‘78 arguments. The normal text in the middle of the graphical element is
the essential content: Software performs its intended function at acceptable level of safety for
Level A in the example.

The DCI tools used in Explicate ‘78 also provide support for two forms of embedded links:

• Module link: denoted by a small square with an arrow on the bottom right-hand corner of
an element. This link only appears in electronic versions of the arguments; it does not
appear in printed versions.

• Confidence link: denoted by a small yellow square partially hidden behind the upper right
hand corner of an element. This link appears in both electronic and printed versions.

Other aspects of the notation are explained below when they first appear.

2.4 ABOUT PREVIOUS WORK

No published work was found that has attempted to accomplish the same goals as the current effort,
but two previous projects did address related aspects concerning DO-178B and assurance cases.

The MITRE Corporation tried to map three different standards into an assurance case framework
[29]. The primary purpose of this effort was to explore two primary hypotheses: All assurance
cases have similar components, and an assurance standard implies the structure. One of the three
standards used in the study was DO-178B. The created assurance case was structured rigidly
around the DO-178B chapters. For example, the top-level conclusion was that DO-178B Software
Considerations are taken into account. Sub-conclusions were given for each of the DO-178B
chapters (2–9); for example: 2.0 System Aspects were taken into account; the 5.0 Software
Development Process was executed as planned; and the 9.0 Certification Liaison process was
properly established and executed.

The effort appears to have concentrated on translating the textual and tabular form of DO-178B
into a graphical form with as little interpretation or abstraction as possible. This differs
substantially from the Explicate ‘78 research, which concentrated on discovering the underlying
implicit assurance case, not rigidly translating one form of concrete expression into another form.

Researchers at the University of York and QinetiQ in the United Kingdom conducted the other
related previous work. The primary goal of this research was to explore ways to justify substitution
of one technology for another. In particular, a major emphasis was placed on developing arguments
showing that the evidence produced by replacements for testing (such as formal proof) could be at
least as convincing as the evidence produced by testing. As part of this research, certain aspects of
the testing-related objectives of DO-178B were explored and GSN representations were produced.
Unpublished results from the research were submitted to SC–205/WG–71, and considered by the
Formal Methods sub-group, which wrote the document that eventually become DO-333.

7

2.5 SUMMARY OF TERMS

The following list enumerates and explains the specific terms that are used in the description of
the DO-178C assurance case:

• argument: a structure consisting of a conclusion, one or more premises, and a warrant,
along with possible additional information in the form of context and assumptions. The
purpose of an argument is to convince the reader that its conclusion is true. Recall that
“true” in the context of this report is assumed to always be modified by “to an appropriate
degree of confidence for the case under consideration.”

• conclusion: a statement whose truth is asserted as a consequence of the warrant and
premises

• warrant: an explanation of the reason(s) the premises are sufficient to establish the truth
of the conclusion

• premise: a statement that, if true, contributes positively to the truth of the conclusion. Some
premises may themselves be conclusions of supporting arguments.

• evidence: a special form of premise that identifies known facts. No additional argument is
needed for evidence.

• context: additional information needed to clarify or constrain the meaning of parts of an
argument

• assumption: a statement whose truth is necessary for the conclusion to hold, but for which
no additional argument or elaboration is provided

• main argument: an argument making direct conclusions about the attributes of interest in
the case; may also be called a top-level argument

• confidence argument: an argument concerning whether confidence is justified in relevant
aspects of the main argument

3. THE IMPLICIT ASSURANCE CASE IN DO-178C

With the preceding background information as a foundation, it is now easier to discuss the
assurance case developed to describe the guidance in DO-178C. Throughout this discussion, the
definite pronoun will be employed when referring to this assurance case. This usage is not intended
to imply that the specific case developed in this research is the only, or even necessarily the best,
case that can be developed. As indicated in previous work, several alternative approaches were
explored, and others briefly considered. Pages C-24 through C-27 of appendix C present the early
steps taken in discovering and developing this case.

3.1 GUIDING PRINCIPLES

Three principles guided the creation of the DO-178C assurance case: 1) faithfulness to the text; 2)
minimum speculation; and 3) explication before evaluation. These principles were adopted to help
guard against straying from the purpose of the research, which, as indicated previously, was to
accurately represent the implied assurance case in DO-178C. The possibility was therefore reduced
of inadvertently (or intentionally), creating a case that conformed more to a personal concept of
an ideal case than to the guidance.

8

Maintaining faithfulness to the text dictated using actual words from the guidance whenever
possible. For example, whenever an argument element represented a specific objective, the full
text of the objective was reproduced in the argument along with citations to both the text section
in which it appears and the associated Annex table entry. Faithfulness to the text also required
consulting the explanatory material in DO-248C to clarify possible ambiguities.

In one area, following the faithfulness to the text principle produced some surprising results.
Except for a handful of instances, nothing about activities appears in the arguments. DO-178C
section 1.4.d explicitly states that an applicant “may plan and … adopt alternative activities to
those described in this document.”6 Thus, the activities described in the guidance are only
suggestions, not an integral part of the implied assurance case.

The primary application of the minimum speculation principle was for explicating the warrants
associating premises and conclusions. In many instances, neither the DO-178C guidance nor the
DO-248C additional information contained any explicit or strongly implied reasons explaining
why certain premises should be considered to justify a particular conclusion. For such instances,
the warrant included in the argument took a trivial compositional form.

The explication before evaluation principle is almost self-explanatory. The full set of arguments
was created before any evaluation of their sufficiency was undertaken. However, throughout the
creation of the arguments, periodic assessment was conducted regarding whether they accurately
captured the reasoning contained in the guidance. The explication before evaluation principle was
also followed in organizing the rest of the current section. A full representative sample of the
arguments is presented before any evaluative comments are made about them.

3.2 LEVEL D ARGUMENTS

All the Level D arguments are shown in this section, with varying amounts of descriptive text,
beginning with much detail and decreasing throughout the section in anticipation that the reader
will grow accustomed to the content and style of the graphical arguments7.

The top-level assurance argument (see figure 3) establishes the conclusion SwAcceptableLevD:
Software performs its intended function at acceptable level of safety for Level D. Recall that
the stated general purpose of DO-178C is to provide “guidelines for the production of software for
airborne systems and equipment that performs its intended function with a level of confidence in
safety that complies with airworthiness requirements.” Thus, the argument’s conclusion represents
a concise statement of the stated purpose of the guidance as applied specifically to Level D
software.

6 The elided text is “subject to the approval of the certification authority.” The existence of these words in the quoted sentence is entirely superfluous
because those words are implicitly part of everything in the guidance.
7 The size of some arguments, combined with suboptimal handling of the interaction of figures and text in Microsoft® Word®, causes several
instances of more-than-desired whitespace throughout the exposition of the arguments.

9

The four context elements (IntFun, DefAccSafetyFromRegs, GlossaryApplies, and LevelDDef)
attached to the concise conclusion provide necessary additional information about its precise
meaning. IntFun indicates that the software mentioned in the conclusion is fully described in an
external Description of the intended function of the software. DefAccSafetyFromRegs indicates
that the definition of acceptable level of safety is found in the applicable airworthiness regulations.
GlossaryApplies indicates that any words or phrases used in the argument with entries in the DO-
178C glossary are to be assumed to have the meaning specified therein. Finally, LevelDSoftware
specifies that the meaning of Level D software in the conclusion matches the meaning specified in
the guidance.

The argument shows that the DO-178C guidance implicitly establishes the conclusion through two
premises (HLRSatSRRefLevD and EOCSatHLRefLevD) and the warrant ArgByCorrectness.
Both premises are needed to show that the software correctly performs its intended function.
Testing to allocated system requirements might be inadequate to show that software adequately
addresses software contributions to system hazards. In situations for which high-level
requirements are not a satisfactory refinement of allocated system requirements, software might
perfectly satisfy the high-level requirements, yet fail to perform its intended function. The use of
the module notation for these premises indicates that they are justified by supporting arguments.

10

Figure 3. Level D: SWACCEPTABLELEVD

The warrant ArgByCorrectness explains that these premises are also sufficient for that purpose.
Assumption ReqAllocValidStuff and context elements HLRDev and DerHLProv document how
the argument’s logic depends on the guidance being used in the context of an effective, compatible
system safety assessment process. Without this clarification, the argument might: 1) leave readers
wondering how evidence of requirements refinement and satisfaction shows achievement of the
claimed level of safety; 2) mislead readers into strictly equating “safety” and software correctness;
or 3) give readers the impression that the standard deems such safety analysis unnecessary for
Level D software. By documenting both the assumption of an external system safety assessment
process and objective A-2.2’s requirement that software developers provide system safety
assessors with derived requirements, this part of the argument explains how system development
efforts using DO-178C address safety despite the explicit omission of safety analysis evidence.

 11

The only remaining element in the diagram is the confidence link (such links are denoted by a
partially hidden small yellow square) attached to ArgByCorrectness. The confidence argument
indicated by this link establishes the conclusion JUSTIFIEDCONFIDENCELEVD.

Next is the first premise of the top-level argument, which is HLRSATSRREFLEVD: High-level
requirements are (for Level D) a satisfactory refinement of the allocated system
requirements. The (sub-) argument establishing this premise is shown in figure 4.

Figure 4. Level D: HLRSATSRREFLEVD

The three premises for this conclusion are HLRCOMPLY (which corresponds to the objective stated
fully in section 6.3.1.a and summarized in Annex table entry A-3.1), HLRACCCONS (section
6.3.1.b, table entry A-3.2), and HLRTRACE2SR (section 6.3.1.f, table entry A-3.6). HLRCOMPLY
concerns the high-level requirements satisfying the system requirements and any derived

12

requirements being handled appropriately. HLRTRACE2SR concerns traceability between the high-
level and the system requirements allocated to software. HLRACCCONS concerns the accuracy,
consistency, and unambiguousness of the high-level requirements. Because DO-178C does not
provide a definition or description of what is meant by “accuracy,” and because the process of
applying a standard dictionary definition of the word to requirements is not clear, the assumption
is attached (EXTDEFOFACCURATE) that there exists an external, agreed definition of accurate
requirements. Without such an agreed definition, the meaning of this premise cannot be fully
known.

Neither the guidance nor the supporting information provides any explanation for why satisfying
these three premises is sufficient (in a Level D sense) to establish that the high-level requirements
are a satisfactory refinement of the system requirements allocated to software. Thus, the warrant
ARGBYOBJSAT is nothing more than the trivial statement Showing compliance, accuracy,
consistency, and traceability of High-level Requirements is sufficient for Level D software.

Each of the three premises is supported by direct evidence (which, as noted earlier, is indicated by
the small circle) contained in DATA ITEM 11.14: Software Verification Results. This section
number and data item name is taken directly from chapter 11 of the guidance.

Figure 5 shows the argument for the second premise (EOCSATHLREFLEVD) of the top-level
argument. This argument is slightly more complicated than the previous one, involving five
premises and several context items that require a bit of explanation. Like the previous argument,
however, the warrant ARGBYOBJSAT is a trivial statement because neither the guidance nor
supporting information explain why the premises should be considered sufficient to establish the
conclusion.

13

 Figure 5. Level D: EOCSATHLREFLEVD

14

The context item attached to the conclusion requires explanation. EOCANDPDIPNL encapsulates
the objective of the integration process stated in section 5.4.1 and table A-2.7 of DO-178C: the
“Executable Object Code and Parameter Data Item Files, if any, are produced and loaded
in the target computer” [1] An objective is captured as a context element in the argument instead
of as a conclusion or premise because any objective concerning only the existence of a data item
is consistently represented as context elements. This is because showing the satisfaction of such
an objective does not require any additional argument.

Of the five premises, three directly address the quality of the executable object code. The evidence
for two of these (EOCCOMPLIESHL, EOCROBUSTHL) is contained in the relevant parts of three
data items:

• DATA ITEM 11.13: Software Verification Cases and Procedures
• DATA ITEM 11.14: Software Verification Results
• DATA ITEM 11.21: Trace Data

The third premise concerning the executable object code (EOCCOMPATTC) concerns
compatibility with the target computer. Two context elements (TARGETCOMP,
TCTESTRATIONALE) provide additional information regarding why testing on the target computer
is considered essential. The evidence for demonstrating the truth of this premise is contained in
DATA ITEM 11.13 and DATA ITEM 11.14.

The other two premises are not directly related to executable object code. PARTINTEG concerns the
integrity of software partitioning. The context element PARTINTEGRATIONALE explains the reason
for requiring a showing of partitioning integrity. Context ARCHDEV indicates that developing the
software architecture is needed to define what partitioning is employed.

The final premise in this argument is PDICOR: “Parameter Data Item File is correct and
complete” (A-5.8). The text is the simplified version of the full objective given in the annex table.
The full text of the objective is written in the attached context element to enhance the look of the
diagram.

The associated confidence argument is shown in figure 6.

15

Figure 6. Level D: JustifiedConfidenceLevD

The conclusion of the confidence argument is JUSTIFIEDCONFIDENCELEVD: The evidence
provided is adequate for justifying confidence that the correctness of the software has been
demonstrated to the extent needed for Level D. This argument encapsulates all of the Level D
relevant objectives from DO-178C that concern required processes. It asserts explicitly, as the
guidance asserts implicitly, that establishing adequacy of required processes is sufficient to provide
the needed confidence. The adequacy of these required processes is established in five premises,
which are expanded in supporting arguments: ADQPLANNINGLEVD, ADQVERVERLEVD,
ADQCONFIGMANLEVD, ADQSQALEVD, ADQCERTLIASLEVD.

Associated with the conclusion is a context element (LEVDEVIDENCE) and an assumption
(DATAITEMCHARS). The context element notes that the data items are to be provided in a form
described in the Plan for Software Aspects of Certification (11.0.b). The assumption lists the
characteristics (described in 11.0.a) that each data item is supposed to possess. It should be: 1)
unambiguous; 2) complete; 3) verifiable; 4) consistent; 5) modifiable; and 6) traceable. These
characteristics are enumerated in an assumption, rather than as a conclusion of a supporting

16

argument because DO-178C does not contain any objectives requiring that the characteristics be
directly demonstrated.

Figure 7 contains the simple argument justifying ADQPLANNINGLEVD.

Figure 7. Level D: ADQPLANNINGLEVD

At Level D, the guidance requires only two objectives related to planning. Satisfying these two
objectives is explicated in the two premises: ACTIVITIESDEF and ADDCONADDRESSED. The
evidence required to show these two premises hold is contained in the relevant parts of five data
items:

• DATA ITEM 11.1: Plan for Software Aspects of Certification (PSAC)
• DATA ITEM 11.2: Software Development Plan (SDP)
• DATA ITEM 11.3: Software Verification Plan (SVP)
• DATA ITEM 11.4: Software Configuration Management (SCM) Plan
• DATA ITEM 11.5: Software Quality Assurance (SQA) Plan

Because neither the guidance nor supporting information explains why these two premises are
considered sufficient, the warrant takes the same trivial form previously seen.

17

Figure 8 shows the simple argument describing the requirements for Level D for the verification
of the results of the verification process, which is given the slightly shorter name verification of
verification results in the argument. No additional commentary seems necessary.

Figure 8. Level D: ADQVERVERLEVD

In contract, the argument concerning configuration management is a bit more complicated, as
shown in figure 9.

18

Figure 9. Level D: ADQCONFIGMANLEVD

The conclusion ADQCONFIGMANLEVD is supported by six premises ConfItemsLabeled,
BaseTraceEst, ProbRepEtAllEst, ArcRelEst, SwLoadConEst, and EnvControlEst, which identify
necessary source control properties and capabilities. According to the guidance, unless each of the

19

versions of each configuration item is unambiguously labeled, the relationship between the
argument text and these artifacts would be unclear, and the validity of evidence would be in doubt.
Without baselines, traceability between the various items and the items that informed their
production could not be established. Without problem reporting, problems might be identified only
to fall through the cracks. Without change control and change review, it would be necessary to
follow a strict waterfall process, re-executing each stage in its entirety whenever a discovered
defect forces a change. Configuration status accounting information underpins the other
configuration management activities. Archive, retrieval, and release capacities make it possible to
revisit any past version as needed to investigate or address problems. Software load control ensures
that only authorized versions of the executable object code and parameter data items are used in
airborne systems and that it is known which versions are in use in which systems. Without software
life cycle environment control, it would not be possible to precisely recreate given versions of
artifacts, such as compiled executable object code, from their source artifacts (e.g., as different
versions of a compiler might produce slightly different code).

Context elements, such as ProbReportingWhy and ArcRelEstFullObj, clarify what the argument
means when it names configuration management practices and capabilities. For example,
ProbReportingWhy explains what problem reporting is by describing how it operates and what it
accomplishes. ArcRelEstFullObj explains archive, retrieval, and release by observing that this
capability permits developers to retrieve software life-cycle data in case of a need to duplicate,
regenerate, retest, or modify the software product.

Warrant ArgByObjSat asserts that the identified practices and capabilities are sufficient. This
sufficiency is not justified by explicit backing evidence because the rationale is not stated.

Context element AllSec7ObjsApply shows which of DO-178C’s objectives relate to configuration
management and that all such objectives apply at Level D and all higher software levels.
Assumption AssumeCCassign serves multiple purposes. First, it clarifies that the configuration
items discussed in this argument includes all data items named in the standard. Second, it identifies
the leveling mechanism at work in configuration management. Whereas all objectives apply to at
least some configuration items at every software level, some objectives do not apply to some
configuration items at some levels. The tables in Annex A of the section specify the control
category of each data item at each software level, whereas Section 7.3 of the standard defines
which objectives apply at which control category.

The meanings of the cited evidence items should be easily discernable based on analogy to the
explanations given for previous evidence items. Going forward, no mention will be made of
evidence items in the explanatory text.

Figure 10 is related to a simple argument, which relies on two premises to justify the conclusion
based ADQSQALEVD: Adequate software quality assurance is in place for Level D.

20

Figure 10. Level D: AdqSQALevD

Figure 11 shows a simple, three-premise argument concerning the certification liaison process.
Interestingly, the objectives required by DO-178C for this process are the same for software Levels
D through A. Thus, the confidence arguments for Levels C, B, and A all reference directly the
supporting argument presented here for Level D.

Figure 11. Level D: AdqCertLiasLevD

21

3.3 LEVEL C ARGUMENTS

Although section 3.2 presented the full set of Level D arguments, only a subset of the arguments
associated with Level C is presented here. Omitted arguments are shown in appendix A.
Explanatory text is provided only for aspects of the arguments that bring out ideas that have not
already been addressed.

Figure 12 contains the main argument for Level C, which establishes the conclusion
SWACCEPTABLELEVC: Software performs its intended function at acceptable level of safety
for Level C. The argument has the same structure as the main Level D argument. The content is
directly analogous as well, with the substitutions appropriate for the different software level. All
but one of the context elements, the assumption, and the warrant are unchanged. The fourth context
element provides the definition for Level C (instead of D) software.

22

Figure 12. Level C: SwAcceptableLevC

23

One of the premises is unchanged. Table A-6 in [1] shows why the premise is
EOCSATHLREFLEVD instead of EOCSATHLREFLEVC. The table shows that the objectives are
the same between Levels C and D concerning the relationship between executable object code and
high-level requirements.

The other premise (HLRSATSRREFLEVC) is changed and requires a new supporting argument to
substantiate it. This argument is shown in figure 13.

Figure 13. Level C: HLRSatSRRefLevC

The guidance for Level C introduces objectives about low-level requirements. Therefore, one may
wonder why there is nothing about low-level requirements in the main argument. The first version
of the case for Level C included a premise about the refinement of low-level requirements. Further
reflection suggested that the confidence argument might be a better place to capture low-level
requirement objectives. Several DO-178C experts concurred with the opinion; therefore, the final
version follows that approach. The results are shown in figures 14 and 17.

24

According to the DO-178C guidance for Level C, to show satisfactory refinement of allocated
system requirements into high-level requirements, it must be demonstrated that
HLRSATSRREFLEVD holds, along with three additional premises:

• HLRVERIFIABLE: “High-level requirements are verifiable” (6.3.1.d, A-3.4)
• HLRCONFORMSTD: “High-level requirements conform to standards” (A-3.5):

“Software Requirements Standards were followed during the software requirements
process and that deviations from the standards are justified” (6.3.1.e)

• ALGORACCREQ: “Algorithms are accurate” (A-3.7): “the accuracy and behavior of
the proposed algorithms, especially in the area of discontinuities” is ensured (6.3.1.g)

Each of these is shown to hold by reference to the evidence contained in DATA ITEM 11.14:
Software Verification Results. As shown in several previous instances, neither the guidance nor
the supporting information provides an explicit rationale for why these additional objectives are
necessary or sufficient. Thus, the warrant takes the default, trivial form.

The confidence argument for Level C (figure 14) looks similar to the confidence argument for
Level D. One of the premises is identical (ADQCERTLIASLEVD) because no new objectives are
added for the certification liaison process. Four of the premises are directly analogous, with new
supporting arguments required to address added objectives. One premise
(ADDREFINELEVELCSAT) is entirely new. It addresses the additional refinement steps that are
introduced in the guidance for Level C.

25

Figure 14. Level C: JustifiedConfidenceLevC

The argument for adequate planning at Level D contained only two premises. The argument for
adequate planning at Level C (see figure 15) includes the Level D conclusion as a premise and an
additional five premises. This argument applies to Level B and Level A, also, because no new
planning objectives are added at those software levels. One peculiarity exists in the argument,
namely existence of the intermediate premise LEVCPLANSAT; which is presented only for
explanatory and aesthetic purposes. All premises beneath it could be directly connected to the
warrant.

26

Figure 15. Level C: AdqPlanningLevC

Figure 16 presents the argument establishing the sufficiency of the verification of verification
results. It is similar in form to the planning argument because it includes the Level D conclusion
as a premise, along with five new ones.

27

Figure 16. Level C: AdqVerVerLevC

Context element STATEMENTCOVRAT reveals one of the few instances in which a reason is given
for certain objectives. Context element STATEMENTCOVRAT reveals another such instance.

Figure 17 expresses the argument concerning the additional refinement steps that are required by
Level C and introduces a new element in the notation.

28

Figure 17. Level C: AddRefineLevelCSat

The warrant ADDREFINELEVELCSAT takes the general simple form shown previously. Three of
the attached context elements concern the existence of certain entities: low-level requirements
(LLRDEV), associated derived low-level requirements (DERLLPROV), and source code developed
from the low-level requirements (SOURCECODEDEV). The fourth context element
(POSSMULTLLR) explains the possibility that more than one tier of low-level requirements may
exist.

This possibility of more than one tier is indicated in the diagram by the solid black circle on the
directed line connecting the warrant to the module LLRSATLEVC. This module is one of the three
premises, along with SCSATLEVC (Source Code and related outputs are satisfactory for Level
C) and EOCSATLLLEVC (Executable Object Code is … a satisfactory refinement of the low-

29

level requirements). The first and third are elaborated next. The second is available in appendix
A of this report.

The argument to establish LLRSATLEVC (Low-level requirements are [for Level C] a satisfactory
refinement of the high-level requirements) is too large to show in a single figure. Figure 18 shows
the top part of the argument, figure 19 shows the part associated with the premise
LLRADQLEVELC, and figure 20 shows the part associated with the premise SWARCHADQLEVELC.

Figure 18. Level C: LLRSatLevC (top)

30

 Figure 19. Level C: LLRSatLevC / LLRAdqLevelC (left)

31

Figure 20. Level C: LLRSatLevC / SWArchAdqLevelC (right)

Figure 21 shows the simple argument justifying the sufficiency of the refinement of executable
object code from low-level requirements (EOCSATLLLEVC). This conclusion is supported by two
premises. EOCCOMPLIESLL asserts compliance with low-level requirements, and EOCROBUSTLL
asserts robustness with them. Both premises are supported by reference to the appropriate material
from three data items: DATA ITEM 11.13: Software Verification Cases and Procedures; DATA ITEM
11.14: Software Verification Results; and DATA ITEM 11.21: Trace Data.

The shared context item (CC12CONFLICT) notes an apparent minor conflict within the guidance.
For DATA ITEM 11.21: Trace Data at Level C, the control category is specified at a less-stringent
level in table A-6 than it is for table A-2 (see [1]). Resolving this conflict is simple: Assume that
the higher control category applies throughout.

32

Figure 21. Level C: EOCSatLLevC

3.4 LEVEL B ARGUMENTS

For Level B, we will present only four of the arguments from the assurance case:

• SWACCEPTABLELEVB: Software performs its intended function at acceptable level of
safety for Level B.

• JUSTIFIEDCONFIDENCELEVB: The evidence provided is adequate for justifying confidence
that the correctness of the software has been demonstrated to the extent needed for
Level B.

• INDEPSATLEVB: Additional independence requirements for Level B are satisfied.
• ADQVERVERLEVB: Sufficient verification of verification results has been achieved for

Level B.

The main Level B argument is shown in figure 22. Although it would be possible to use an identical
structure here as for Levels D and C, a slightly different structure has been used. The form of the
conclusion and associated context items remains the same, but the form of the warrant and
premises differs substantially. Choosing a different form emphasizes more explicitly how the
guidance itself differentiates between the objectives for Levels C and B.

33

Figure 22. Level B: SwAcceptableLevB

The warrant (ARGBYSATLEVCPLUSNEW) explicitly identifies the three categories of differences
between the guidance for Level C and Level B: several additional objectives, control of data items,
and independence requirements. Context element INDEPRATIONALE repeats the assertion from
DO-248C concerning the potential efficacy of independence requirements. The details regarding
one of the two premises has already been shown (SWACCEPTABLELEVC). The other premise
(ADDEDOBJSLEVBSAT) is supported by a simple, six-premise argument enumerating the three
added objectives concerning compatibility with the target computer and the three added objectives
concerning verifiability. The diagram is shown in appendix A.

34

The rest of the differences between the guidance for Level C and the guidance for Level B appear
in the confidence argument shown in figure 23.

Figure 23. Level B: JustifiedConfidenceLevB

35

The left-hand premise (OBJSSAT4NOLEVBDIFFS) is included in the diagram only for emphasis.
The three items beneath it could be directly connected to the warrant without any change in
meaning. The three items could, and probably should, be eliminated entirely.8

The other three premises encapsulate the additional objectives added for Level B software, which
encompass planning, independence requirements, and verification of verification results. The
supporting argument establishing Adequate planning has been conducted for Level B is not shown
here (see appendix A).

The argument for INDEPSATLEVB is shown in figure 24. It is not complicated, but it does contain
more premises than any argument seen so far:

• HLRCOMPLYIND: “High-level requirements comply with system requirements” has
been shown with independence (6.6.1a, A-3.1).

• HLRACCCONSIND: “High-level requirements are accurate and consistent” has been
shown with independence (6.3.1.b, A-3.2).

• ALGORACCREQIND: “Algorithms are accurate” has been shown with independence
(6.3.1.g, A-3.7).

• LLRCOMPLYIND: “Low-level requirements comply with high level requirements” has
been shown with independence (6.3.2.a, A-4.1).

• LLRACCCONSIND: “Low-level requirements are accurate and consistent” has been
shown with independence (6.3.2.b, A-4.2).

• ALGORACCDESIND: “Algorithms are accurate” has been shown with independence
(6.3.2.g, A-4.7).

• SCCOMPLLIND: “Source Code complies with low-level requirements” has been shown
with independence (6.3.4.a, A-5.1).

• PDICORIND: “Parameter Data Item File is correct and complete” has been shown with
independence (6.6.a, A-5.8).

• PDIVERIND: “Verification of Parameter Data Item File is achieved” with
independence (6.6.b, A-5.9).

• EOCCOMPLIESLLIND: “Executable Object Code complies with low-level
requirements” has been shown with independence (6.4.c, A-6.3).

The context elements attached to the warrant are explanatory only. They could be removed without
any change in the meaning of the argument.

8 ADQCONFIGMANLEVC, ADQSQALEVC, and ADQCERTLIASLEVD do not need to be repeated here because they are included as part of the
confidence argument for Level C (which is included in SWACCEPTABLELEVC and is one of the two premises for the main Level B argument).
ADDREFINEMENTLEVELCSAT, which is not reproduced in the Level B confidence argument, is also included there.

36

 Figure 24. Level B: IndepSatLevB

37

Two independence requirements added for Level B were not included. Because these two
requirements are associated with the verification of verification results, they are enumerated in the
argument for ADQVERVERLEVB , which is shown in figure 25.

Figure 25. Level B: AdqVerVerLevB

For Level B verification of verification results, DO-178C requirements independent achievement
of statement (STATEMENTCOVIND) and coupling coverage (TESTCOVCOUPLINGIND). It also adds
a requirement for decision coverage, which must be achieved with independence
(DECISIONCOVIND). The evidence is contained in the relevant parts of DATA ITEM 11.14: Software
Verification Results.

3.5 LEVEL A ARGUMENTS

Explicating the Level A guidance required only four arguments: the main argument, the confidence
argument, and two supporting arguments for premises in the confidence argument. The main
argument is shown in figure 26. Besides including the context elements shown for every lower
level and an associated confidence argument, it consists solely of incorporating the Level B
conclusion and all arguments supporting that conclusion. As explained in LEVALEVBDIFFSCONF,

38

this is because all the differences between objectives for Level A and Level B address matters
of confidence.

Figure 26. Level A: SWAcceptableLevA

These matters of confidence are explicated in the argument for JUSTIFIEDCONFIDENCELEVA,
which is shown in figure 27. The explanatory premise OBJSSAT4NOLEVADIFFS, like its analogous
premise in the Level B confidence argument, is not strictly necessary. The premises
INDEPSATLEVA and ADQVERVERLEVA are necessary. The former is shown in figure 28; the latter,
because of its size, is shown in figures 29–31. By this point, these arguments should be understood
without any additional explanatory text. Their form and content are directly analogous to the
similar arguments for Level B.

39

Figure 27. Level A: JustifiedConfidenceLevA

40

Figure 28. Level A: IndepSatLevA

41

Figure 29. Level A: AdqVerVerLevA (top)

Figure 30. Level A: AdqVerVerLevA (left)

42

Figure 31. Level A: AdqVerVerLevA (right)

4. OBSERVATIONS AND ANALYSIS

Two distinct aspects of the created assurance case deserve evaluation: the fidelity of the case to
the guidance it purports to explicate and the adequacy of the case for providing the desired
assurance. In evaluating the fidelity of the case, an answer is attempted regarding whether the case
properly captures the guidance contained in DO-178-C. In evaluating the adequacy of the case, an
answer is attempted regarding whether DO-178C meets its intended purpose. Unless the answer
to the first question is “yes,” the developed assurance case cannot be used legitimately to attempt
to answer the second question. Therefore, fidelity is considered first.

4.1 ABOUT FIDELITY

During the course of the Explicate ‘78 research, independent evaluations of the fidelity of the case
were sought on multiple occasions. Early in the work, the FAA’s former Chief Scientist and
Technical Advisor for Software provided a comprehensive critique of the first version of the Level
D arguments and offered suggestions for modifications to the first version of the Level C
arguments (including concurring with the then nascent notion of placing the arguments concerning
low-level requirements in the confidence argument). He and other FAA personnel also provided
helpful comments when the initial versions of the Level B and Level A arguments were created
and as subsequent modifications were made to the arguments for all levels. Non-FAA personnel
were also invited to comment when the work was presented in public forums, particularly the 2014
National Systems, Software, and Airborne Electronic Hardware Conference, and the 2015 Safety-
Critical Systems Symposium.

In the public forums, no one expressed any strong doubts about the overall fidelity of the
arguments, but several people asked why certain choices were made. The three most common
questions concerned matters that have already been explained: Why activities are not included,

43

why certain objectives are expressed as context instead of as conclusions to be demonstrated, and
why low-level requirements are contained in the confidence argument instead of in the primary
argument.

Two other questions were also raised: one concerning why entire data items are cited as evidence
instead of just the relevant parts of the items and the other about why section 12 matters are
mentioned only once. The same response answers both questions: These choices enable the
argument to more accurately represent the DO-178C guidance as written. DO-178C itself does not
specify specific parts of a data item in reference to objectives but rather the entire item. For section
12, only one objective exists. Including more detail in the assurance case would have violated the
faithfulness to the text principle described in section 3.1.

In addition to these multiple requests for external reviews, two comprehensive internal reviews
were conducted by two individuals. These reviews uncovered several minor inconsistences and
omissions9, which were subsequently corrected. The version of the arguments presented here
incorporates all of these changes.

As a result of these reviews (both external and internal), a plausible inference may be drawn that
the assurance case described in this report accurately captures the implicit assurance case
underlying DO-178C. Therefore, evaluating the adequacy of the assurance case for purpose can
provide insight into the adequacy of DO-178C itself.

4.2 ABOUT ADEQUACY

Methods for evaluating the adequacy of assurance cases are a subject of continuing research and
debate. References [30, 31, and 32] provide the current thinking on this subject. Educational
materials produced separately as part of this project are also available for review. Module 3
specifically addresses evaluation methods.

Two of the most vigorous ongoing debates concern matters that are not pertinent to the Explicate
'78 assurance case. One such debate centers on the extent to which it is possible (and desirable) to
create assurance cases consisting entirely (or at least, primarily) of deductive arguments.10 The
other vigorous debate involves whether the strength of arguments can (and should) be quantified.
Neither of these debates pertain here. Creating a mostly deductive case would have required
violating the guiding principles of faithfulness to the text and minimum speculation. Trying to
quantify argument strength would have required violating the minimum speculation principle by,
for example, necessitating speculation about the appropriate numbers to attach to the efficacy of
the means used to satisfy the various objectives. Therefore, neither deductive nor quantitative
evaluation is relevant to the DO-178C assurance case. Qualitative evaluation is the only option.

9 This includes slightly less minor, but not fatal, inconsistency in the previously mentioned Level B arguments.
10 A deductive argument is one in which true premises and a valid structure guarantee the truth of the conclusion.

44

Several approaches for qualitative evaluation exist, but all of them are essentially variants of
Kelly’s original four-step process [33‒34]. The details of this process are described in educational
module 3 and are not repeated here. The four steps may be summarized as: 1) identifying the key
elements of the case; 2) checking for structural errors; 3) checking for an appropriate amount of
detail; and 4) assessing argument strength. The first three steps were during development and
revision of the DO-178C case because these steps directly affect the fidelity of explication. Only
after the case was completed in the form shown was step four applied.

Six overall observations arose from the assessment.

4.2.1 Observation 1 – Foundational Reliance is Placed on a Separate Safety Process

The main arguments for Levels C and D directly (and for Levels A and B indirectly) rely on a
warrant (ArgByCorrectness) that involves supporting a conclusion partially about safety by
premises exclusively about correctness. In general, equating safety and correctness is not justified.
It is justified in the DO-178C context based on the assumption explained in ReqAllocValidSuff;
the provision that derived requirements must be provided to a separate system safety assessment
process.

Given a set of requirements that eventually includes everything necessary to provide an adequate
level of safety, then ensuring that the requirements are met, necessarily ensures that an adequate
level of safety is provided. Therefore, the guidance needs to ensure only that the software satisfies
its requirements. Within the context to which the guidance applies, software system correctness
necessarily implies software system safety. This implication does not hold in general (safety and
correctness are different concepts) but does in the specific environment in which software is built
for airborne systems and equipment. The assurance case makes the necessity of the implication
holding clear, whereas the textual guidance tends to hide it from view well that some critics of
DO-178C (and its predecessors) seem totally unaware of it.

Another way in which the guidance places foundational reliance on a separate safety process is in
the assignment of criticality levels to the software. The determination of the software level is not
part of the DO-178C guidance; it is part of the separate system safety assessment process. If the
software level is assigned improperly, the application of DO-178C is not likely to have the desired
results. For example, if software is assigned Level D but its anomalous behavior “would cause or
contribute to a failure of system function resulting in a catastrophic failure condition for the
aircraft,” then the likelihood that critical errors will be introduced and missed is higher than it
would have been had the software been properly assigned to Level A. Conversely, if the software
is improperly assigned to Level A, when the worst possible outcome of its anomalous behavior
would be a “minor failure condition for the aircraft,” then resources are likely to have been
expended that did not need to be expended.

Looking into the future, the question arises whether reliance on separate processes for safety
assessment and software development will continue to be possible. As software becomes more
pervasive, and functions are allocated to software, the interconnections between the software and
the system may become so great that a more intimate relationship becomes necessary between
the two processes.

45

4.2.2 Observation 2 – Foundational Reliance is Placed on System Requirements

Within the airborne systems software community, the foundational reliance on the quality of the
system requirements allocated to software is well understood. These requirements are developed
outside of DO-178C. As made explicitly clear in the assurance case, DO-178C’s guidance is
intended to ensure the implementation of these requirements is correct. If the allocated
requirements are bad (e.g., they fail to account for certain known potential hazardous states, or,
worse, they require the entry into such a state), then following the guidance may prove well in the
correct implementation of these bad requirements.

In some other software communities, the reliance may be less understood. This is particularly true
for communities in which standard practice involves software developers creating their own
requirements. Such a community would not be well-served by adopting DO-178C alone as
guidance.

4.2.3 Observation 3 – Critical Reliance is Placed on Data Item Integrity

Data items are cited as evidence at the base of every argument in the assurance case because they
contain the information relevant to determining whether the argument’s conclusions are adequately
supported. Thus, the integrity of the data items is crucial to the adequacy of the case. This
importance is emphasized in the confidence arguments, all four of which include the specific
assumption DataItemChars that the data items have the characteristics described in 11.0.a: 1)
unambiguous; 2) complete; 3) verifiable; 4) consistent; 5) modifiable; and 6) traceable.

The possession of these characteristics is explicated as an assumption because the guidance is not
consistently clear about how possession must be shown. For some of the contents of some of the
data items, the guidance includes specific objectives to demonstrate some of these attributes. For
example, high-level requirements must be shown to be unambiguous, consistent, and traceable for
Level D and above (see HLRAccCons and HLRTrace2SR in figure 4), and verifiable for Level C
(see HLRVerifiable in figure 13). Similarly, low-level requirements must be shown to possess
these characteristics for Level C (see LLRAccCons and LLRTrace2HLR in figure 19) and
verifiable for Level B (HLRVerifiable in the argument for AddedObjsLevBSat, which was not
shown). However, no specific objectives exist for either high- or low-level requirements that
directly demand a showing of completeness or modifiability.

The glossary entry for configuration management suggests that it may be responsible for ensuring
data item integrity: “the process of … (d) verifying the correctness and completeness of
configuration items.” However, the specific objectives associated with configuration management
do not require any showing of correctness or completeness; therefore, no such conclusion or
premise is contained in the assurance case.

The text of DO-178C implies that the integrity of the data items is critically important. The
assurance case explicitly emphasizes this importance and highlights the fact that demonstrating
the integrity of every aspect of every data item is not necessarily required by the guidance. The
extent to which different assessors require such demonstrations may well account for some of the
variations in the anecdotally reported amount of effort needed to gain approvals.

46

4.2.4 Observation 4 – Warrants are Difficult to Discern

Throughout the explanation of the assurance case, instances were highlighted for which neither
the guidance nor the supporting information provided insight into the reasons for certain
objectives. The minimal speculation guiding principle prohibited guesses being made about
reasons in these instances. Thus, the warrants that were developed were necessarily trivial. No
other option consistent with the principle was possible. Different wording of the trivial warrants
could have been employed, but any wording consistent with the text would be equivalent in
meaning to the wording that was chosen.

If the guiding principle had been relaxed, the result would likely have been chaotic. That is, every
person reading the assurance case would find something with which to disagree. Based on the
experiences in SC-205/WG-71 with the attempts to create a comprehensive rationale, some of
these disagreements would be quite intense. Although a general consensus existed about the need
for nearly all of the objectives, little agreement existed about the specific reasons for them. This
lack of agreement about specific reasons was even more pronounced concerning the assignment
of objectives to software levels. Therefore, relaxing the minimal speculation principle almost
certainly would have derailed the project after the first review by others.

Warrants are difficult, perhaps often impossible, to discern after the fact. The assurance case as
written emphasizes this difficulty. This difficulty may also contribute to some of the differences
that applicants report noticing among different assessors, perhaps even a stronger contributor than
data item integrity.

4.2.5 Observation 5 – Adequacy Depends on Specifics

In the abstract, the main arguments, augmented by the associated confidence arguments, seem
generally adequate to support their conclusions. Consider the main argument at Level D. Given
the associated context and foundational assumption, if it is possible to demonstrate both that high-
level requirements are a satisfactory refinement of the allocated system requirements
(HLRSatSRRefLevD) and that executable object code is a satisfactory refinement of the high-level
requirements (EOCSatHLRefLevD), then it is reasonable to conclude that the software is correct
(to an appropriate degree of confidence) with respect to its requirements. Therefore, in the context
of an appropriate safety assessment process, it is reasonable to conclude (to an appropriate degree
of confidence) that the software performs its intended function at an acceptable level of safety for
Level D.

Assessing the adequacy of the supporting arguments in the abstract is difficult. Consider the Level
D supporting argument for HLRSatSRRefLevD. It may be asked if it is reasonable to make this
conclusion based on showing only compliance with system requirements (HLRComply); accuracy
and consistency (HLRAccCons); and traceability to system requirements (HLRTrace2SR). If it is,
it may be questioned why the guidance requires additional conclusions to be shown for Level C
(HLRVerifiable, HLRConformStd, AlgorAccReq) and another for Level B (HLRCompatTC). The
answers lie in a variety of details, which can be known only for an actual project, not in the abstract.
Among the details that are needed are the contents of the relevant data items associated with high-
level requirements (11.9 Software Requirements Data, 11.14 Software Verification Results); a

47

qualitative understanding of the degree of confidence needed for this conclusion; and the contents
of the data items associated with all relevant aspects of the confidence argument for Level D.

The need to have project specifics for assessing argument adequacy suggests that there may well
be wisdom in the FAA’s long-standing practice of granting software approvals only for specific
products. The need also suggests a possible follow-on project: creating an assurance case for a
realistic software product.

4.2.6 Observation 6 – A Case-Based Alternative Approach Seems Feasible

Moving to the opposite end of the specificity spectrum and looking at the explicated assurance
case overall suggests the likely feasibility of developing an entirely case-based alternative set of
objectives. This feasibility has already been recognized by the FAA. A key component of the
ongoing streamlining assurance processes effort involves creating a minimal set of overarching
properties. The Explicate ‘78 assurance case has contributed to the formulation of the initial draft
of the overarching properties. Also, an assurance-case-based approach is currently being followed
for exploring the criteria for evaluating the properties. If the effort is successful, the overarching
properties will eventually constitute the foundation of a different, optional approval approach.

5. THE OTHER DOCUMENTS

Another activity specified to be part of the Explicate ‘78 research was the following: determining
whether there is a need to conduct an analysis similar to the DO-178C analysis for any of the four
supplementary documents associated with DO-178C and conducting any such analysis deemed
worthwhile.

The four additional documents that were considered were mentioned briefly in section 2.1:

• DO-330: Software Tool Qualification Considerations
• DO-331: Model-Based Development and Verification Supplement to DO-178C and DO-

278A
• DO-332: Object-Oriented Technology and Related Techniques Supplement to DO-178C

and DO-278A
• DO-333: Formal Methods Supplement to DO-178C and DO-278A

In response to a specific request from the FAA sponsors of this research, the primary effort in this
area was expended on creating a full collection of arguments for DO-330. These arguments are
presented and explained in appendix C.

For DO-331, DO-332, and DO-333, only the arguments addressing the refining of high-level
requirements from allocated system requirements for Level D were created, specifically:

• HLRSatSRRefLevDFM: High-level requirements are (for Level D using DO-333) a
satisfactory refinement of the allocated system requirements (see figure 32)

• HLRSatSRRefLevDOO: High-level requirements are (for Level D using DO-332) a
satisfactory refinement of the allocated system requirements (see figure 33)

48

• HLRSatSRRefLevDFMOO: High-level requirements are (for Level D using DO-332
and DO-333) a satisfactory refinement of the allocated system requirements (see
figure 34)

• HLRSatSRRefLevDMB: High-level requirements are (for Level D using DO-331) a
satisfactory refinement of the allocated system requirements (see figure 35)

Figure 32. Level D (FM): HLRSatSRRefLevDFM

 49

Figure 33. Level D (OO): HLRSatSRRefLevDOO

 50

Figure 34. Level D (FM & OO): HLRSatSRRefLevDFMOO

 51

Figure 35. Level D (MBD): HLRSatSRRefLevDMB (PARTIAL)

The argument for HLRSatSRRefLevDFM is identical in form to the argument for the conclusion
HLRSatSRRefLevD in the assurance case for Level D for the unsupplemented DO-178C. The
differences lie in the addition of an explanatory context element (FMNoHelpDR) and a
justification (FMShowCompliance) for HLRComply; an assumption (FNisPrecUnamb) and a
justification (FMCheckable) for HLRAccCons; and a justification (FMSuppTrace) for
HLRTrace2SR.

 52

The argument for HLRSatSRRefLevDOO is even more similar to the argument for the conclusion
HLRSatSRRefLevD. The only difference lies in the inclusion of a context element describing the
addition made in DO-332 to the Software Verification Results data item. As noted, this addition is
not likely to be relevant in establishing the truth of the three premises relevant to this argument.

The argument for HLRSatSRRefLevDOO combines the content of the two previous arguments.
Because no overlap exists in the additional content from DO-333 and DO-332, the two are easy to
combine.

A similar comment cannot be made concerning using DO-331 with either (or both) of the other
two supplements. The argument presented for HLRSatSRRefLevDMB is only a partial argument,
considering only one of the three premises (HLRAccCons). The diagram introduces another bit of
notation: The black diamond denotes possible alternatives; the 1 of 2 text denotes that one and
only one of the two alternatives contributes to supporting the conclusion. HLRAccCons is
supported by one of the two warrants. Warrant ArgByTradMeans indicates showing satisfaction
directly from the data item (as is done in the core DO-178C). Warrant ArgBySimulation
indicates showing satisfaction through simulation, which requires demonstrating SimCasesCor,
SimProcCor, and SimResCor. The evidence for these must be included in the Software
Verification Results; the additional information that DO-331 requires be included in this data item
is indicated by the context element MB.11.14Adds.

6. CONCLUDING REMARKS

This report has documented two of the main achievements of the Explicate ‘78 research:

1. Expressing as an assurance case the arguments contained in, or implied by, DO-178C,
which implicitly justify the assumption that the document meets its stated purpose of
providing “guidelines for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements”

2. Expressing as an assurance case the arguments contained in, or implied by, DO-330, whose
stated purpose “is to provide tool qualification guidance”

Substantial portions of the DO-178C assurance case were presented and explained in the body of
the report, with the entire case presented in appendix A. The complete DO-330 assurance case was
presented and explained in appendix B. Brief, but substantive, explanatory material associated
with DO-178C and with assurance cases was also presented in the body of the report.

Completion of this report brings to an end the current Explicate ‘78 research. The spirit of the
research continues, however, in the ongoing effort to define, refine, and put into practice a new
approach to assurance based on overarching properties.

53

7. REFERENCES

1. RTCA. (2011). DO-178C: Software Considerations in Airborne Systems and Equipment
Certification, RTCA, Inc., Washington, DC. (Also published as EUROCAE ED-12C.)

2. Knight, J. (2012). Fundamentals of Dependable Computing for Software Engineers. Boca
Raton, FL: CRC Press.

3. Holloway, C. M. Understanding assurance cases: Module 3 - Evaluation. Developed for
the FAA under Annex 2 of IAI-1073, September 2015.

4. RTCA. (2011). DO-333: Formal Methods Supplement to DO-178C and DO-278A,
RTCA, Inc., Washington, DC. (Also published as EUROCAE ED-216.)

5. Holloway, C. M. Understanding assurance cases: Module 4 - Creation. Developed for the
FAA under Annex 2 of IAI-1073, March 2016.

6. RTCA. (2011). DO-178A: Software integrity assurance considerations for
communication, navigation, surveillance, and air traffic management (CNS/ATM)
systems, RTCA, Inc., Washington, DC. (Also published as EUROCAE ED-109A.)

7. Ministry of Defence. (2015. Defence Standard 00-56, Issue 6: Safety management
requirements for defense systems — Part 1: Requirements and guidance, Glasgow, UK.

8. NASA Report. (2015). Understanding and evaluating assurance cases. (NASA/CR-2015-
218802).

9. RTCA. (2011). DO-331: Model-Based Development and Verification Supplement to
DO-178C and DO-278A, RTCA, Inc., Washington, DC. (Also published as EUROCAE
ED-218.)

10. RTCA. (2011). DO-330: Software tool qualification considerations, RTCA, Inc.,
Washington, DC. (Also published as EUROCAE ED-215.)

11. RTCA. (2011). Supporting information for DO-178C and DO-278A. DO-248C
(EUROCAE ED-94C). Graydon, P. J. (2014). Towards a Clearer Understanding of
Context and its Role in Assurance Argument Confidence. Proceedings from the
International Conference on Computer Safety, Reliability and Security (SAFECOMP),
Florence, Italy.

12. RTCA. (2011). DO-332: Object-Oriented Technology and Related Techniques
Supplement to DO-178C and DO-278A, RTCA, Inc., Washington, DC. (Also published
as EUROCAE ED-217.)

13. Graydon, P. J., Holloway, C. M. (2017). An Investigation of Proposed Techniques for
Quantifying Confidence in Assurance Arguments. Safety Science, 92(February 2017),
53–65.

14. GSN Committee. (2011). GSN Community Standard, Version 1, Origin Consulting Ltd.,
York, UK.

54

15. Hawkins, R., Kelly, T., Knight, J., and Graydon, P. (2011). A New Approach to Creating
Clear Safety Arguments. Proceedings from Advances in Systems Safety: Proceedings of
the 19th Safety-Critical Systems Symposium, Southampton, UK.

16. Copi, I. M., Cohen, C., and McMahon, K. (2011). Introduction to Logic, (14th ed.). Upper
Saddle River, NJ: Pearson Education.

17. European Aviation Safety Agency Report. (2013). Software Considerations for
Certification of Airborne Systems and Equipment. (AMC 20-115C).

18. FAA. Standard airworthiness certification: Regulations – Title 14 code of federal
regulations.
https://www.faa.gov/aircraft/air_cert/airworthiness_certification/std_awcert/std_awcert_
regs/regs/ (last visited 7 November 2016).

19. FAA. (2013). Advisory circular 20-115C. Airborne Software Assurance. D.C.:
Government Publishing Office.

20. Software Engineering Institute. (2015). Eliminative Argumentation: A Basis for Arguing
Confidence in System Properties. (CMU-SEI-2015-TR-005). Pittsburgh, PA:
Goodenough, J. B., Weinstock, C. B., and Klein, A. Z.

21. Toulmin, S. E. (2003). The Uses of Argument, updated edition. Cambridge, UK:
Cambridge University Press.

22. Kelly, T. P. (2007). Reviewing Assurance Arguments: A Step-by-Step Approach.
Proceedings from the Workshop on Assurance Cases for Security — The Metrics
Challenge (co-located with the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks [DSN]), Edinburgh, UK.

23. Holloway, C. M. Understanding assurance cases: Module 5 - Speculation. Developed for
the FAA under Annex 2 of IAI-1073, March 2016.

24. Govier, T. (2010). A Practical Study of Argument (7th ed.). Belmont, CA: Cengage
Learning.

25. Holloway, C. M. Understanding assurance cases: Module 2 - Application. Developed for
the FAA under Annex 2 of IAI-1073, September 2015.

26. Holloway, C. M. (2015). Explicate ’78: Uncovering the implicit assurance case in DO-
178C. Proceedings from Engineering Systems for Safety: Proceedings of the 23rd Safety-
critical Systems Symposium, Bristol, UK. M. Parsons and T. Anderson, Eds., Safety
Critical Systems Club, pp. 205–225.

27. Holloway, C. M. Understanding Assurance Cases: Module 1 - Foundation. Developed for
the FAA under Annex 2 of IAI-1073, September 2015.

28. Ankrum, T. S., and Kromholz, A. H. (2005). Structured assurance cases: Three common
standards. Proceedings from the Ninth IEEE International Symposium on High-
Assurance Systems Engineering (HASE), Heidelberg, Germany.

55

https://www.faa.gov/aircraft/air_cert/airworthiness_certification/std_awcert/std_awcert

29. Holloway, C. M. (2012). Towards understanding the DO-178C / ED-12C assurance case.
Proceedings from the 7th IET International Conference on System Safety, Incorporating
the Cyber Security Conference, Edinburgh, UK.

30. Graydon, P. J. (2015). Formal assurance arguments: A solution in search of a problem?
Proceedings from the 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Rio de Janeiro, Brazil.

31. Holloway, C. M. (2013). Making the Implicit Explicit: Towards an Assurance Case for
DO-178C. Proceedings from the 31st International System Safety Conference (ISSC),
Boston, Massachusetts.

32. Graydon, P., Knight, J., and Green, M. (2010). Certification and safety cases. Proceedings
from the 28th International Systems Safety Conference (ISSC), Minneapolis, Minnesota.

33. NASA Report. (2015). Current Practices in Constructing and Evaluating Assurance Cases
with Applications to Aviation. (NASA/CR-2015-218678).

56

APPENDIX A—ARGUMENTS FOR DO-178C

This appendix contains all of the argument diagrams developed for DO-178C.

Figure A-1. Level D: SWACCEPTABLELEVD

A-1

 Figure A-2. Level D: HLRSATSRREFLEVD

A-2

 Figure A-3. Level D: EOCSATHLREFLEV

A-3

Figure A-4. Level D: JustifiedConfidenceLevD

A-4

Figure A-5. Level D: ADQPLANNINGLEVD

A-5

Figure A-6. Level D: ADQVERVERLEVD

A-6

 Figure A-7. Level D: ADQCONFIGMANLEVD

A-7

Figure A-8. Level D: ADQSQALEVD

A-8

Figure A-9. Level D: ADQCERTLIASLEVD

A-9

 Figure A-10. Level C: SwAcceptableLevC

A-10

Figure A-11. Level C: HLRSatSRRefLevC

A-11

 Figure A-12. Level C: JustifiedConfidenceLevC

A-12

 Figure A-13. Level C: AdqPlanningLevC

A-13

 Figure A-14. Level C: AdqVerVerLevC

A-14

 Figure A-15. Level C: AdqConfigManLevC

A-15

 Figure A-16. Level C: AdqSQALevC

A-16

 Figure A-17. Level C: AddRefineLevelCSat

A-17

 Figure A-18. Level C: LLRSatLevC

A-18

 Figure A-19. Level C: LLRSatLevC/LLRAdqLevelC

A-19

 Figure A-20. Level C: LLRSatLevC/SwArchAdqLevelC

A-20

 Figure A-21. Level C: SCSatLevC

A-21

 Figure A-22. Level C: SCSatLevC/ScmatchesDesign

A-22

 Figure A-23. Level C: SCSatLevC/SCAccConfSat

A-23

Figure A-24. Level C: SCSatLevC/PDIObjSat

A-24

Figure A-25. Level C: EOCSatLLLevC

A-25

Figure A-26. Level B: SwAcceptableLevB

A-26

Figure A-27. Level B: AddedObjsLevBSat

A-27

 Figure A-28. Level B: JustifiedConfidenceLevB

A-28

Figure A-29. Level B: AdqPlanningLevB

A-29

 Figure A-30. Level B: IndepSatLevB

A-30

 Figure A-31. Level B: AdqVerVerLevB

A-31

 Figure A-32. Level A: SwAcceptableLevA

A-32

Figure A-33. Level A: JustifiedConfidenceLevA

A-33

Figure A-34. Level A: IndepSatLevA

A-34

Figure A-35. Level A: AdqVerVerLevA (top)

A-35

Figure A-36. Level A: AdqVerVerLevA (left)

A-36

Figure A-37. Level A: ADQVERVERLEVA (right)

Figure A-38. Level E: SWACCEPTABLELEVE

A-37

APPENDIX B—ARGUMENTS FOR TOOL QUALIFICATION (DO-330)

This appendix contains the arguments developed for tool qualification in accordance with DO-
178C §12.2 and DO-330. Section B.1. identifies differences between the DO-330 and DO-178C
certification contexts that are critical to understanding how and why the DO-330 argument differs
from the DO-178C argument. Section B.2. presents the top level of the tool qualification argument,
which corresponds to DO-178C §12.2. Section B.3. presents the remainder of the argument for
TQL-5 tools. Subsequent sections present the remainder of the arguments for tools at higher Tool
Qualification Levels.

B.1. THE CERTIFICATION CONTEXT FOR DO-330

Although the structure of DO-330 is largely analogous to DO-178C, there are differences that
affect the structure of the tool-qualification argument. Figure B-1 illustrates two key differences:
1) the source of the highest level of requirements; and 2) how safety is managed and safety-related
insights and changes are handled.

Figure B-1. Certification Context for DO-178C and DO-330

B-1

DO-178C assumes that system life-cycle processes have defined system requirements, allocated
some of these to software, and determined the appropriate software level. When DO-178C and
DO-330 are used together, the DO-178C software planning process defines the need for tool
qualification by identifying the tool and its intended use in the airborne software development
process. The software-planning process determines the appropriate TQL in accordance with DO-
178C §12.2. Tool operational requirements are defined in accordance with the DO-330 tool
operational requirements process.

DO-178C assumes the existence of an unspecified system-safety assessment process. Software
developers provide derived requirements, problem documentation, and change documentation to
the safety assessment process, which updates the system requirements and software level as
needed. In contrast, tool requirements and derived tool requirements are produced in accordance
with the DO-330 tool requirements process. The same process also justifies the existence of
derived tool requirements and evaluates them “to ensure that they do not negatively impact the
expected functionality and outputs defined in the Tool Operational Requirements” (DO-330,
§5.2.1.2.h).

B.2. TOP LEVEL (DO-178C §12.2)

The arguments developed for tool qualification begin by showing that the tools used to produce
airborne software “provide confidence at least equivalent to that of [sic] the processes eliminated,
reduced or automated” (DO-178C, §12.2.1). Figure B-2 illustrates this argument (for airborne
software Level D).1 The conclusion is supported by an argument over the DO-178C tool-
qualification process (§12.2). Premises GTQLevDC1 and GTQLevDC23 represent the logic
implicit in DO-178C’s §12.2.2, which specifies the appropriate TQL based on the airborne
software level and three criteria:

• Criterion 1. “A tool whose output is part of the airborne software and thus could
insert an error.”

• Criterion 2. “A tool that automates verification process(es) and thus could fail to
detect an error, and whose output is used to justify the elimination or reduction of …
verification process(es) other than that automated by the tool, or … development
process(es) that could have an impact on the airborne software.”

• Criterion 3. “A too that, within the scope of its intended use, could fail to detect an
error.”

For airborne software Level D, DO-178C’s table 12-1 specifies that tools satisfying criterion 1
must be qualified to TQL-4, whereas tools that satisfy only criterion 2 or criterion 3 need only be
qualified to TQL-5.

1 There are two differences between the style of the DO-330 arguments and the DO-178C arguments. The DO-330 arguments were developed
using a simple graphics program instead of the Dependable Computing tools. Also, the DO-330 arguments use the traditional GSN Strategy
convention instead of the Warrant approach developed for the DO-178C arguments. Changing to the Warrant approach and reproducing new
diagrams may be done if desired.

B-2

Figure B-2. ToolsQualifedLevD

B-3

Confidence in the argument depicted in figure B-2 might be lost if the tool-qualification needs
were identified incorrectly. Figure B-3 depicts the conference argument associated with the
inference of ToolsQualifiedLevD from GTQLevDC1 and GTQLevDC23. Support for the
conclusion that “there is sufficient confidence that tool qualification needs have been established
correctly” is given by evidence of satisfaction of DO-178C objective 4.1.D/A-1.4. That is, the Plan
for Software Aspects of Certification (PSAC), Software Development Plan (DSP), Software
Verification Plan (SVP), Software Configuration Management (SCM) Plan, and Software Quality
Assurance (SQA) Plan testify that “additional considerations,” including tool qualification, “have
been addressed” (DO-178C, §4.1.D).

Figure B-3. TQLNeedsConf

B-4

Three variants of the argument shown in figure B-2 present alternatives that apply at other airborne
software levels. Figure B-4 gives the top level of the argument for Level C airborne software.
Figure B-5 gives the top level of the argument for Level B airborne software. And figure B-6 gives
the top level of the argument for Level A airborne software. Tool qualification is not applicable
for Level E airborne software.

All of these arguments depend on evidence that the tool performs its intended function at a level
of confidence that is acceptable given its TQL. The confidence argument depicted in figure B-3
applies in all cases. These arguments differ only in that different TQL levels apply at each of the
airborne software levels.

Figure B-4. ToolsQualifedLevC

B-5

Figure B-5. ToolsQualifedLevB

B-6

Figure B-6. ToolsQualifedLevA

B-7

B.3. TOOL QUALIFICATION ARGUMENT FOR TQL-5

Figure B-7 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-5.” This argument is similar to the DO-178C
arguments in support of the conclusion that airborne software performs its acceptable level of
safety at the appropriate software level.

Figure B-7. TQUALTQL5

Red color and italic type in this and subsequent figures indicate differences from the analogous
DO-178C arguments. In this cases, the main differences are:

• The argument applies to a tool at a TQL, not to the airborne software at a level.
• The tool’s intended function is documented in the airborne software’s PSAC rather than in

the tool’s own documentation.
• The tool is argued to be correct with regard to its tool operational requirements rather than

to allocated system requirements.
• Correctness is inferred from the adequacy of the tool operational processes (which is

supported by tool-level verification and validation results among other evidence).

Section B.3.1 gives the argument for the adequacy of the tool operational process. Section B.3.2
gives the argument for confidence in the TQL-5 tool-qualification argument.

B-8

B.3.1. EVIDENCE OF CORRECTNESS FOR TQL-5

Figure B-7 gives the argument that the tool performs its intended function at an acceptable level
of confidence for TQL-5. This functionality is inferred from the tool’s correctness with respect to
its tool operational requirements. That correctness is in turn inferred from the adequacy of the tool
operational processes. Figure B-8 presents the argument supporting that premise, which argues
over satisfaction of tool operational process objectives that apply at TQL-5. Premises representing
each objective show that:

• The tool is identified, its intended use described, the need for tool qualification defined,
the TQL determined, the stakeholders identified, and the tool operational requirements
described (TQNeedEst).

• The tool operational requirements are defined in sufficient detail (TORsDefined) and are
correct (TORsCorrect).

• The tool has been installed correctly in the airborne software development environment
(TEOCInstd).

• The functionality and outputs of the installed tool are verified to comply with the tool
operational requirements (TOpComplies), and the tool’s satisfaction of the airborne
software-development process needs is validated (SWLCPNMeet)

That is, the tool operational process is adequate because the highest-level tool requirements are
adequate and the tool has been installed correctly, verified, and validated in its airborne software-
development context.

B-9

B
-10

Figure B-8. AdqOpsTQL5B.3.2. Confidence in Tool-Qualification Argument for TQL-5

As in the DO-178C argument, confidence in demonstrating that software is correct with respect to
its requirements is sufficient to show that the software will perform its intended function would be
undermined by the use of inadequate processes. Figure B-9 depicts the confidence argument for
TQL-5. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-5” on the grounds that
adequate configuration management has been conducted, adequate tool quality-assurance is in
place, and the certification liaison process is adequate.

Figure B-9. JustifiedConfidenceTQL5

B-11

Figure B-10 depicts the argument that configuration management is adequate for a TQL-5 tool.
This argument—largely analogous to the corresponding DO-178C argument (namely
AdqConfigManLevD)—infers the adequacy of configuration management from satisfaction of the
applicable objectives. Premises representing these objectives cite evidence to show that:

• The versions of configuration items, such as requirements and the source code, are
identified unambiguously (ConfItemsLabeled).

• Configuration allows identification of the development artifacts associated with any tool
release and ensures that only authorized tool releases are used to develop the airborne
software (ArcRelEst).

Figure B-10. AdqConfigManTQL5

B-12

Figure B-11 depicts the argument that tool quality-assurance processes are adequate for a TQL-5
tool. This argument—also largely analogous to the corresponding DO-178C argument (namely
AdqSQALevD)—infers the adequacy of tool quality assurance from satisfaction of the applicable
objectives. Premises representing these objectives cite evidence from an independent review of
processes compliance with approved plans (AssureCompPlans) and an independent conformity
review (AssureConfRef).

Figure B-11. AdqTQATQL5

B-13

Figure B-12 depicts the argument that the certification liaison process is adequate for a TQL-5
tool. This argument—somewhat analogous to the corresponding DO-178C argument (namely
AdqCertLiasLevD)—infers the adequacy of the liaison process from satisfaction of the applicable
objectives. Premises representing these objectives cite evidence to show that:

• There is communication and understanding between the applicant and the certification
authority (CertAutComm).

• The means of compliance is proposed and agreed (ComplianceAgree).
• Evidence of compliance is provided (ComplianceSubs).
• Known problems are examined to determine whether they undermine satisfaction of the

tool operational requirements (ImpactAssessed).

Section B.1. discusses key differences between the DO-330 and DO-178C certification contexts.
Those differences are reflected in differences between this argument and its DO-178C analogue:

• Documentation of the tool’s means of compliance to DO-330 is contained in part in the
Plan for Software Aspects of Certification of the airborne software it is used to develop.

• Analysis of the impact of reported problems is explicitly a DO-330 process.

Figure B-12. AdqCertLiasTQL5

B-14

B.3.2 CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-5

As in the DO-178C argument, confidence that demonstrating that software is correct with respect
to its requirements is sufficient to show that the software will perform its intended function would
be undermined by the use of inadequate processes. Figure B-13 depicts the confidence argument
for TQL-5. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-5” on the grounds that
adequate configuration management has been conducted, adequate tool quality assurance is in
place, and the certification liaison process is adequate.

Figure B-13. JustifiedConfidenceTQL5

B.4. TOOL QUALIFICATION ARGUMENT FOR TQL-4

Figure B-14 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-4.” This argument is similar to the tool
qualification argument for TQL-5 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

This argument revises the TQL-5 argument’s premise about tool operational process adequacy to
reflect the higher tool qualification level. It also adds two new premises, namely that the tool
requirements are a satisfactory refinement of the tool operational requirements and the tool
executable object code satisfactorily refines the tool requirements. The addition of a layer of more
detailed requirements and evidence of their satisfaction at a higher tool qualification level reflects
similar additions in the DO-178C argument as the software level increases.

Section B.4.1 presents the argument for the adequacy of the tool operational process. Section B.4.2
presents the argument for confidence in the TQL-4 tool-qualification argument.

B-15

Figure B-14. TQualTQL4

B-16

B.4.1. EVIDENCE OF CORRECTNESS FOR TQL-4

Figure B-14 presents the argument that the tool performs its intended function at an acceptable
level of confidence for TQL-4. This functionality is inferred from the tool’s correctness with
respect to its tool operational requirements, which is in turn inferred from:

• The adequacy of the tool operational processes
• The tool requirements adequate refining the tool operational requirements
• The tool satisfying its tool requirements

Figure B-15 presents the argument supporting the first of those premises. This argument extends
the corresponding TQL-5 argument (see figure B-8) with one additional evidence-supported
premise, namely that the “Tool Operational Requirements are complete, accurate, verifiable, and
consistent” (TORsAdequate).

Figure B-15. AdqOpsTQL4

B-17

Figure B-16 presents the argument supporting the premise that the “Tool Requirements are (for
TQL-4) a satisfactory refinement of the Tool Operational Requirements.” The support for this
conclusion comes from satisfaction of the applicable objectives and is largely analogous to the
corresponding parts of the DO-178C argument (HLRSatSRRefLevC and HLRSatSRRefLevD):

• The compliance (TRComply), consistency (TRAccCons), and traceability (TRAccCons)
premises have analogues in the DO-178C Level D argument.

• The verifiability (TRVerifiable) and algorithm accuracy (AlgorAcc) premises have
analogues in the DO-178C Level C argument.

• The requirements compatibility (TROECompatDef), error conditions (TRErrCondDef),
and user instructions (TRUIDef) premises are tool-related analogues to the compatibility
with target computer premises that apply to the (embedded) airborne software at Level B.

• TQL-4 does not have an analogue to the DO-178C Level B argument’s premise that high-
level airborne software requirements conform to the Software Requirements Standards.
(That requirement is introduced at TQL-3.)

B-18

B
-19

Figure B-16. TRSatRefTORTQL4

Figure B-17 presents the argument supporting the premise that the “Tool Executable Object Code
is (for TQL-4) a satisfactory refinement of the Tool Requirements.” This argument is largely
analogous to the DO-178C argument that the airborne software’s executable object code refines
its high-level requirements (EOCSatHLRefLevD). The most prominent differences are:

• Whereas DO-178C is concerned with “software partitioning integrity,” DO-330’s
analogous concern is about “protection mechanisms” (if used), particularly “in multi-
function tools” (ProtMechConf).

• DO-178C includes an objective related to the correctness and completeness of parameter
data item files (if any) that have no direct analogue in DO-330, although the text of the
standard makes it clear that any configuration files are to be treated as part of the tool
executable object code (see TEOCIsTEOCETC in figure B-16).

• DO-178C includes an objective related to the executable object code’s compatibility with
the target computer that has no analogue in DO-330.

B-20

Figure B-17. TEOCSatRefTRTQL4

B-21

B.4.2. CONFIDENCE IN TOOL-QUALIFICATION ARGUMENT FOR TQL-4

As in the DO-178C argument, confidence demonstrating that software is correct with respect to its
requirements is sufficient to show that the software will perform its intended function would be
undermined by the use of inadequate processes. Figure B-18 depicts the confidence argument for
TQL-4. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-4” on the grounds of
three premises applied at TQL-5 and two additional premises. The existing premises are:

1. Adequate tool quality assurance is in place (AdqTQATQL5).
2. The certification liaison process is adequate (AdqCertLiasTQL5).
3. Adequate configuration management has been conducted (AdqConfigManTQL4).

The supporting argument for the former two premises applies unchanged from TQL-5. The
supporting argument for the latter premise, given below, adds additional evidence to its TQL-5
analogue.

The new premises that apply at TQL-4 are:

4. Adequate planning has been conducted (AdqPlanningTQL4).
5. Adequate outputs of tool testing have been achieved (AdqTestingTQL4).

The supporting argument for these new premises is given below.

Figure B-18. JustifiedConfidenceTQL4

B-22

Figure B-19 depicts the argument supporting the conclusion that “adequate planning has been
conducted to TQL-4.” The argument is analogous to the DO-178C argument supporting the
conclusion that “adequate planning has been conducted for Level D” (AdqPlanningLevD). There
are two differences, both reflecting the differences in certification context between DO-178C and
DO-330. First, whereas the DO-178C argument is concerned with the adequacy of the planning
given the system into which the airborne software will be embedded, the DO-330 argument is
concerned with the adequacy of planning given the airborne software the tool will be used to
develop. Second, DO-330 defines a different set of “additional considerations” than DO-178C.
Some of the DO-330 additional considerations, such as qualifying COTS tools, have DO-178C
analogues. Others, such as multi-function tools, do not.

Figure B-19. AdqPlanningTQL4

B-23

Figure B-20 depicts the argument supporting the conclusion that “adequate planning has been
conducted to TQL-4.” The argument is analogous to the DO-178C argument supporting the
conclusion that “sufficient verification of verification results [has] been achieved for Level D”
(AdqVerVerResLevD). The main difference is that at TQL-4, DO-330 requires evidence that the
test plan achieves coverage of the tool requirements. The DO-178C analogue is required only at
Level C and above, at which level data coupling, control coupling, and statement coverage is also
required.

Figure B-20. AdqTestingTQL4

Figure B-21 depicts the argument supporting the conclusion that “adequate configuration
management is in place for TQL-4.” This argument extends a similar argument for TQL-5 (see
figure B-10) and is largely analogous to the DO-178C argument supporting the conclusion that
“adequate configuration management is in place for Level D” (AdqConfigManLevD). To the
evidence required at TQL-5, this argument adds evidence showing that configuration baselines
have been defined (BaseTraceEst); that problem reporting, change control, change review, and
configuration status accounting have been established (ProbRepEtAllEst); and that environmental
control has been established (EvnControlEst).

B-24

B
-25

Figure B-21. AdqConfigManTQL4B.5. Tool-Qualification Argument for TQL-3

Figure B-22 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-3.” This argument is similar to the tool-
qualification argument for TQL-4 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

Figure B-22. TQualTQL3

B-26

This argument revises the TQL-4 argument’s premise about the adequacy of tool requirements to
reflect the higher tool qualification level (TRSatRefTORTQL3). It also adds new premises to
reflect three source-code related objectives that are added at TQL-3:

1. The tool source code conforms to the tool code standards, except where deviations are
justified (SCConf2Stand).

2. The (tool) source code is accurate and consistent (SCAccurate).
3. The output of the tool integration is complete and correct (OutIPComCor).

These new premises have analogues in the DO-178C argument supporting the conclusion that the
source code and related outputs are satisfactory for Level C (SCSatLevC).

Section B.3.1 presents the argument that the tool requirements are a satisfactory refinement of the
tool operational requirements. Section B.3.presents the argument for confidence in the TQL-3 tool-
qualification argument.

B-27

B 5. TOOL QUALIFICATION ARGUMENT FOR TQL-3

Figure B-23 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-3.” This argument is similar to the tool
qualification argument for TQL-4 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

Figure B-23. TQualTQL3

B-28

This argument revises the TQL-4 argument’s premise about tool requirements adequacy to reflect
the higher tool qualification level (TRSatRefTORTQL3). It also adds new premises to reflect
three source-code related objectives that are added at TQL-3:

1. The Tool Source Code conforms to the Tool Code Standards except where deviations are
justified (SCConf2Stand)

2. The (Tool) Source Code is accurate and consistent (SCAccurate)
3. The output of the tool integration is complete and correct (OutIPComCor)

These new premises have analogues in the DO-178C argument supporting the conclusion that the
Source Code and related outputs are satisfactory for Level C (SCSatLevC).

Section B 5.1 gives the argument that the Tool Requirements are a satisfactory refinement of the
Tool Operational Requirements. Section B 5.2 gives the argument for confidence in the TQL-3
tool qualification argument.

B.5.1. EVIDENCE OF CORRECTNESS FOR TQL-3

Figure B-22 presents the argument that the tool performs its intended function at an acceptable
level of confidence for TQL-3. This functionality is inferred from the tool’s correctness with
respect to its tool operational requirements, which is in turn inferred from several premises. Among
these is the proposition that “tool requirements are (for TQL-3) a satisfactory refinement of the
tool operational requirements” (TRSatRefTORTQL3). Figure B-24 presents the argument
supporting that proposition. The argument adds an additional premise to the analogous TQL-4
argument (see figure B-16), namely that the “Tool Requirements Standards were followed during
the tool requirements process and deviations from the standards are justified”
(TRSatRefTORTQL3).

B-29

Figure B-24. TRSatRefTORTQL3

B-30

B.5.2. CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-3

As in the DO-178C argument, confidence that demonstrating that software is correct with respect
to its requirements is sufficient to show that the software will perform its intended function would
be undermined by the use of inadequate processes. Figure B-25 depicts the confidence argument
for TQL-3. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-3” on the grounds of
five premises applied at TQL-4 and one additional premise. The existing premises are:

1. Adequate planning has been conducted (AdqPlanningTQL3).
2. Adequate outputs of tool testing have been achieved (AdqTestingTQL3).
3. Adequate tool quality assurance is in place (AdqTQATQL3).
4. Adequate configuration management has been conducted (AdqConfigManTQL4).
5. The certification liaison process is adequate (AdqCertLiasTQL5).

The supporting argument for the latter two premises applies unchanged from TQL-4. The
supporting arguments for the former three premises, given below, add additional evidence to their
TQL-4 analogues.

Figure B-25. JustifiedConfidenceTQL3

The premise that has no TQL-4 analogue is that “additional refinement steps required at TQL-3
are satisfactory” (AddRefineTQL3Sat). The supporting argument for this premise follows.

Figure B-26 depicts the argument supporting the conclusion that “adequate planning has been
conducted to TQL-3. This argument extends the analogous argument for TQL-4 (see figure B-19)

B-31

and is analogous to DO-178C’s Level C adequate planning argument (AdqPlanningLevC). The
argument adds five new evidence-supported premises to its TQL-4 analogue:

1. The tool’s life cycle is defined (LifeCycleDef).
2. The tool-development environment is selected and defined (LifeCycleEnv).
3. Tool development standards have been defined (ToolDevStds).
4. Tool plans comply with DO-330 §10, which describes typical and minimum content for

tool-qualification life cycle data items (ToolPlansComply).
5. Development and revision of tool plans are coordinated (DevRevCoord).

Figure B-26. AdqPlanningTQL3

B-32

Figure B-27 depicts the argument supporting the conclusion that “adequate outputs of tool testing
have been achieved for TQL-3.” This argument extends the analogous argument for TQL-4 (see
figure B-20) and is analogous to DO-178C’s Level C sufficient verification argument
(AdqVerResVerLevC). The argument adds four new evidence-supported premises to its TQL-4
analogue:

1. The test cases were correctly developed into test procedures (TestProcCorr).
2. The test cases cover the low-level tool requirements (TRTestCovLLTR).
3. The test cases achieve statement coverage of the tool source code (StatementCov).
4. The test cases achieve coverage of data and control coupling (TestCovCoupling).

Figure B-27. AdqTestingTQL3

B-33

Figure B-28 depicts the argument supporting the conclusion that “adequate tool quality assurance
is in place for TQL-3.” This argument extends the analogous argument for TQL-5 (see figure B-
11) and is analogous to DO-178C’s Level C adequate software quality assurance argument
(AdqSQALevC). The argument adds three new evidence-supported premises to its TQL-4
analogue:

1. Tool plans and standards are developed and reviewed for consistency (AssurePlansRev).
2. Tool development processes comply with approved tool standards (AssureCompStans).
3. Transition criteria for the tool life-cycle process are satisfied (AssureTransCrit).

Figure B-28. AdqTQATQL3

B-34

Figure B-29 depicts the argument supporting the conclusion that “additional refinement steps
required at TQL-3 are satisfactory refinements.” This argument has no analogue at lower TQLs.
The three additional refinement steps are:

1. The low-level tool requirements refine the tool requirements (LLRSatTQL3).
2. The tool source code and related outputs are satisfactory (TSCSatTQL3).
3. The tool executable object code refines the low-level tool requirements

(TEOCSatLLTRTQL3).

The arguments supporting each of these premises are presented below.

Figure B-29. AddRefineTQL3Sat

Figure B-30 depicts the argument supporting the conclusion that the “low-level tool requirements
are (for TQL-3) a satisfactory refinement of the Tool Requirements.” This argument has no
analogues at lower TQLs but is analogous to a combination of two DO-178C arguments: the
argument showing that low-level requirements are satisfactory (LLRAdqLevelC) and the
argument that the software architecture is satisfactory (SwArchAdqLevelC). The argument
depends on eight evidence-supported premises:

1. The low-level tool requirements comply with the tool requirements (TLLRComply).
2. The low-level tool requirements are accurate and consistent (TLLRAccurate).
3. The low-level tool requirements conform to the tool design standards (LLTRConfStand).
4. The low-level tool requirements are traceable to the tool requirements (LLTRTraceTR).
5. The algorithms specified are accurate (AlgorAcc).
6. The tool architecture is compatible with the tool requirements (TArchCapatTR).
7. The tool architecture is (internally) consistent (TArchCnsstnt).
8. The tool architecture conforms to the tool design standards (TArchConforms).

B-35

B
-36

Figure B-30. LLTRSatTQL3

Figure B-31 depicts the argument supporting the conclusion that the “Tool Source Code and
related outputs are satisfactory for TQL-3.” This argument has no analogue at lower TQLs but is
analogous to part of DO-178C’s argument that the airborne software source code and related
outputs are satisfactory (SCSatLevC/SCmatchesDesign). The argument depends on three
evidence-supported premises:

1. The tool source code complies with low-level tool requirements (TSCCompLLTR).
2. The tool source code complies with the tool architecture (TSCCompTA).
3. The tool source code is traceable to the low-level tool requirements (TSCTraceLLTR).

Figure B-31. TSCSatTQL3

B-37

Figure B-32 depicts the argument supporting the conclusion that the “Tool Executable Object Code
is (for TQL-3) a satisfactory refinement of the low-level tool requirements.” Although this
argument has no analogue at lower TQLs, it is analogous to DO-178C’s argument that the airborne
software’s Executable Object Code satisfactorily refines its low-level requirements
(EOCSatLLLevC). The argument depends on two evidence-supported premises:

1. The tool executable object code complies with the low-level tool requirements
(TEOCCompliesLLTR).

2. The tool executable object code is robust with the low-level tool requirements
(TEOCRobustLLTR).

Figure B-32. TEOCSatLLTRTQL3

B-38

B.6. TOOL QUALIFICATION ARGUMENT FOR TQL-2

Figure B-33 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-2.” This argument is similar to the tool-
qualification argument for TQL-3 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

Figure B-33. TQualTQL2

This argument extends the TQL-3 argument with three new evidence-supported premises:

1. The low-level tool requirements are verifiable (LLTRVerifiable).
2. The tool source code is verifiable (SourceCodeVerifiable).
3. The external component interface is correctly and completely defined (ExtCIfaceDefd).

These former two of these premises have analogues in the DO-178C argument supporting the
conclusion that additional objectives added for Level B are satisfied (AddedObjs-LevBSat). The

B-39

remaining premises in that DO-178C argument have no analogue in the DO-330 argument. That
is, there is no requirement to ensure that tools are compatible with their target computers. DO-330
also does not require tool software architectures to be verifiable. The latter premise has no analogue
in the DO-178C argument.

Section B.6.1 presents an argument for confidence in the TQL-2 tool-qualification argument.

B.6.1. CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-2

As in the DO-178C argument, confidence [demonstrating that software is correct with respect to
its requirements is sufficient to show that the software will perform its intended function] would
be undermined by the use of inadequate processes. Figure B-34 depicts the confidence argument
for TQL-2. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-2” on the grounds of
six premises that applied at TQL-3 and one additional premise.

Figure B-34. JustifiedConfidenceTQL2

B-40

The existing premises are:

1. Adequate outputs of tool testing have been achieved (AdqTestingTQL2).
2. Adequate planning has been conducted (AdqPlanningTQL3).
3. Adequate configuration management has been conducted (AdqConfigManTQL4).
4. Adequate tool quality assurance is in place (AdqTQATQL3).
5. The certification liaison process is adequate (AdqCertLiasTQL5).
6. Additional refinement steps required at TQL-3 are satisfactory (AddRefineTQL3Sat).

The supporting argument for the latter five premises are unchanged from TQL-3. The supporting
argument for the former premise, which follows, adds additional evidence to its TQL-3 analogue.

Figure B-35 presents the argument supporting the conclusion that “adequate outputs of tool testing
have been achieved for TQL-2.” This argument extends the analogous argument for TQL-3 (see
figure B-27) and is analogous to DO-178C’s Level B sufficient verification of verification results
argument (AdqVerVerResLevB). The argument adds one new evidence-supported premise to its
TQL-3 analogue, namely that testing achieves decision coverage (DecisionCov).

Figure B-35. AdqTestingTQL2

B-41

Figure B-36 depicts the argument that “additional independence requirements for TQL-2 are
satisfied.” This argument has no analogue at TQL-3, but is broadly similar to DO-178C’s Level B
additional independence argument (IndepSatLevB). The argument and its supporting arguments
(shown in figures B-37–B-42) model the requirement that 16 objectives that applied at TQL-3
must be satisfied with independence at TQL-2.

Figure B-36. IndeptSatTQL2

B-42

Figure B-37. T0IndeptSatTQL2

Figure B-38. T3IndeptSatTQL2

B-43

Figure B-39. T4IndeptSatTQL2

Figure B-40. T5IndeptSatTQL2

B-44

Figure B-41. T6IndeptSatTQL2

Figure B-42. T7IndeptSatTQL2

B-45

B.7. TOOL QUALIFICATION ARGUMENT FOR TQL-1

Figure B-43 depicts the argument supporting the conclusion that a tool “performs its intended
function at an acceptable level of confidence for TQL-1.” This argument is similar to the tool-
qualification argument for TQL-2 and the DO-178C arguments in support of the conclusion that
airborne software performs its acceptable level of safety at the appropriate software level.

Figure B-43. TQualTQL1

This argument repeats the TQL-2 argument without adding any new premises; the differences are
matters of confidence.

Section B.7.1 presents the argument for confidence in the TQL-2 tool-qualification argument.

B.7.1. CONFIDENCE IN TOOL QUALIFICATION ARGUMENT FOR TQL-2

As in the DO-178C argument, confidence [that demonstrating that software is correct with respect
to its requirements is sufficient to show that the software will perform its intended function] would
be undermined by the use of inadequate processes. Figure B-44 depicts the confidence argument
for TQL-1. The argument infers that “the evidence provided is adequate for justifying that the
correctness of the tool has been demonstrated to the extent needed for TQL-2” on the grounds of
seven premises that applied at TQL-3:

B-46

1. Adequate outputs of tool testing have been achieved (AdqTestingTQL1).
2. Additional independence requirements for TQL-1 are satisfied (IndeptSatTQL1).
3. Adequate planning has been conducted (AdqPlanningTQL3).
4. Adequate configuration management has been conducted (AdqConfigManTQL4).
5. Adequate tool-quality assurance is in place (AdqTQATQL3).
6. The certification liaison process is adequate (AdqCertLiasTQL5).
7. Additional refinement steps required at TQL-3 are satisfactory (AddRefineTQL3Sat).

The supporting argument for the latter five premises are unchanged from TQL-2. The supporting
argument for the former two premises, given below, add additional evidence to their TQL-2
analogues.

Figure B-44. JustifiedConfidenceTQL1

B-47

Figure B-45 gives the argument supporting the conclusion that “adequate outputs of tool testing
have been achieved for TQL-1.” This argument extends the analogous argument for TQL-2 (see
figure B-35) and is analogous to DO-178C’s Level A sufficient verification of verification results
argument (NewVVAObjsSat). The argument adds one new evidence-supported premise to its
TQL-2 analogue, namely that testing achieves modified condition/decision coverage
(MCDCCov). The main difference between this argument and its DO-178C analogue is that the
DO-178C argument’s premise that “verification of additional code, that cannot be trace to Source
Code is achieved” has been replaced with the premise that “analysis of requirements-based testing
of external components” confirms that “the tool’s code structure was verified to the degree
required.”

Figure B-45. AdqTestingTQL1

Figure B-46 depicts the argument that “additional independence requirements for TQL-1 are
satisfied.” This argument extends an analogous TQL-2 argument (IndepSatTQL1) and is broadly
similar to DO-178C’s Level A additional independence argument (IndepSatLevA). The argument
and its supporting arguments (shown in figures B-47–B-50) model the requirement that 11
objectives that applied at TQL-2 must be satisfied with independence at TQL-1.

B-48

Figure B-46. IndeptSatTQL1

Figure B-47. T4IndeptSatTQL1

B-49

Figure B-48. T5IndeptSatTQL1

Figure B-49. T6IndeptSatTQL1

B-50

Figure B-50. T7IndeptSatTQL1

B-51

APPENDIX C—PREVIOUS PAPERS

Three conference papers related to the Explicate ‘78 work have been published previously. These
papers are included in this appendix in reverse chronological order.

• Holloway, C. M. (2015). “Explicate ‘78: Uncovering the Implicit Assurance Case in DO-
178C.” Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems
Symposium. M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225.
Available at <http://hdl.handle.net/2060/20150009473>. (Last accessed 27 October 2015).

• Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for
DO-178C.” Proceedings of the 31st International System Safety Conference. August 12-
16. Boston, Massachusetts. Available at <http://hdl.handle.net/2060/20140002745>. (Last
accessed 27 October 2015).

• Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance
Case.” 7th IET International Conference on System Safety, Incorporating the Cyber
Security Conference. October 15-18. Edinburgh, Scotland. Available at
<http://hdl.handle.net/2060/20120016708>. (Last accessed 27 October 2015).

C-1

http://hdl.handle.net/2060/20120016708
http://hdl.handle.net/2060/20140002745
http://hdl.handle.net/2060/20150009473

Explicate '78: Uncovering the Implicit
Assurance Case in D0-178C

C. Michael Holloway

NASA Langley Research Center

Hampton, VA, USA

Abstract For about two decades, compliance with Software Considerations in
Airborne Systems and Equipment Certification (D0- 178BIED-12B) has been the
primary means for receiving regulatory approval for using software on commer­
cial airplanes. A new edition of the standard, D0-178CIED-12C, was published
in December 2011, and recognized by regulatory bodies in 2013. The purpose
remains unchanged: to provide guidance 'for the production of software for air­
borne systems and equipment that performs its intended function with a level of
confidence in safety that complies with airworthiness requirements.' The text of
the guidance does not directly explain how its collection of objectives contributes
to achieving this purpose; thus, the assurance case for the document is implicit.
This paper presents an explicit assurance case developed as part of research
jointly sponsored by the Federal Aviation Administration and the National Aero­
nautics and Space Administration.

1 Introduction

Software Considerations in Airborne Systems and Equipment Certification (DO-­
l 78B) (RTCA 1992)1 was published in 1992. Compliance with this document has
been the primary means for receiving regulatory approval for using software on
commercial aitplanes ever since. Despite criticisms of the DO-l 78B from various
quarters, the empirical evidence suggests strongly that it has been successful, or at
worst, has not prevented successful deployment of software systems on aircraft_
Not only has no fatal commercial aircraft accident been attributed to a software
failure, many of the technological improvements that have been credited with sig­
nificantly reducing the accident rate have relied heavily on software. For exam-

1 The European Organisation for Civil Aviation Equipment (EUROCAE) uses a different
doannent numbering scheme, but the content of the documents is equivalent. For example, D0-
178C is equivalent to ED-12C. For simplicity, only the DO numbering scheme is used in the
body of this paper. Also, please note that although once upon a time RTCA was an abbreviation
for Radio Technical Commission for Aeronautics, since 1991 the four letters have been the
freestanding name of the organization.

This is a work of the U.S. Government and is not subject to copyright protection in the United
States. Published by the Safety-Critical Systems Club.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-2

2 C. Michael Holloway

ple, controlled flight into terrain----once one of the most common accident catego­
ries-has been nearly eliminated by software-intensive Enhanced Ground Proxim­
ity Warning Systems (Rushby 2011).

A new edition of the standard, DO-l 78C, was published by the issuing bodies
in late 2011 (RTCA 201 la). New editions of two existing associated documents
and four entirely new guidance documents were also published at the same time.
More information about these documents is provided later in this paper. The rele­
vant documents received official regulatory authority recognition in 2013 (Federal
Aviation Administration 2013b, European Aviation Safety Agency 2013).

The stated purpose ofDO--l 78C remains essentially unchanged from its prede­
cessor: to provide guidance 'for the production of software for airborne systems
and equipment that performs its intended function with a level of confidence in
sqfety that complies with airworthiness requirements.' The text of the guidance
provides little or no rationale for how it achieves this purpose. A new section in
the revised edition ofD0--248C (RTCA 201 lb), 'Rationale for D0-178C / D0--
278A', contains brief discussions of the reasons behind some specific objectives
and collection of objectives; nevertheless, the overall assurance case for why DO­
I 78C achieves its purpose is almost entirely implicit.

Although empirical evidence suggests that this implicit assurance case has been
adequate so far, its implicitness makes determining the reasons for this adequacy
quite difficult. Without knowing the reasons for past success, accurately predict­
ing whether this success will continue into the future is problematic, particularly
as the complexity and autonomy of software systems increases_ Equally problem­
atic is deciding whether proposed alternate approaches to DO--l 78C are likely to
provide an equivalent level of confidence in safety_

As a potential way forward for addressing these problems, the Federal Aviation
Administration {FAA) and the National Aeronautics and Space Administration
(NASA) are jointly sponsoring an effort, called the Explicate '78 project within
NASA, to uncover and articulate explicitly (that is, explicate) DO-l 78C's implicit
assurance case. Early work in this effort was described in (Holloway 2012, Hol­
loway 2013).

This paper describes the current status of the research, and is organized as fol­
lows. Section 2 provides background material Section 3 presents the key con­
cepts underlying, and several excerpts from, the explicit assurance case developed
to date. Section 4 discusses the next steps in the research and makes concluding
remarks_

2 Background

Fully undcrstanding this paper requires al least a passing familiarity with DO-­
l 78B/C and the assurance case concept. This section provides background infor­
mation on these two subjects for readers who do not already possess the requisite

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-3

Explicate '78 3

knowledge. Tbis section also provides a brief discussion of prior related published
work.

Although some excerpts :from the assurance case are expressed using the Goal
Structuring Notation (GSN), background material about GSN is not provided be­
cause of space limitations. Readers unfamiliar with GSN should consult (GSN
Committee 2011).

2.1 About D0-178C

The information in this section is based on Appendix A in IX>--l 78C, which con­
tains a summary of the history of the IX>--178 series of documents. The initial
document in the 178 series was published in 1982, with revision A following in
1985. Work on revision B began in the fall of 1989; the completed document,
which was a complete rewrite of the guidance :from revision A, was published in
December 1992. Among many other changes, the B version expanded the number
of different software levels based on the worst possible effect that anomalous
software behaviour could have on an aircraft. Level A denoted the highest level of
criticality (for which satisfying the most rigorous objectives was required), and
Level E denoted the lowest level (which was objective-free). The B version also
introduced annex tables to summarize the required objectives by software level.

Twelve years after the adoption oflX)-l 78B, RTCA and EUROCAE moved to
update the document by approving the creation of a joint special committee /
working group in December 2004 (SC-205/WG-71). This group started meeting
in March 2005, and completed its work in November 2011. The terms of refer­
ence for the group called for (among other things) maintaining the 'objective­
based approach for software assurance' and the 'technology independent nature'
of the objectives. SC-205/ WG-71 was also directed to seek to maintain 'backward
compatibility with IX)-178B' except where doing so would fail to ' adequately
address the current states of the art and practice in software development in sup­
port of system safety', 'to address emerging trends' , or 'to allow change with
technology.'

Ultimately the effort produced seven documents. In addition to IX>--178C, new
editions were written of two existing, associated documents: IX)-278A: Software
Integrity Assurance Considerations for Communication, Navigation, Surveillance
and Air Traffic Management (CNS/ATM) Systems (RTCA 2011c), and IX>--
248C: Supporting Information for IX>--178C and IX)-278A (RTCA 2011b). The
former is very similar to IX>--l 78C, but addresses software in certain ground­
based systems, which operate within a different regulatory scheme from airborne
systems. The latter provides answers to various questions and concerns raised
over the years by both industry and regulatory authorities. It contains 84 frequent­
ly asked questions, 21 discussion papers, and, as noted above, a brief rationale.

Four new guidance documents were also published to address specific issues
and techniques: IX>--330: Software Tool Qualification Considerations (RTCA

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-4

4 C. Michael Holloway

2011d); IX}-331: Model-Based Development and Verification Supplement to
D0-178C and IX}-278A (RTCA 20lle); D0-332: Object-Oriented Technology
and Related Techniques Supplement to IX}-178C and D0-278A (RTCA 20llf);
and D0-333: Formal Methods Supplement to D0-178C and IX}-278A (RTCA
201 lg). The subject matter of these documents is evident from their titles.

As a result of the terms of reference and operating instructions under which
DO-l 78C was developed, the document is only an update to, as opposed to a re­
write or substantial revision of, D0-1 78B. Diffet"ences between the B and C ver­
sions include corrections of known errors and inconsistencies, changes in wording
intended for clarification and consistency, an added emphasis on the importance
of the full body of the document, a change in qualification critet"ia for tools and
the related creation of a separate document for tool qualification, modification of
the discussion of system aspects related to software development, closing of some
perceived gaps in guidance, and the creation of the technology-specific supple­
ments enumerated above for formal methods, object-oriented technology, and
model-based design and verification.

2.2 About assurance cases

The concept of an assurance case is a generali:ration of the safety case concept. A
common definition of a safety case is 'a structured argument, supported by a body
of evidence that provides a compelling, comprehensible and valid case that a sys­
tem is safe for a given application in a given operating environment' (UK Ministry
of Defence 2007). Claims are made concet"lling the achievement of an acceptable
level of safety, and arguments and evidence are focused on providing justified
confidence that those safety claims are satisfied. A more general assurance case is
concerned about providing justified confidence that claims are satisfied about oth­
er desired attributes such as correctness, functionality, performance, or security.

Claims, arguments, evidence2, context, and assumptions constitute five compo­
nents of a well-structured assurance case (Knight 2012). Claims are statements
about desired attributes. Other names that are used for the same concept include
goals, propositions, and conclusions. In a full assurance case, thet"e will likely be
many claims that must be shown to hold, at varying levels of generality. An ex­
ample of a high-level claim is The software performs its intended function at
an acceptable level of safety (bold Arial font is used throughout the paper to
denote assurance case text). Examples of claims with an increasing level of speci­
ficity are as follows: High-level requirements are a satisfactory refinement of

2 The claims, argument, evidence distinction (perhaps using slightly different words) is well
established within the literature. A strong case can be made that argument is more properly
thought of as a broad term, of which claims and evidence are components; however, this particu­
lar paper is not the place to try to clean up the terminology, so the standard terms and distinctions
are maintained.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-5

Explicate '78 5

system requirements; Adequate configuration management is in place; and
Configuration items are identified_

An cugument explains how a stated claim is supported by, or justifiably in­
ferred from, the evidence and associated sub<laims_ Other terms sometimes used
for the same concept include strategies, warrants {Toulmin 2003), and reasom_
Just as a system nearly always consists of multiple sub-systems, an argument near­
ly always consists of multiple sub-arguments; but the term sub-argument is almost
never used_

Evidence refers to the available body of known :fucts related to system proper­
ties or the system development processes_ Data,facts, and solutions are synony­
mous terms_ Examples of evidence include haz.ard logs, testing results, and math­
ematical theorems_

Context generally refers to any information that is needed to provide definitions
or descriptions of terms, or to constrain the applicability of the assurance case to a
particular environment or set of conditions_ As example, the context for the claim
The software performs its intended function with a level of confidence in
safety that complies with airworthiness requirements would likely include the
applicable airworthiness requirements (Federal Aviation Administration 2013a), a
description of the intended function of the software, and any constraints on the
environment in which the software is expected to be used Some recent research
defines context more strictly than has been done previously (Graydon 2014)-

Assumptions are statements on which the claims and arguments rely, but which
are not elaborated or shown to be true in the assurance case_ As an example, an
argument concerning safety that shows that all identified ha7.ards have been elimi­
nated may rely on the assumption All credible hazards have been identified_

Claims, arguments, evidence, context, and assumptions are all present implicit­
ly in the collective minds of the developers of any successful engineered system.
An assurance case simply provides a means for ensuring that this implicit
knowledge is documented explicitly in a form that can be examined carefully and
critically, not only by the developers, but also by others_ An active research
community is exploring how to best create, express, analyze, improve, and main­
tain assurance cases_ Examples include (Matsuno 2014, Ayoub et aL 2013, Den­
ney et aL 2013, Hawkins et al_ 2013, Rushby 2013 , Goodenough et aL 2012, Yuan
and Kelly 2011 , Bloomfield and Bishop 2010, Hawkins and Kelly 2009, Hol­
loway 2008)_

2.3 Previous work

No published work was found that has attempted to accomplish the same goals as
the current e1Iort, but two previous projects did address relattxl a~-pecls concerning
D0-l 78B and assurance cases_

The MTIRE Corporation tried to map three different standards into an assur­
ance case framework (Ankrum and Kromholz 2005)_ The primary purpose of this

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-6

6 C. Michael Holloway

effort was to explore two primary hypotheses: all assurance cases have similar
components, and an assurance standard implies the structure_ One of the three
standards used in the study was DO--l 78B. The created assurance case was struc­
tured rigidly around the DO--l 78B chapters. For example, the top-level claim was
D0-178B Software Considerations are taken into account_ Su~claims were
given for each of the IX)-l 78B chapters 2 - 9; for example: 2.0 System Aspects
are taken into account; 5.0 Software Development Process is executed as
planned; and 9.0 Certification Liaison process is properly established & exe­
cuted_

The effort appears to have concentrated on translating the textual and tabular
form ofDO--l78B into a graphical form with as little interpretation or abstraction
as possible. This differs substantially from the current research, which is concen­
trating on discovering the underlying implicit assurance case, not rigidly translat­
ing one form of concrete expression into another form.

Researchers at the University of York and QinetiQ in the United Kingdom
conducted the other related previous work (Galloway et al 2005). The primary
goal of this research was to explore ways to justify substitution of one technology
for another. In particular, a major emphasis was placed on developing arguments
showing that the evidence produced by replacements for testing (such as formal
proof) could be at least as convincing as the evidence produced by testing. As part
of this research, certain aspects of the testing-related objectives ofDO--l 78B were
explored and GSN representations were produced. Unpublished results from the
research were submitted to SC-205/WG-71, and considered by the Formal Meth­
ods su~group, which wrote the document that eventually become IX)-333. This
material was also considered during the process of developing the assurance case
for IX)-1 78C that will be discussed in the next section.

3 The explicit case

The first version ofa complete, explicit assurance case in the Explicate '78 project
was completed and expressed in GSN at the end of 2013. It was structured in a
modular fashion, with separate arguments for each of the four main software lev­
els A-D_ To the extent consistent with the l 78C text, arguments from lower soft­
ware levels were referenced directly in the arguments for higher software levels.
This version was reviewed in varying levels of detail and rigor by a handful of
FAA personnel and other interested parties over a period of six months.

Revisions based on the review yielded a version (called e78-L5) that was sub­
stantially similar in overall structure to the original, but which differed in some
subtle ways and in several specific details. This version also introduced generic
primary and umfidence arguments, which were nol slriclly necessary, bul which
seived to illustrate a consistent argument structure across levels_ A lengthy presen­
tation describing e78-L5 was delivered to over 100 people at the FAA-sponsored
2014 National Systems, Software, and Aitborne Electronic Hardware Conference

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-7

Explicate '78 7

in September 2014. Comments received at the conference prompted several mi­
nor modifications to the GSN structures, and the creation of textual representa­
tions of portions of the case, yielding version e78-L6, which is the version de­
scribed here.

The section is organized as follows:
1) Four fundamental concepts that greatly influence the structure and content

of the e78-L6 assurance case are discussed.
2) Salient characteristics about the case itself are provided.
3) Five excerpts from the case are presented.

3.1 Fundamental. concepts

The following four concepts provide the foundation on which the explicit assur­
ance case is built: transforming safety into correctness, allowing life cycle flexibil­
ity, using confidence arguments, and explicating before evaluating. The first two
of these concepts permeate the D0--l 78C guidance itself_ The latter two concepts
arose as solutions to difficulties encountered in the early days of trying to structure
an explicit assurance case. All four are discussed below.

3.1.1 Transforming safety into correctness

A fundamental assumption of D0--l 78C is discernable only through inferences
from the text; it involves the relationship between safety and correctness. Alt­
hough in the general case, these two concepts are not equivalent (Knight 2012),
DO-l 78C rests implicitly on the assumption that within the constraints estab­
lished by the guidance, establishing justifiable confidence in the correctness of the
software with respect to its requirements is sufficient to establish justifiable confi­
dence that the software does not contribute to unsafe conditions.

The validity of this assumption rests on the further assumption that adequate
system safety processes have been followed in determining the requirements
placed on the software and its associated criticality level. As stated in the Ra­
tionale: 'Software/assurance levels and allocated system requirements are a result
of the system development and safety assessment processes' (RTCA 2011 b, p. 9).

The system requirements allocated to software are further assumed by D0--
178C to include all of the requirements that must be satisfied by the software to

ensure an adequate level of safety is maintained. D0-l 78C is not concerned with
determining or analysing these safety requirements, but only in satisfying them.
Hence it is strictly true, as is often asserted, that the standard is not a safety stand­
ard. Conducting system safely analysis is intentionally outside the scope of the
guidance. Guidance for it is expected from other documents (SAE International
1996, SAE International 2010).

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-8

8 C. Michael Holloway

Any new requirements that arise during software development must be passed
back to the system processes, including system safety processes, for analysis of
(among other things) potential safety implications. Such requirements were called
derived requirements in D0--l 78B; the term is retained in 1 78C. (This choice of
terminology has been a :frequent source of confusion, because the phrase derived
requirements is not commonly used in the broader software engineering commu­
nity. When encountering the term for the first time, many people assume that it
means requirements derived :from higher level requirements, as opposed to new
requirements that are explicitly not derived from higher level ones. Some mem­
bers of SC-205/WG-7 l tried, but failed, to change the terminology.)

With these assumptions understood, OO-l 78's emphasis on software correct­
ness is consistent with its stated purpose. Given that all the requirements necessary
for ensuring adequate safety are eventually specified, then developing software
that is correct with respect to those requirements is sufficient to ensure that the
software does not negatively affect safety. Transforming safety into correctness is
valid in this particular case.

As will be shown below, the e78-L6 assurance case makes the transformation
explicit. It also highlights the special role played by derived requirements.

3.1.2 Allowing life cycle flexibility

Another foundational concept of OO-l 78C may come as a surprise to people
whose only exposure to the guidance and its ancestors comes through criticisms
by academics: developers are permitted wide flexibility in choosing how to devel­
op their software. Neither specific development methods nor life cycles are pre­
scribed by the guidance. As stated in the Rationale,

The committee wanted to avoid prescribing any specific development methodology. [The
guidance) allows for a software life cycle to be defined with any suitable life cycle
model(s) to be chosen for software development. This is further supported by the
introduction of"transition criteria". Specific transition criteria between one process and
the next are not prescribed, rather [the guidance) states that transition criteria should be
def"med and adhered to throughout the development life cycle(s) selected.' (RTCA 20 l lb,
p. 126)

The guidance does include detailed descriptions of specific activities that may
be performed in order to satisfy particular objectives. References to the text of
these activities are even included in the Annex A tables in l 78C. However, the
guidance also explicitly states that the activities themselves may be changed:

The applicant should plan a set of activities that satisfy the objectives. This docmnent
describes activities for achieving those objectives. The applicant may plan and, subject to
approval of the certification authority, adopt alternative activities to those described in
this document. The applicant may also plan and conduct additional activities that are
determined to be necessary. (RTCA 2011a, p. 3).

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-9

Explicate '78 9

To emphasize the flexibility allowed by the guidance, the e78-l.6 assurance
case does not explicitly include accomplishing any activities as goals that must be
satisfied. Activities are only referenced within contextual items in the case_

3.1.3 Using confidence arguments

Researchers from the University of York and the University of Virginia (Hawkins
et aL 2011) introduced the idea of a confidence argument to accompany a primary
safety argument_ The primary safety argument documents the arguments related to
direct claims of safety; the confidence argument documents the arguments related
to the sufficiency of confidence in the primary argument.

This separation into two different argument structures differs from the prevail­
ing practice of intermixing concerns of safety and confidence in a single unified
argument, and offers the potential promise of eliminating or mitigating some of
the difficulties recognized in the prevailing approach (Haddon-Cave 2009)_ Alt­
hough the original research concentrated on safety arguments, the general concept
applies equally to any property of interest.

Even a cursory reading of DO-l 78C reveals that the guidance contains a mix­
ture of objectives about the desired properties of the final software product, objec­
tives related to intermediate products, and objectives concerning the processes
used to develop the product. A more careful reading, keeping the notion of sepa­
rating primary and confidence arguments in mind, suggests that some of these
objectives naturally fit well into a primary argument about properties of the final
software, and some naturally fit well into a confidence argument that affects the
degree of belief in the sufficiency of the primary argument. Only a comparatively
few objectives are difficult to classify_

These observations make using confidence arguments a foundational concept
for the explicit assurance case_ Reviewers of previous versions of the case com­
mented favorably on this approach..

3.1.4 Explicating before evaluating

The fourth foundational concept is that accurately articulating the implicit case
contained in DO- l 78C must precede trying to evaluate the sufficiency of the case_
Evaluation is an important eventual goal of the research, but unless agreement can
be reached about what the guidance really says, reaching agreement on whether it
says the right thing is impossible_

The e78-L6 assurance case is intended to properly capture what l 78C says_
Great effort was made to represent accurately the implicit arguments in the guid­
ance, wilhoul trying lo corrt:Cl any perceived ddicicncies_ The coherence and co­
gency of this explicit case should be neither greater nor lesser than that of the
guidance itself_

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-10

10 C. Michael Holloway

3.2 Characteristics of the case

The e78-L6 assurance case expression in GSN consists of a primary argument
module and a confidence argument module for each software level (A, B, C, D),
generic primary and confidence argument modules, and a simple primary argu­
ment for software level E_ Additional modules support the Level A-D primary
and confidence arguments as follows:

• Level D

Primary argument: five supporting modules
Confidence argument: five support modules

• Level C:

Primary argument: two unique and two directly referenced level D sup­
porting modules
Confidence argument: eight unique and five directly referenced level D
supporting modules

• Level B:

Primary argument: one unique supporting module and a direct reference to
the level C primary argument
Confidence argument: three unique, four directly referenced level C, and
one directly referenced level D supporting modules

• LevelA:

Primary argument: no unique supporting modules and a direct reference to
the level B primary argument
Confidence argument: two unique, two directly referenced level B, two di­
rectly referenced level C, and one directly referenced level D supporting
modules

Overall the 34 GSN modules for Levels A-D comprise 131 goals, 42 strategies,
176 context items, 34 justifications and assumptions, and 161 references to evi­
dence_ In some instances, the style of the GSN representation used in the project
may rightly displease purists_ Strict adherence to standard practices has been sacri­
ficed in places under the belief that the sacrifice better achieves visual simplicity
and enhances readability for the primary intended audience of the work, few of
whom are experts in the notation..

Also, for the benefit of the intended audience, textual representations have been
manually created for 15 of the GSN modules, with more in the works_ For two of
the five examples presented in the next section, a textual representation accompa­
nies the GSN structure_

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-11

Explicate ' 78 11

3.3 Excerpts from the case

Obviously the full case is too large to reproduce in this paper_ Five representative
excerpts are presented in this section: a simple version of the general primary ar­
gument, and one example each :from the four main software levels_

3.3.1 Simple generic primary argument

Figure I shows a GSN representation of a very simple generic primary argument
that captures the essence of the safety to correctness transformation, which, as
noted above, constitutes the heart of the IX}-l 78C implicit assurance case_ It in­
tentionally omits context, justifications, and assumptions for the sake of initial
simplicity_ These missing items do appear in the instantiation of the Level D pri­
mary argument shown in the next section_

1 .1 : SwAcc• pt.ab le,{lAv•I X}

So"M·1!n'8 per1::,m-e Its In tended
flrlctlor a~ acc-epc:able level of
f!.aft=ity for (LHVRI X}

2,1 ; A rg ByCorrKU'leM

Argument by c:rrectness of
1he sott ... ·are relajve t:>
a loea ted &y &te n recivH'•rnerits
a nd d erived requireme, t&

3.1 : H L RSat(~ IX}

High- level n:lQUirf.lments we
a salls!actory for (Level X}
refinement of the alkx~ted
is.~ir.m MqUir"RmH nts

3

3 .2 : E OCSat {Laval X}

~ eci..ta.b te Objt,ct Code
s a satisfactory tor {Level
X} refrteme,t cl the
'liOh'"'""'vsl r""'lu irir.rrt=1ntG

Fig_ t_ Simplified generic primary argument in GSN

Two aspects of the figure may be unclear to anyone 1mfami]iar with the particu­
lar tool set used in the project3 _ The number in the lower- right hand corner of each
element is a tool-generated unique identifier-_ It permits easy reference to a particu­
lar GSN element across an entire collection of arguments_ The small appendage on
the upper- right comer of the ArgByCorrectness strategy element indicates a link
to an associated confidence argument, which is contained in a separate GSN mod­
ule_

A top-level primary argument for each software level D, C, B , and A could be
expressed using an instantiation of this generic argument. In the e78-L6 assurance

3 The GSN structures were produced using tools created by Dependable Computing, Inc. Use of
these tools does not imply an endorsement of them by the U .S. Government.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-12

12 C. Michael Holloway

case, the primary arguments for levels D (shown below) and C (not shown) are
expressed in this way_ The primary arguments for levels B and A are not, because
using a different structure that highlights the specific ways these levels differ from
the lower levels seemed more enlightening_

Using the structured textual format developed for the project, the simple gener­
ic argument may also be expressed as shown in Figure 2_ Note that the text con­
tained in item C within the 'if' clause corresponds to the top-level goal of the as­
sociated confidence argument, which is not shown here_

1he conclusion
Software perfonns its intended function at acceptable level of safety for {level X}

is justified by an arg1m1ent

if

by correctness of the software relative to allocated system requirements and
derived requirements

A. High-level requirements are a satisfactory for {level X} refinement of the
allocated system requirements; and

B. Executable Object Code is a satisfactory for {level X} refinement of the high­
level requirements; and

C. The evidence provided is adequate for justifying confidence that the
correctness of the software has been demonstrated to the extent needed for
{Level X}

Fig- 2- Simplified generic primary argument in structured text

3.3.2 Level D primary argument

A GSN expression of the primary argument for software Level D is shown in Fig­
ure 3_

Text contained within double quotation marks is quoted directly from either
DO-l 78C if no document is specified, or from the specified document otherwise_
The location of the quotation is given in parentheses_ For example, the text in
MeaningAnomBeh comes from page 109 in the Glossary of DO-l 78C, and the
text in HLRDev comes from Annex A table 2 row l of l 78C_ The text in 3.1 Ref­
erences comes from bullet 6 in section S-4 of D0-248C_ To keep the size of some
elements reasonably small, quotations are not always given, but instead references
to document locations are listed

The Level D primary argument follows the structure illustrated in the previous
section, but with appropriate context and assumptions added_ Five salient points
about the argument are as follows_

(1) The five context elements attached to the top-level claim in the GSN repre­
sentation emphasize that the meaning of the claim can only be understood within
an environment containing a description of the intended function of the software
and definitions for acceptable level of safety, Level D, and anomalous behavior_
Also, the top-level claim is relevant only for software that has been assigned to

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-13

Explicate ' 78 13

level D. In the textual representation, these pieces of information are identified as
'givens' when considering whether the desired conclusion holds.

1.2: lntFur,

Oescri~n cl i'ltended

(

U'lCliOO Ol lhe sottware

~ ::=::""
1.1: Sw AccaptableLevO 1.3! DetA~g

Software performs it:!; rltended !unction Definition ol sx:eptable
m ar.ceptnb l6 level ot satoty fof le vel o -o, levei of safety trorn

50
\ ai"worthi'les:s. regulations

~------~ ;=====3:::.7
\ I A: LevelDAuign

'-r>. Tho :softw8Je has been
assigned to level 0

2.4: ReqAno c ValidSuff

i

System reQUrements albeated l'O

2.1 : Meaning Leve ID

Oe-scription of the meanilg of level
0. • Software whose anomak>us
behavior, as snown by the system
assessment process. wo..i cause
or contribute to II la:lureof :s~tem
Nr,ction resulting in a milor failure
for the airer.aft.~ (2.3.3.d).

38

2..Z: Meen lng.AnomBeh

"Anomalous behavior: Behavior
that IS ineonsis!entwtth specified
reQUrements" (Gmsary. p. 109.)

39

3.1: References

r
SOl'twllre augrnen lcc:l by any dcrtved
reQ1Ji1emerts w e valid Wld $ut1icienl ----t>
to defne ff.ended function and

-rhe rclationsh:P of the requirements
development pnx:e-ss to ihe satoty
trcx:ess (isl Cietined to ensu-e that the
safety analySis [is) not compromised
by e1ther the iffl)rosx,r i'nptementalion
d 15;:l'fety-relaled rei;;ui-cmenh or the
introduction of new behavior (that is..,
derived requtem&nts) that w as not
envisioned in the orginal safety
..,.1ys;.• D0-24SC 5.4 t>ullot 6

ensure acceptable IOvel d safety

42 A

2.9: ArgByCorrectn&u

Argue by COO'ectnesS oC the
software relntivc to 1111ocat6d
sys'.em requi1ements and
derived raqLiremenls

2.5: H LRDev

"H)gt.-1~ requirements nn,
devebped" (A ·2.1)

T
I

3.4 : Module HLASatLevD

HigtHO'ffll requirements ar,c
a satislaclrxy (for level 0)
refinement of the aloca.tcd
system r eQuiremenls

47 b

2.6: Derl--ft..Prcv

"Derived hql--5eve l 1equirameru are
demed and prOVieled to the sy5tem
prOC655&5.. includng Um system
$Wety a.~ssment process,• (A~2.2) ·~--

'°
' I

3.5: Module E OCSatLevD

Exocutllbte Oqee1 Codo is
a satist fdory (for le¥04 0)
refinement cl the
high-level rec,..i7ements

48

Fig. 3. Level D primary argument in GSN

..
J..2; A oforencca

S..1 .1 .a; ActMties 5_1..2.a , 5.1..2-b,
S..1.2.c., 5 .1 .2.d. 5.1.2 .e . 5.1.2.1,
S..1.2.g. 5o.L2J. 5.5a; Gt>s5a1y: 248C
5.5.1

3..3: References

S..1.1.b; .Activities 5. 1 .. 2.h . 5.1.2J ;
Gbooary; 0().2 ... C 5.5,1

(2) The assumption ReAllocValidSuff explicitly identifies an essential part of
the implicit assurance case within l 78C. As discussed in section 3.1.1 , the guid­
ance is grmmded in the belief that the requirements to which the software is built
are sufficient to both fully define the intended function of the software and ensure
achievement of an acceptable level of safety. The guidance itself does not directly
justify this belief, but it does include objectives intended to ensure that the safety
analysis processes are provided with adequate information to conduct a proper
assessment.

(3) HLRDev and DerHLProv both refer to specific objectives in l 78C. From
the vantage point of the assurance case, these objectives seem more properly to

establish the context in which the implicit correctness argument makes sense and

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-14

14 C. Michael Holloway

satisfies the ReAllocValidSuff assumption than to identify propositions that must
be shown to be true as part of the argument_

(4) HLRSatl.evD and EOCSatLevD are the two prongs of the correctness ar­
gument_ If the high-level requirements are a satisfactory refinement of the system
requirements, and the executable object code is in tum a satisfactory refinement of
these high-level requirements then the software can be said to be correct with re­
spect to the allocated system requirements_ By the safety to correctness transfor­
mation previously discussed, the software can therefore be said to perform its in­
tended function at an acceptable level of safety for Level D_

(5) The associated confidence argument is not shown here, but its goal is iden­
tified in the textual representation as The evidence provided is adequate for
justifying conf"ldence that the correctness of the software has been demon­
strated to the extent needed for level D_

Figure 4 presents an equivalent structured text representation of the same ar­
gument.

1he conclusion
Software performs its intended function at acceptable level of safety for Level D

given
A. Description of intended function of the software
B. Definition of acceptable level of safety from airworthiness regulations
C. The software has been assigned to Level D
D. Description of the meaning of Level D: "Software whose anomalous behavior,

as shown by the system assessment process, would cause or contribute to a
failure of system function resulting in a minor failure condition for the aircraft
for the aircraft..· (2.3.3.d)

E. "Anomalous behavior: behavior that is inconsistent with specified
requirements· (Glossary, p. 109.)

is justified by an arg1m1ent

if

by correctness of the software relative to allocated system requirements and
derived requirements

A. High-level requirements are a satisfactory for Level D refinement of the
allocated system requirements; and

B. Executable Object Code is a satisfactory for Level D refinement of the high­
level requirements; and

C. The evidence provided is adequate for justifying confidence that the
correctness of the software has been demonstrated to the extent needed for
Level D

1he arg1m1ent ass1m1es
A. System requirements allocated to software augmented by any derived

requirements are valid and sufficient to define intended function and ensure
acceptable level of safety (see D0-248C 5.4 bullet 6)

B. "High-level requirements are developed· (A-2.1) [see 5.1.1.a; Activities 5.1.2.a,
5.1.2.b, 5.1.2.c, 5.1.2.d, 5.1.2.e, 5.1.2.f, 5.1.2.g, 5.1.2j, 5.5a; Glossary; 248C
5.5.1)

C. "Derived high-level requirements are defined and provided to the system
processes, including the system safety assessment process· (A-2.2) [see
5.1.1.b; Activities 5.1.2.h, 5.1.2.i; Glossary; D0-248C 5.5.1)

Fig. 4. Level D primary argument in structured text

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-15

Explicate ' 78 15

3.3.3 Level C confidence argument

Thus far, confidence arguments have been mentioned several times, but none have
been shown. Figure 5 remedies the situation by showing a GSN expression of the
confidence argument for Level C software, slightly simplified to allow legible
display on paper.

1.1: J ustitiedConf idenceL.evC

1he evidence prov ided is adequate for
justifying confidence that the conectness
of the sofhvare has been demonstrated
to the extent needed for Level C

1 .2: Meani ng o f Evidence

-c> The required data i1ems for Level C

271

2.1: A r gByPr ocesses

Argument by adequacy
of established processes

272

..
I

3 .1: 5 Modules

In the ful argument. the
strategy refers IO modules
establis t'ing Adequat e
p lanning has been
conducted for Level C;
Adequate configuration
managment is in p lace fo r
Level C; Adequate
so·rtware quak!y assurance
is in P'ace tot Le vel C ;
Adequate v e rtfica.tion o·f
verification h as been
achieved fo r Level C ; and
The certification liason
process is adequ ate k>r
L evel D (because 1hera
a re no differences in
objectives between C & D
for the ce-rt. lia. process.)

..
I

5.1: Modu le LLRSatLevC

lo'IN· leYel requi"ements
are a satis.lact ory (fot
level C) refinement of the
high-level requirements

278

..
2 .2 : Arg:B yAdd itional Ref

Argument by additional refinemem
stel)S added for Le,,.,el C

283

..
3.2 : AddRefineLe vel CSat

Additional refinement s teps
required at Lewi C are satisf act<>ty

282

..
4 . 1 : ArgEa.chRefi nment

Argue by sai isfaction of
objectives for each refa1ement
steps added a t Level C

281

..
I

5.2 : Modu le SCSatLevC

Source Code and related outputs
are satisfactory (fOf level C)

279
0

4 .2 : LL ROev

"'Low-level requireme nts are
developed'" (A -2 .4)

4 .3 : SourceCode Oev

274

"'Sou.roe code is d evelq>ed. (A-2.6)

276

4 .4 : PossMult.LLR

5 .2 .2 & 6 . t .b explain that there
may be- one or more lower levets of

--- ,'_equ-ir-ements __ ·_··-----277.../ ..
I

S..3 : Module EOCSatLL LevC

Executable Object Code is a
satisfactory (for level C) refinement
of the low-5evel requirements

280 ,

Fig. 5. Level C confidence argument in GSN

The goal of the confidence argument is to establish that the evidence used in
the primary argument is adequate to justify believing that software correctness has
been established. IX)- l 78C's guidance related to showing the adequacy of pro­
cesses for planning, configuration management, software quality assurance, verifi­
cation of verification, and certification liaison all support gaining sufficient confi­
dence. To enable Figure 5 to fit on the page, all of these are summarized in 3.1 5
Modules. In the full assurance case, separate modules exist related to each of the
five processes.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-16

16 C. Michael Holloway

To enhance confidence in the sufficiency of the two-level refinement process
(system requirements to high-level requirements to executable object code), for
Level C software, D0-l 78C introduces additional refinement steps, of which the
guidance requires at least one (high-level to low-level), but allows for multiple in
which 'the successive levels of requirements are developed such that each succes­
sively lower level satisfies its higher level requirements' (6.l.b). The possibility
of multiple iterations of low-level requirements is denoted in the figure by the
black circle on the ar:c from ArgEachRefinement to Module LLRSatLevC. The
full assurance case includes details for each of the indicated modules.

3.3.4 Level B adequate planning argument

As an example from the Level B part of the e78-l.6 assurance case, Figure 6
shows the adequate planning component of the confidence argument.

1.1:.UC:Plffl1ir,q..a<B

A1»µ.n p• n•rg1YS
betflc::ondu::ec:IIO' lieTel B

""

/2.1: Lavepl111CC /

/ -.gAi ir,~austdab'" i:t ""'*'C / ,~~=~,
I ... ;

3 ,1; ~ \tAdqPl• • ·•liLt~C

.ldaqu.aWpanra,;,as bM,
oorrl.dedbk'id C

3.2: CC1Ap~I ed

H ~lltfl' OU~Cd.:y:fy
r,o..lr~UCCCI)
£1t a'.X.'lil!ld10 i:u,1,ng
doc:1.11rttitsb'MB

-- --
6 6 6

1~: 0All !tln 11.,

~:wn~"'10pll"en1 Plan! D1') sortwn Vd::a»"I P:an! '\'PI =;::..<::~ ...

'"

I

6

6 6 6

Fig. 6. Level B adequate planning argument in GSN

The objectives for planning at Level B are the same as the objectives for Level
C. The only difference lies in the raising of the control category that applies to the
seven planning-related data items, which are shown here as evidence items.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-17

Explicate ' 78 17

3.3.5 Level A verification of verification proc~ results argument

A final excerpt from the e78-L6 assurance case is given in Figure 7_ This struc­
ture constitutes the verification of verification process results module of the confi­
dence argument for Level A_

:t.1: M_AOq_lt

Suficitl'll~of·~
-!b--~-'b-5

1.1:A*a'"""'..,,_"
Su1icilnt.-licaliorol =-=::...,~::

6'2

2.1: ArQBy()tlJSal

Jrou'MfltbfliitiSlaClOn :A I ..
~··.$aQ:lont..4.4till
.... opp1.,-10 ll-­
u:,.err.edt,J'cu~
~ft!wO~
~~ -A

1.2:.lrdd'M,clSIII -~· =~ w

/
/

4.1: lilde>Vtr.udCodt

"Vfl'il~ola,liOna,lcdt.lhltl
C*'lnolbttr~ICl Scuft'.*())611$
_,,_Wltl_:.rdarc:a{ A•1Jt)

6

13:...,,v\:AotijlSal -n-..---.... ~-~ VVifCID'.lflol.,...calon-lahllld ...

4.::V..IU<lc-n.t

~9 •• .--..........
~ -ObJ«tCodaoobp,-,.c =:1n~~ -.cl'lllln;:::b"_,.lli ~Tl---•t-nn
M18ty~"(l().2'3:U.SboJ!.i:IS .. ,

4.S: n,tpllCOC(,y

--c:o,-.o1~ = ..--.oi,o)•--
'Aill'l~(A-7.!} ...

6

(
';;',~-........ "1

l>AUclUJ'I'~-~ - ~ -.. ~~, ;~
ISA.4 2.t. IS..4.42~ U .42.d lU.4.J ,.,
l'u:~t
~-!i,. f - ~
tlWustcma#fitwilDr
l'lqUi"en,er!.expkft,.,,.SO.ICII'
C:do - - <--a-.. ,go.
~ t,,,toftw~
llrioll.. .• . lOru...iA (R.l), ttlt
c.mni1Ne111111a:.1ilnec._a11Dtie

c,. o,;pn:eoor. ;,, f\o S-Coclo
VJO!idb9 -*1'et .. A,.......---1-.... ~~-­p,og,,l<'l'* •• TM,,_t)fMo o1-.,.-~
Clld,oi.o.c:.;on~.·
00-2'4ee5.6.lbl.a.i4

'1ICIX:asanstt.llNUru::1119d ·-3;,u~ o,;.;-~....._, -"'-·-­tht~ic.Coca~eflly'
~IOll'los.oh .. -..~ -1 ... -.oi--.,..
~lr'll' il~ODdl
(a.ct udNdCIOdt) au~
patl'a intMODMNl'fbllide-...S.'
~:H4TIUo,74~p.:):)

'

Fig_ 7. Level A verification of verification process results argument in GSN

Verification of verification process results for Level A differs from Level Bon­
ly in having additional requirements for independence (which are not elaborated in
the figure, but are in the full assurance case), and two new objectives: verifying
untraceable code (lndepVerAddCode) and achieving modified condition / deci­
sion coverage (lndepMCDCov), which must be done with independence.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-18

18 C. Michael Holloway

4 Next steps and concluding remarks

The e78-L6 assurance case discussed in this paper is not the final product of
the Explicate '78 research. The case needs to be subjected to careful scrutiny by
aviation industry and regulator experts, as well as assurance case and GSN ex­
perts_ For the former, the existing textual representations most likely will need to
be expanded to include the entire case_ For the latter, the somewhat loose use of
GSN elements th.at characterize the current case will likely need to be tightened_

The current case, however, seems to be sufficiently stable and complete to
permit two concurrent activities to be undertaken during the heightened scrutiny
period:

l _ Beginning to evaluate the sufficiency of the case, not just as an accurate reflec­
tion of what D0-l 78C requires, but also as to whether what it requires is
strong enough at each software level to provide justified assurance th.at soft­
ware that complies with the document will perform 'its intended function with
a level of confidence in safety that complies with airworthiness requirements_

2_ Extending the existing case to include the guidance from one or more of the
supplement documents_

If all goes well, good progress on all of these activities will be made before this
paper is published. The goal is to complete the research before the end of2015_

At least four benefits may arise from successful completion of this research,
two of which are specific to D0--l 78C, and two of which are more general_ First,
the existence of an explicit assurance case for the D0-l 78C guidance should fa­
cilitate intelligent conversations about the relative efficacy of D0-l 78C and pro­
posed alternative approaches for demonstrating compliance with airworthiness
regulations_ The likelihood of this benefit truly happening increases with the num­
ber of people within industry and the regulatory authorities who accept the Expli­
cate '78 assurance case as an accurate reflection of the guidance_

Second, effectively analysing the adequacy of the assurance case should pro­
vide a solid foundation for future modifications to the guidance_ When the time
comes to create DO-l 78D, perhaps the Explicate '78 results will help provide the
committee with a more structured and systematic basis for making changes th.an
an unordered list of issues_

Third, more generally the existence of an assurance case representation for one
guidance document may motivate the creation of such representations for other
guidance documents. This, in turn, may result in clearer understanding of and
more systematic updates to such documents.

Fourth, and most generally of all, perhaps the Explicate '78 work may help
serve as a catalyst for prompting improved cooperation and mutual understanding
between supporters of prescriptive standards and supporters of goal-based stand­
ards. One might even go so far as to hope for a lasting peace.

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-19

Explicate '78 19

Acknowledgments This work is partially funded by the Reimblll'Sable Interagency Agreement
DTFACT-10-X--00008, Modification 0004, Space Act IAl-1073, between the Federal Aviation
Administration and the National Aeronautics and Space Administration, Langley Research Cen­
ter, for Design, Verification, and Validation of Advanced Digital Airborne Systems Technology:
Annex 2, Assurance Case Applicability to Digital Systems. This paper, however, did not undergo
any official review by FAA personnel.

References

Ankrum T, Kromholz A (2005) Structured Assurance Cases: Three Common Standards. Pro­
ceedings of the Ninth IEEE International Symposium on High-Assurance Systems Engineer­
ing (HASE'05). Heidelberg, Germany

Ayoub, A, Chang, J, Sokolsky, 0, & Lee, I (2013) Assessing the Overall Sufficiency of Safety
Arguments. Assuring the Safety of Systems: Proceedings of the Twenty-first Safety Critical
Systems Symposium. C. Dale & T. Anderson (Eds.). February 5-7. Bristol, UK. Springer

Bloomfield R, Bishop P (2010) Safety and Assurance Cases: Past, Present and Possible Future.
Making Systems Safer. C. Dale and T. Anderson (eds). Springer-Verlag

Denney, E, Pai, G, Habli, I, Kelly, T, & Knight, J (2013). 1st International Workshop on Assur­
ance Cases for Software-intensive Systems (ASSURE 2013). Proceedings of the 2013 Inter­
national Conference on Software Engineering. May 18- 26. San Francisco, California

European Aviation Safety Agency (2013) AMC 20- l 15C Software Considerations for Certifica­
tion of Airborne Systems and Equipment. ED Decision 2013/026/R http:1/easaeuropa
eu/system/files/dfu/Annex%2011%20-%20AMC%2020-115C.pdf (last accessed December 2,
2014)

Federal Aviation Administration (2013a) Standard Airworthiness Certification: Regulations -
Title 14 Code of Federal Regulations. http://www.faagov/aircraft/air_cert/airworthiness_
certification/std_ aw cert/std_ awcert _ regs/regs/ (last accessed December 5, 2014)

Federal Aviation Administration (2013b) Advisory Circular 20-115C Airborne Software Assur­
ance. http://www.faagov/documentLibrary/media/Advisory_ Circular/AC_20-ll5C.pdf (last
accessed December 2, 2014)

Galloway A , Paige R, Tudor, N , Weaver R, McDermid, J. (2005) Proof vs. Testing in the Con­
text of Safety Standards. The 24th Digital Avionics Systems Conference (DASC), Washing­
ton D.C.

Goodenough J, Weinstock C, Klein A (2012) Toward a Theory of Assurance Case Confidence.
CMU-SEI-2002-TR--002, September

Graydon, P (2014) Towards a Clearer Understanding of Context and Its Role in Assurance Ar­
gument Confidence. Computer Safety, Reliability, and Security, 139-154.

GSN Committee (2011) Draft GSN Standard Version 1.0. http://www.goalstructuringnotation.
info/ (last accessed December 2, 2014)

Haddon-Cave C (2009) The Nimrod Review. London: The Stationary Office http://www.official­
documents.gov.uk/document/hc0809/hcl0/l025/ l025.pdf (last accessed December 1, 2014).

Hawkins R, Habli I, Kelly T, McDennid J (2013) Assurance cases and prescriptive software
safety certification: A comparative s tudy. Safety Science. Vol 59

Hawkins R, Kelly T (2009) A Systematic Approach for Dev eloping Software Safety Arguments.
Proceedings of the 27th International System Safety Conference. Huntsville, Alabama

Hawkins R, Kelly T, Knight J, Graydon P (2011) A New Approach to Creating Clear Safety
Arguments. Advances in Systems Safety. C. Dale and T. Anderson (eds). Springer-Verlag

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-20

20 C. Michael Holloway

Holloway CM (2013) Making die Implicit Explicit: Towards an Assurance Case for D0--178C.
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Mas­
sachusetts (ref. z)

Holloway CM (2012) Towards Understanding die DO--l 78C / ED-12C Assurance Case. 7th IET
International Conference on System Safety, lncotp0rating the Cyber Security Conference.
Edinburgh

Holloway CM (2008) Safety Case Notations: Alternatives for the Non-Graphically Inclined?
Proceedings of the 3rd IET International System Safety Conference. Binningham, UK

Knight J (2012) Fundamentals of Dependable Computing for Software Engineers. Boca Raton,
Florida: CRC Press

Matsuno, Y (2014) A Design and Implementation of an Assurance Case Language. Dependable
Systems and Networks (DSN). Atlanta, Georgia

RTCA (1992) Software Considerations in Aitbome Systems and Equipment Certification. D0--
178B.

RTCA (201 la) Software Considerations in Airborne Systems and Equipment Certification. D0--
178C.

RTCA (20 I lb) Supporting Information for D0--178C and D0--278A. D0--248C
RTCA (2011c) Software Integrity Assurance Considerations for Communication, Navigation,

Smveillance, and Air Traffic Management (CNS/ A TM) Systems. D0--278A
RTCA (201 ld) Software Tool Qualification Considerations. D0--330
RTCA (2011e) Model-Based Development and Verification Supplement to D0--178C and D0--

278A. D0--331
RTCA (2011f) Object-Oriented Technology and Related Techniques Supplement to D0--178C

and D0--278A. D0--332
RTCA (201 lg) Fonnal Mediods Supplement to D0--178C and D0--278A. D0--333
Rushby, J (2013) Logic and epistemology in safety cases. Computer Safety, Reliability, and

Security, 32nd SAFECOMP. Toulouse, France
Rushby J (2011) New Challenges in Certification of Aircraft Software. Proceedings of the 11th

International Conference on Embedded Software (EMSOFT). Taipei, Taiwan
SAE International (1996) Guidelines and Methods for Conducting the Safety Assessment Pro­

cess on Civil Aitbome Systems and Equipment SAE ARP 4761
SAE International (2010) Guidelines for Devdopment of Civil Aircraft and Systems. SAE ARP

4754a
Toulmin S (2003) The Uses of Argument, Updated Edition. Cambridge University Press
UK Ministry of Defence (2007) Defence Standard 00-56 Issue 4: Safety Management Require­

ments for Defence Systems
Yuan T, Kelly T (2011) Argument Schemes in Computer System Safety Engineering. Infonnal

Logic31 (2)

Holloway, C. M. (2015). “Explicate '78: Uncovering the Implicit Assurance Case in DO-178C.”
Engineering Systems for Safety. Proceedings of the 23rd Safety-critical Systems Symposium.

M. Parsons & T. Anderson (Eds.). February 2-5. Bristol, UK. pp. 205-225

C-21

Making the Implicit Explicit: Towards An Assurance Case for D0-l 78C

C. Michael Holloway; NASA Langley Research Center; Hampton, Virginia, USA

Keywords: assurance case, translation, aviation, correctness, standards

Abstract

For about two decades, compliance with Software Considerations in Airborne Systems and Equipment Certification
{DO- l 78B) has been the primary means for receiving regulatory approval for using software on commercial
airplanes. A new edition of the standard, D0-178C, was published in December 2011, and regulatory bodies have
started the process towards recognizing this edition. The stated purpose of D0-l 78C remains unchanged from its
predecessor: providing guidance "for the production of software for airborne systems and equipment that performs
its intended function with a level of confidence in safety that complies with airworthiness requirements.'' Within the
text of the guidance, little or no rationale is given for how a particular objective or collection of objectives
contributes to achieving this purpose. Thus the assurance case for the document is implicit. This paper discusses a
current effort to make the implicit explicit. In particular, the paper describes the current status of the research
seeking to identify the specific arguments contained in, or implied by, the D0-l 78C guidance that implicitly justify
the assumption that the document meets its stated purpose.

Introduction

For about two decades, compliance with Software Considerations in Airborne Systems and Equipment Certification
(D0-178B) (ref. 1) has been the primary means for receiving regulatory approval for using software on commercial
airplanes. Despite frequent and occasionally strident criticisms of the standard from various quarters, the empirical
evidence is quite strong that it has been successful. Not only has no fatal commercial aircraft accident been
attributed to a software error, many of the technological improvements that have been credited with significantly
reducing the accident rate have relied heavily on software. For example, controlled flight into terrain----once one of
the most common accident categories-has been nearly eliminated by Enhanced Ground Proximity Warning
Systems, which are software-intensive (ref. 2).

A new edition of the standard, D0-l 78C, was published by the issuing bodies in late 2011 (ref. 3). New editions of
two associated documents were also published at the same time: D0-278A-Software Integrity Assurance
Considerations for Communication, Navigation, Surveillance and Air Traffic Management (CNS/A TM) Systems
(ref. 4), and D0-248C-Supporting Information for D0-178C and D0-278A (ref. 5). Additionally four new
guidance documents were published simultaneously to address specific issues and techniques: D0-330-Software
Tool Qualification Considerations (ref. 6); D0-331-Model-Based Development and Verification Supplement to
D0-178C and D0-278A (ref. 7); D0-332----0bject-Oriented Technology and Related Techniques Supplement to
D0-178C and D0-278A (ref. 8); and D0-333-Formal Methods Supplement to D0-178C and D0-278A (ref. 9).
These seven documents have not yet received official regulatory authority approval at the time of this writing, but
the regulatory bodies are well along in the process towards recognizing them 1.

The stated purpose of D0-178C remains essentially unchanged from its predecessor: providing guidance "for the
production of software for airborne systems and equipment that performs its intended function with a level of
confidence in safety that complies with airworthiness requirements." In D0-178B little or no rationale is given for
how a particular objective or collection of objectives contributes to achieving this purpose. Thus, the assurance case
for the document is implicit. Although empirical evidence suggests that this implicit assurance case has been
adequate so far, its implicitness makes determining the reasons for this adequacy quite difficult. Without knowing
the reasons for past success, accurately predicting whether this success will continue into the future is problematic.

D0-178C is also mostly rationale-free, but the revised edition of D0-248C includes a new section: 'Rationale for
D0-178C / D0-278A'. This rationale section provides a basis from which building an explicit assurance case may

1
The European Organisation for Civil Aviation Equipment (EUROCAE) uses a different document

numbering scheme, but the content of the documents is otherwise identical. For example, D0-l 78C is identical to
ED-12C. For simplicity, only the DO-numbering is referenced in this paper.

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-22

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-23

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-24

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-25

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-26

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-27

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-28

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-29

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-30

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-31

Holloway, C. M. (2013). “Making the Implicit Explicit: Towards an Assurance Case for DO-178C.”
Proceedings of the 31st International System Safety Conference. August 12-16. Boston, Massachusetts.

C-32

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

C-33

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

C-34

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

C-35

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

C-36

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

C-37

Holloway, C. M. (2012). “Towards Understanding the DO-178C / ED-12C Assurance Case.” 7th IET International
Conference on System Safety, Incorporating the Cyber Security Conference. October 15-18. Edinburgh, Scotland.

C-38

	Abstract
	Key Words
	Table of Contents
	List of Figures

