# Bleed Air Contaminant Particulate Measurements

Steven Eckels, Byron Jones, Garrett Mann, Shahin Amiri, Jacob Roth Mechanical & Nuclear Eng., Kansas State University

&

Krishnan R Mohan, Clifford P. Weisel

Environmental and Occupational Health Sciences Institute, Rutgers University



# Bleed Air Contaminant Particulate Measurements

- Bleed air simulator measurement
  - Phase 1
  - Phase 2
- VIPR program
- Test stand turbine engine measurements

#### BAS – Phase 1

 Particle size distribution from the simulator for the following conditions:

| Point # | Base          |                     | Study 1       |                     | Study 2       |                     | Study 3       |                     | Study 4       |                     |
|---------|---------------|---------------------|---------------|---------------------|---------------|---------------------|---------------|---------------------|---------------|---------------------|
|         | Temp, °C (°F) | Press,<br>kPa (psi) |
| 1       | No Heat       | 200 (29)            | 100 (212)     | 200 (29)            | 230 (445)     | 690 (100)           | 230 (445)     | 200 (29)            | 280 (535)     | 200 (29)            |
| 2       | 185 (365)     | 200 (29)            | 200 (392)     | 200 (29)            | 250 (490)     | 690 (100)           |               |                     | 280 (535)     | 340 (50)            |
| 3       | 230 (445)     | 460 (67)            | 240 (464)     | 200 (29)            | 280 (535)     | 690 (100)           | 230 (445)     | 480 (70)            | 280 (535)     | 480 (70)            |
| 4       | 250 (490)     | 690 (100)           | 275 (527)     | 200 (29)            | 310 (590)     | 690 (100)           | 230 (445)     | 690 (100)           | 280 (535)     | 690 (100)           |
| 5       | 280 (535)     | 480 (70)            |               |                     |               |                     |               |                     |               |                     |
| 6       | 310 (590)     | 690 (100)           |               |                     |               |                     |               |                     |               |                     |

## Particle Measuring

#### **Aerodynamic Particle Sizer**

- TSI Model 3321
- Measures aerodynamic diameter by recording the time of flight of particles as they are accelerated through a nozzle.
- Particle size is binned into 52 channels from 0.5μm to 20 μm.

#### **Condensation Particle Counter**

- TSI Model 3781
- Measures particle concentration by optical counting.
- Water is deposited by condensation onto the particles to make them large enough to be detected optically.
- Particles as small as 6 nm are counted. There is no binning.



### Particle Measuring

#### **Optical Particle Counter**

- Climet Spectro 0.3
- Calculates particle size and concentration by measuring the intensity of light scattered by the particles.
- Particle size is binned into 16 channels from 0.3μm to 10μm.

#### **Scanning Mobility Particle Sizer**

- TSI 3496
- Uses ionization with electric field to separate particles by mobility
- Uses a CPC to count different size bands
- Size range from 10nm to 532nm.

#### Results



Size distributions from base study



#### Results





#### BAS – Phase 2

- Particle Sizing
- FTIR analysis of gaseous contaminants
- Collection of contaminant samples with absorbent tubes

### Particle Measuring

#### **Aerodynamic Particle Sizer**

- TSI Model 3321
- Measures aerodynamic diameter by recording the time of flight of particles as they are accelerated through a nozzle.
- Particle size is binned into
   52 channels from 0.5μm to
   20 μm.

#### **Scanning Mobility Particle Sizer**

- TSI 3496
- Uses ionization with electric field to separate particles by mobility
- Uses a CPC to count different size bands
- Size range from 10nm to 532nm.

# **BAS Experimental Conditions**

| Temperature (C) | Pressure (psia) |    |    |     |  |  |  |  |
|-----------------|-----------------|----|----|-----|--|--|--|--|
|                 | 30              | 50 | 70 | 100 |  |  |  |  |
| 185             |                 |    |    |     |  |  |  |  |
| 220             |                 |    |    |     |  |  |  |  |
| 250             |                 |    |    |     |  |  |  |  |
| 280             |                 |    |    |     |  |  |  |  |
| 310             |                 |    |    |     |  |  |  |  |



## SMPS 30 psia





# SMPS 100 psia





# APS 50 psia





# APS 100 psia





#### Conclusions from BAS Measurements

- Bulk of particle counts below 300 nm
- Higher temperatures generate substantially more ultrafine particles, likely smoke generation
- Generation of increased ultrafine particles at elevated temperatures not likely tied to apparatus

#### Bleed air contamination detector?



Ionization smoke detectors work well for d<300 nm



#### Vehicle Integrated Propulsion Research (VIPR)

- Multi-year, multi phase NASA program
- Other players include Air Force, Boeing, Pratt and Whitney, MAKEL, and the FAA
- Many objectives but overall focus is real time engine health monitoring
- Bleed air contaminant measurements a small, but important, piece of the program



#### **VIPR Test Bed**



# VIPR Experimental Apparatus



**Bleed Air System Test Rig** 





#### VIPR Bleed Air Data





#### VIPR Plans

- Anticipate next phase of measurements in early 2015
- ACER Participation???



## Test Stand Turbine Engine

- BAS simulator can reproduce pressure and temperature but not the same environment
- Turbine engine compressor is nearly adiabatic with vanes and high speed blades. All heating is due to compression.
- BAS uses non-adiabatic reciprocating piston compressor with after-heater.

## Test Stand Turbine Engine

- Are particle characteristics universal or specific to the bleed air apparatus?
- Are particle characteristics dependent upon the nature of the aerosol introduction?
- Real aircraft engines (e.g. VIPR) are the ultimate answer but very expensive and difficult to run experiments.
- Small engine can answer most questions at fraction of the cost.



## Allison T63





## Allison T63





# Measurement Equipment





# Lots of work to do before August





