# Risk to Ozone and ozone-derived oxidation products on commercial aircraft

Clifford P. Weisel<sup>a</sup>
Charles J. Weschler<sup>a,b</sup>
Kris Mohan<sup>a</sup>
Jack Spengler<sup>c</sup>
Jose Vallarino<sup>c</sup>
William W Nazaroff<sup>c</sup>

<sup>a</sup>Environmental & Occupational Health Sciences Institute, Rutgers University, NJ

<sup>b</sup>International Centre for Indoor Environment and Energy, Tech Inst Denmark

<sup>c</sup>Harvard School of Public Health, Boston, MA

<sup>d</sup>Department of Civil and Environmental Engineering, UC, Berkeley, CA





### Background

- At cruise altitude (10000 to 11000 m), ozone levels outside an aircraft are high – typically 200 to 800 ppb
- Atmospheric conditions, such as folds in the tropopause, can result in an influx of stratospheric air into the lower atmosphere.

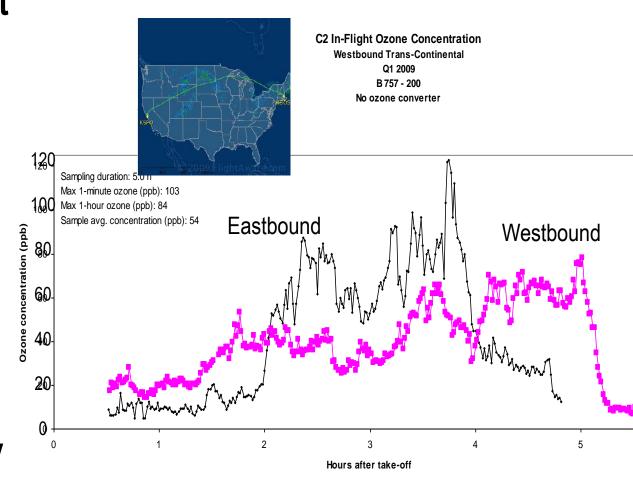


Thus even lower flying aircraft can encounter high ozone levels

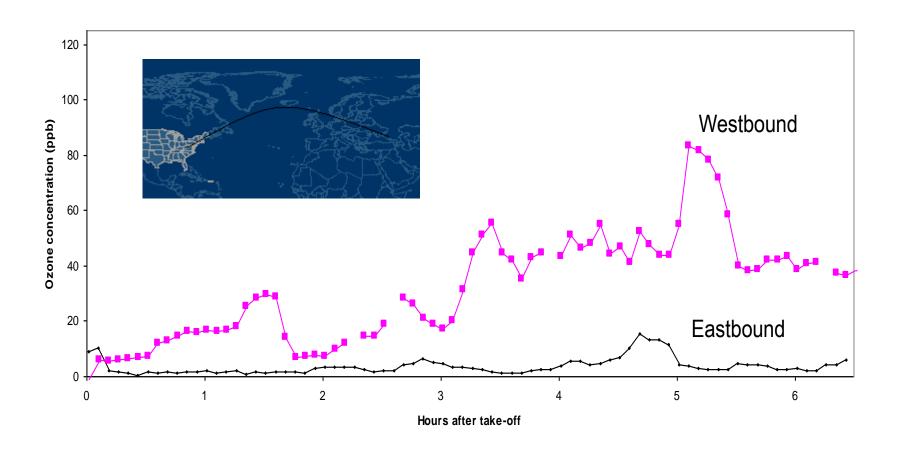
### Background

- In the 1960s high ozone levels Dr. David Bates placed rubber bands (specially produced without antioxidants) in planes and observed that they cracked in an analogous fashion to a similar set exposed to ozone on the ground. At the same time toxicological symptom associated with ozone was observed occurring in flight attendants
- To reduce ozone on planes that cruise at high altitude most wide-body aircraft have ozone filters to remove ~85% of the ozone from the ventilation air
- However, only ~ 1/2 narrow-body aircraft remove ozone from the ventilation air

#### Background

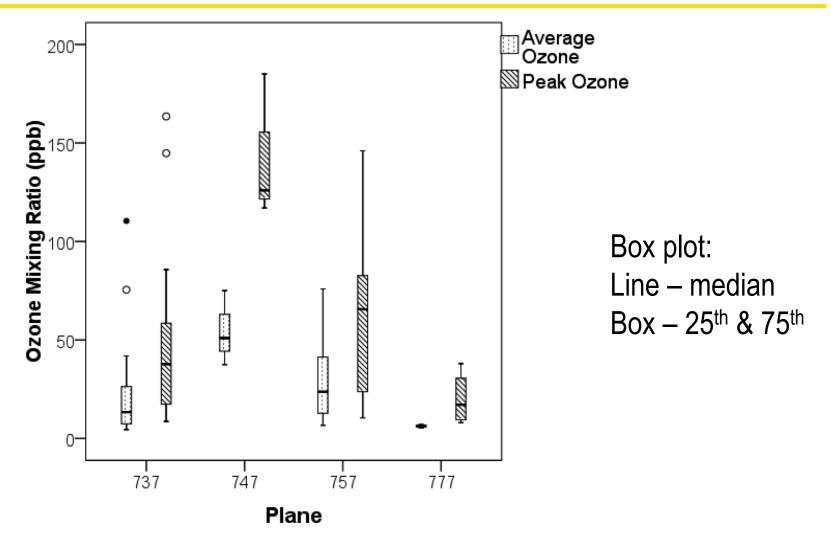

- In 1980 FAA set an ozone standard in the airplane cabin of 100ppb average for flights exceeded 3 hours and 250ppb maximum – sea level equivalent. (Note ground level standard in 75ppb for 8 hours and 120ppm for 1hour)
- Ozone controlled by converters and route planning but not all planes with converters
- Ground levels standards lowered several times since 1980
- Ground level ozone is also considers other photochemical oxidants and indoor air studies have found that ozone reacts to form additional compounds
- Simulated aircraft cabin studies have identified the formation of aldehydes by ozone

#### Ozone levels on transcontinental aircraft


At cruise altitude,ozone outside aircraft~ 200 - 800 ppb

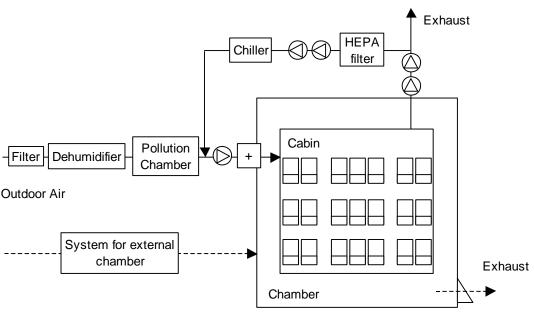
•Only about half the narrow-body aircraft remove ozone from ventilation air

•Ozone levels in commercial aircraft cabins are frequently > 50 ppb




# In-flight ozone data - transcontinental




Planes (747) had ozone converter. The condition were not known and the have a limited lifetime of effectiveness.

# Measured O<sub>3</sub> levels (52 flights)



Weisel, CP, Weschler, CJ, Mohan, K, Vallarino, J, Spengler, JD "Ozone and Ozone By-Products in the Cabins of Commercial Aircraft" Environmental Science and Technology, 47 (9), 4711–4717, 2013

### O<sub>3</sub> & humans in a simulated aircraft cabin

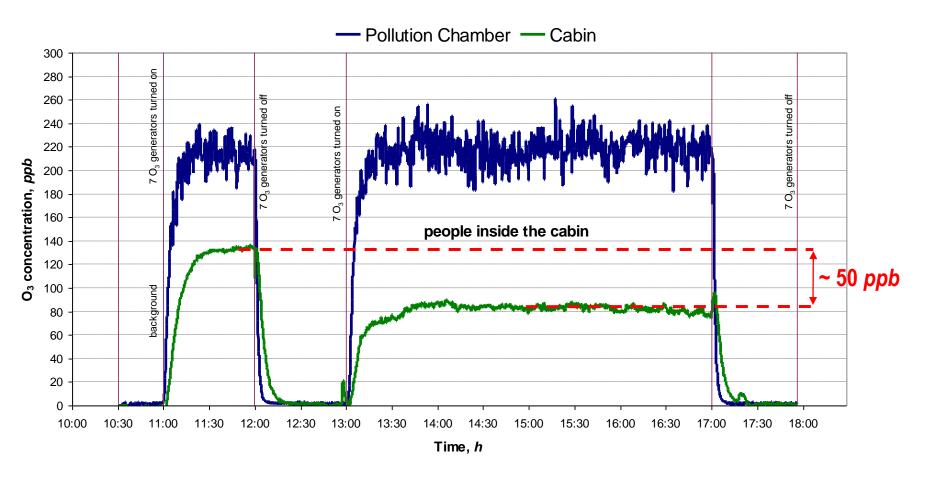




Simulated B-767; 3 rows, economy

- 16 passengers; 4-hour flights
- Outdoor airflow: 4.4 h<sup>-1</sup> or 8.8 h<sup>-1</sup>; total airflow: 23 h<sup>-1</sup>
- [O<sub>3</sub>]: 60 to 80 ppb

#### Chemical measurements

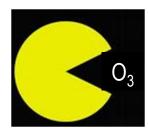

- Proton Transfer Reaction/Mass Spectrometry (PTR/MS) (Identify transient and unknown compounds)
- Multi-Sorbent tubes (Volatile Organic Compounds)
- DNPH cartridges (Formaldehyde & Acetaldehyde)
- DNSH cartridges (Acrolein)
- UV (Ozone)
- Nondispersive Infrared (Carbon Dioxide)

# In-plane sources of O<sub>3</sub>-reactive chemicals

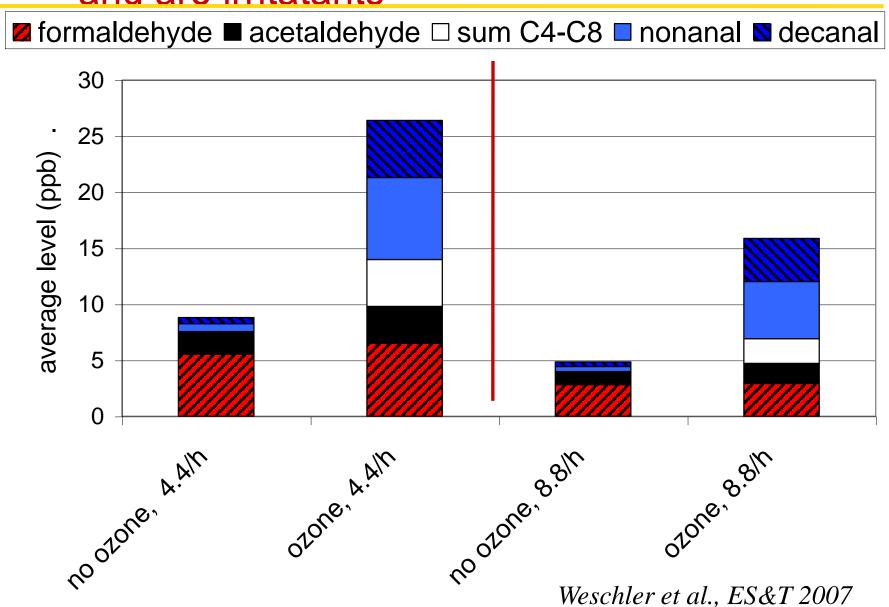
| Occupants          | Skin oil (i.e., squalene, oleic acid, unsaturated sterols), isoprene, nitric oxide (NO), |
|--------------------|------------------------------------------------------------------------------------------|
| Carpet & backing   | 4-PCH, 4-VCH, unsaturated fatty acids                                                    |
| Seats              | Skin oil, fabric                                                                         |
| Soiled air filters | Unsaturated organics associated with captured particles                                  |

# Humans are large O<sub>3</sub> sinks

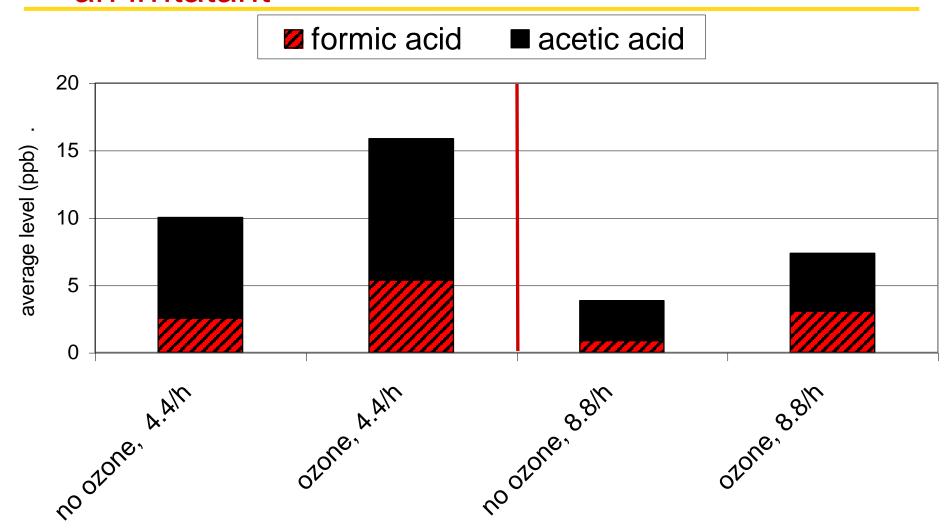
#### Simulated aircraft cabin



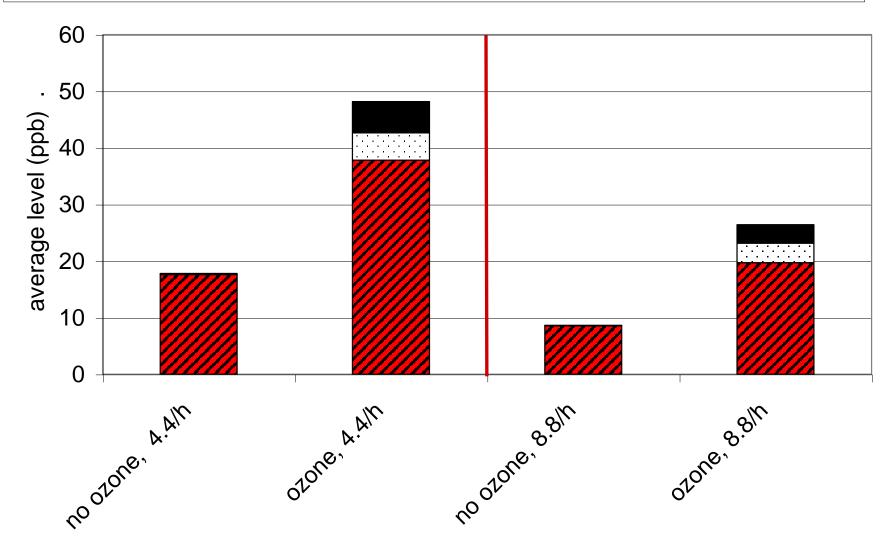

airflow: 75 L/s (8.8 h<sup>-1</sup>)


Weschler et al., Environ Sci & Technol 41, 6177 (2007)

#### Ozone reactive constituents of skin oil

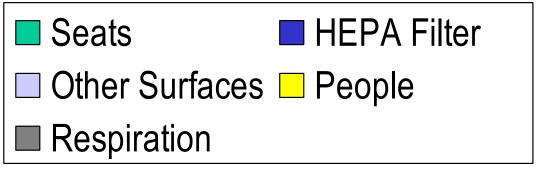

- Squalene (~ 10 15 μg/cm²)
- Unsaturated fatty acids: (~ 11 17 μg/cm²)
  - Some with  $\Delta^6$  unsaturation unique to humans
- Cholesterol (~ 3 4 μg/cm²)
- Vitamin E ( $\sim 0.013 0.020 \, \mu g/cm^2$ )
- Ubiquinone, aka CoQ<sub>10</sub> (~ 0.012 0.018 µg/cm<sup>2</sup>)
- Even smaller amounts: vitamin A, β-carotene, lycopene, ascorbic acid, glutathione, uric acid

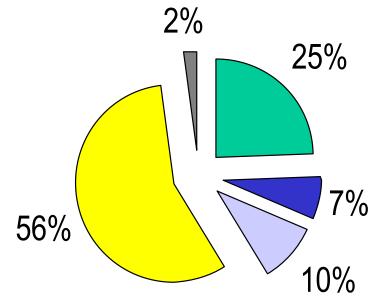



# Saturated aldehydes produced by ozone and are irritatants



# Organic acids produced by ozone with one an irritatant





#### Acetone, 6-MHO and 4-OPA



Weschler et al., ES&T 2007

## Humans are large O<sub>3</sub> sinks





Contribution
of different
sinks to
ozone
removal in
simulated
Boeing 767

# Symptom evaluations – DTU Chamber Study

| Ozone in Cabin<br>(ppb) | Flow of outdoor air (l/s/person) | Outdoor AER (h-1) | Flow of outdoor air (kg/m/person) |
|-------------------------|----------------------------------|-------------------|-----------------------------------|
| <2                      | 2.4                              | 4.4               | 0.17                              |
| 61                      | 2.4                              | 4.4               | 0.17                              |
| <2                      | 4.7                              | 8.8               | 0.34                              |
| 74                      | 4.7                              | 8.8               | 0.34                              |

29 Female Subjects, 19-27 years
4 hour simulated flights 3row-21seat section
Completed questionnaires are various times during simulation
Statistical evaluation p<0.05 for significance

Stom-Tejsen, Weschler, Wargocki, Myssklo, Zarzycka The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin., JESEE, <u>18</u>, 272-281, 2008

# Symptom evaluations – DTU Chamber Study

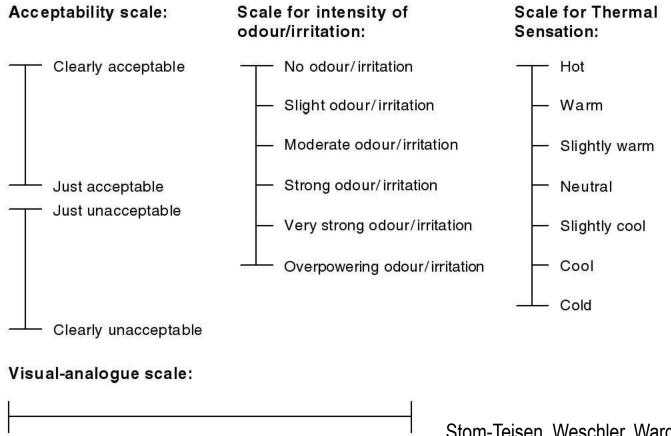



Figure 1. Scales for subjective assessments.

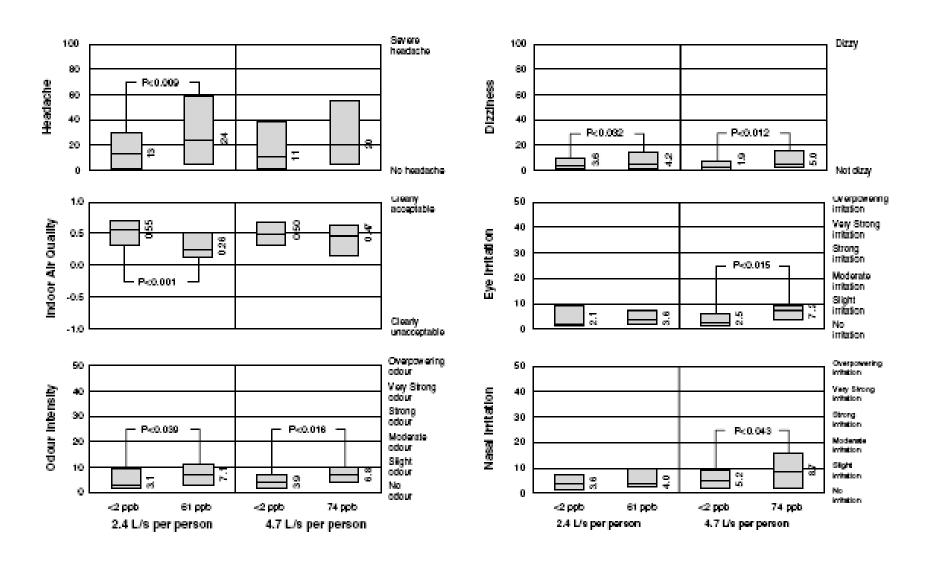
Stom-Tejsen, Weschler, Wargocki, Myssklo, Zarzycka The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin., JESEE, <u>18</u>, 272-281, 2008

# Air Quality and Symptoms Evaluated

**Table 3.** Variables probed in questionnaires.

| Variable                          | Scale end points     |                         |                                                |                     |                     |
|-----------------------------------|----------------------|-------------------------|------------------------------------------------|---------------------|---------------------|
| Air quality                       |                      |                         |                                                |                     |                     |
| Indoor air quality <sup>a,*</sup> | Clearly unacceptable | Clearly acceptable      |                                                |                     |                     |
| Odour intensity <sup>b,*</sup>    | No odour             | Overpowering odour      |                                                | 1 <del>70</del> 1   |                     |
| Eye irritation <sup>b,*</sup>     | No irritation        | Overpowering irritation | Symptoms                                       |                     |                     |
| Nasal irritation <sup>b,*</sup>   | No irritation        | Overpowering irritation | Nasal occlusion <sup>c</sup>                   | Nose clear          | Nose blocked        |
| Throat irritation <sup>b,*</sup>  | No irritation        | Overpowering irritation | Nasal dryness <sup>c</sup>                     | Nose runny          | Nose dry            |
|                                   |                      |                         | Mouth dryness <sup>c</sup>                     | Mouth not dry       | Mouth dry           |
| Cabin environment                 |                      |                         | Lip dryness <sup>c</sup>                       | Lips not dry        | Lips dry            |
| Air humidity/dryness <sup>c</sup> | Too humid            | Too dry                 | Skin dryness <sup>c,*</sup>                    | Skin not dry        | Skin dry            |
| Freshness of air <sup>c</sup>     | Air stuffy           | Air fresh               | Eye dryness <sup>c,*</sup>                     | Eyes not dry        | Eyes dry            |
| Illumination <sup>c</sup>         | Too dark             | Too bright              | Eyes smarting <sup>c</sup> ,*                  | Eyes not smarting   | Eyes smarting       |
| Noise <sup>c</sup>                | Too quiet            | Too noisy               | Eyes aching <sup>c</sup> ,*                    | Eyes not aching     | Eyes aching         |
|                                   |                      |                         | Headache <sup>c</sup> ,*                       | No headache         | Severe headache     |
| Thermal comfort and no            | ise                  |                         | Thirst <sup>c</sup>                            | Not at all thirsty  | Very thirsty        |
| Thermal sensation <sup>d</sup>    | Cold                 | Hot                     | Dizziness <sup>c</sup><br>Fatigue <sup>c</sup> | Not dizzy<br>Rested | Dizzy<br>Tired      |
| Thermal environment               | a Clearly unaccepta  | ble Clearly acceptable  | Mental state <sup>c</sup>                      | Interested          | Bored               |
| Air movement <sup>a</sup>         | Clearly unaccepta    |                         | Sleepiness <sup>c</sup>                        | Alert               | Sleepy              |
| Noise level <sup>a</sup>          | Clearly unaccepta    |                         | Mental tension <sup>c</sup>                    | Relaxed, content    | Uptight, frustrated |
| TVOISC ICVCI                      | стеату инассерта     | ok clearly acceptable   | <ul> <li>Claustrophobia<sup>c</sup></li> </ul> | Not a problem       | Claustrophobic      |

<sup>&</sup>lt;sup>a</sup>Acceptability scale.


<sup>&</sup>lt;sup>b</sup>Intensity of odour/irritation scale.

<sup>&</sup>lt;sup>c</sup>Visual-analogue scale.

<sup>&</sup>lt;sup>d</sup>Thermal sensation scale.

<sup>\*</sup>Variable included in the third questionnaire.

# Results – box plot of selected outcomes



#### Results

Based on self-reported symptoms at 3.75 hr point:

 Air quality & 12 symptoms (eye/nasal irritation, lip/skin dryness, headache, dizziness, tension, chlaustrophbia) were <u>significantly worse</u> for "ozone" condition compared to "no ozone" condition

Stom-Tejsen, Weschler, Wargocki, Myssklo, Zarzycka The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin., JESEE, <u>18</u>, 272-281, 2008

# In-flight evaluation of ozone by-products Approach

- Sampling package 2BTech Model 205 Dual Beam Ozone Monitor battery operated
- BGI Pump with Mixed bed adsorbent trap for C6-C10 aldehydes with KI trap (to remove ozone) and DNPH-Cartridge for Formaldehyde
- Sampling equipment place under seat with Teflon tubing inlet and sampling traps in breathing zone

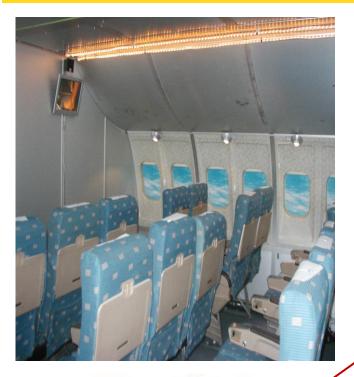
# Sample analysis

- Ozone monitor is a real time instrument based on UV absorption with 1ppb sensitivity and 1 minute averaging time
- Adsorbent traps analyzed by thermal desorption coupled to GC/MS
- DNPH extracted with actonitrile and analyzed by HPLC/UV

### O<sub>3</sub> & humans in **real** aircraft cabins

- Ozone and carbonyls measured on 52 flights
- Mostly transcontinental U.S. flights; some transoceanic flights
- B-737, B-747, B-757 & B-777
- Ozone scrubber upstream of sorbent tube to avoid ozone reacting w. 6-MHO on sorbent




Weisel, CP, Weschler, CJ, Mohan, K, Vallarino, J, Spengler, JD "Ozone and Ozone By-Products in the Cabins of Commercial Aircraft" Environmental Science and Technology, 47 (9), 4711–4717, 2013

### O<sub>3</sub> & humans in **real** aircraft cabins

| Compound | Median (ppb) | Maximum (ppb) |
|----------|--------------|---------------|
| Hexanal  | 2.8          | 8.4           |
| Heptanal | 0.77         | 4.0           |
| 6-MHO    | 0.73         | 13            |
| Octanal  | 0.75         | 4.5           |
| Nonanal  | 1.9          | 14            |
| Decanal  | 1.6          | 12            |

- Statistically significant correlations between:
  - $O_3$  and 6-MHO
  - 6-MHO and % occupancy

# Other in-plane sources of O<sub>3</sub>-reactive chemicals





| Carpet & backing   | 4-PCH, 4-VCH, oleic acid, other unsaturated fatty acids |
|--------------------|---------------------------------------------------------|
| Seats              | Skin oil, fabric                                        |
| Soiled air filters | Unsaturated organics associated with captured particles |

#### Summary

- Ozone is present on transcontinental US flight and when ozone converter not working optimally
- When O<sub>3</sub> present, concentrations of aldehydes, ketones & organic acids much larger
- People are major O<sub>3</sub> sinks larger than carpet, seats and dirty HEPA filter combined
- Humans + O<sub>3</sub> →acetone, nonanal, decanal, 6-MHO, geranyl acetone, 4-OPA
- Presence of O<sub>3</sub> and O<sub>3</sub>-derived products adversely affected 12 of 29 self-reported symptoms

#### Broader implications

- Ozone is present at levels exceeding 100ppb on aircraft without ozone convertors and if the converter is not functioning correctly, though not routinely exceeding current FARS
- EPA Ground Level Standards 75ppm over 8 hours, though USEPA-SAB recommended lower level
- Chemistry producing ozone by-products occurs whenever O<sub>3</sub> and humans simultaneously present in a room or aircraft
- Potential effects of by-products across current flying public still to be determined - O<sub>3</sub> can be filtered from ventilation air



# Quantifying Exposure to Pesticides on Commercial Aircraft

#### **Clifford Weisel**

Environmental and Occupation Health Sciences Institute Rutgers University

Sastry Isukapalli
Panos Georgopoulos
Binnian Wei
Kris Mohan
Sagnik Mazumdar
Yong Zhang





# **Congressional Mandate**

- MANDATE: Collect pesticide exposure data to determine exposures of passengers and crew
- Approach:
  - Measure surface loadings on commercial aircraft
  - Measure urinary pesticide biomarker levels in flight attendants
  - Apply CFD model to Top of Descent Spray and evaluate model with measurements
  - Estimate the risk to flight crew from pesticides





# Research Objectives

- Wipe Samples
  - Evaluate what aircraft surfaces and flights routes have pesticides
- Biomarker of Pesticides in Flight Crew
  - Determine urinary pyrethroid metabolites for flight attendants
  - Evaluate permethrin PBPK model for flight attendants
- CFD Model from Top of Decent Disinsection
  - Computational Fluid Dynamic (CFD) modeling to predict air concentration and surface loading
  - Evaluate with data from KSU's mock 757 aircraft
- Risk Paradigm to Permethrin
  - Estimate risk based on exposures





# Purpose of Aircraft Disinsection

- To prevent or minimize the transport of insects which pose a health threat to humans, animals and plants
- Adopted by US in the 1930s; discontinued since 1979
- Required by many other countries currently, e.g., Australia, New Zealand, India, China and many islands
- Most countries reserve their right for this practice on flights from particular regions of endemic diseases



#### **Disinsection Methods**

 When passengers and flight crew are on board: Top of descent, blocks away and, pre-flight. (phenothrin, permethrin, or both)

 During scheduled maintenance (no passengers on board): Residual treatment: (permethrin)





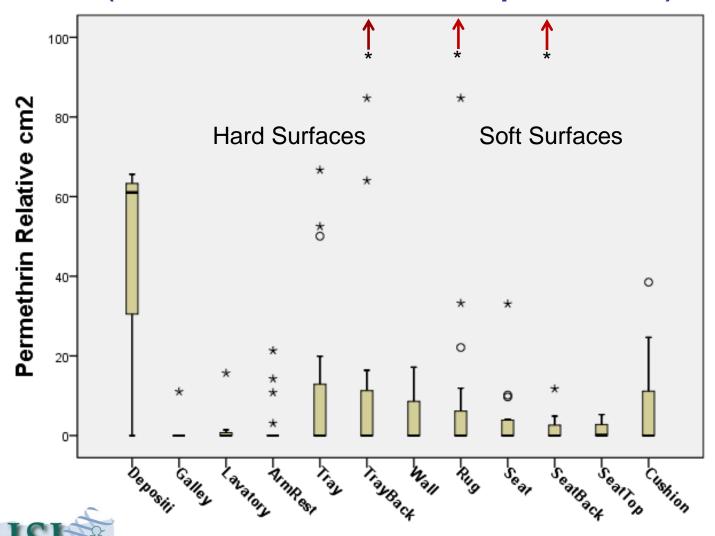


#### **What Was Collected**

- Examined surfaces on aircraft from
  - 15 US domestic flights,
  - 18 flights landing in Central or South America,
  - 8 flights landing in Australia or New Zealand,
  - 4 flights landing in Africa or Europe and
  - 15 flights landing in Asia during 2008 and 2009
- Collected from Seat Cushions, Seat Backs, Tray Tables, Arm Rests, Galley Area, Lavatory
- Problem with recovery so only relative amounts are determinable



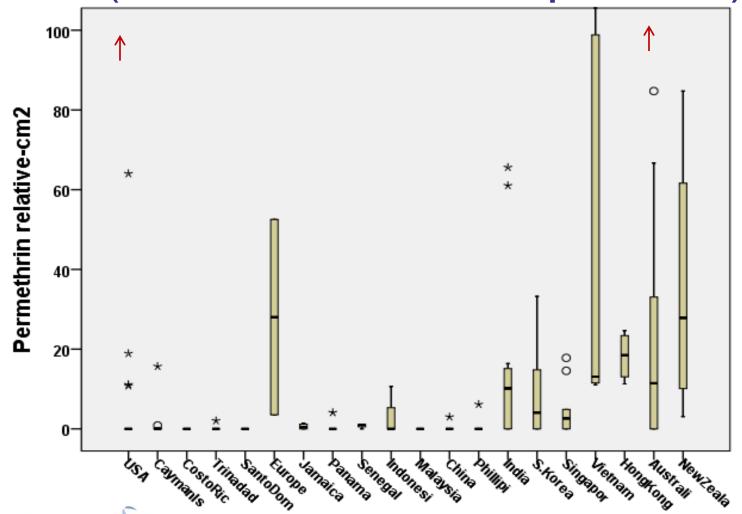



# Mock Boeing–Simulated Disinsection Surface Loading (µg/cm²)

|                             | High Ventilation   |          | Low Ventilation |        |
|-----------------------------|--------------------|----------|-----------------|--------|
|                             | 50-CM <sup>a</sup> | 100-CM b | 50-CM           | 100-CM |
| 25 <sup>th</sup> percentile | 0.13               | 0.08     | 0.53            | 0.48   |
| median                      | 0.13               | 0.11     | 0.69            | 0.64   |
| 75 <sup>th</sup> percentile | 0.14               | 0.13     | 0.83            | 0.90   |
| max                         | 0.19               | 0.16     | 1.07            | 0.98   |
| N                           | 10                 | 17       | 15              | 22     |
| % RSD                       | 22                 | 29       | 30              | 32     |

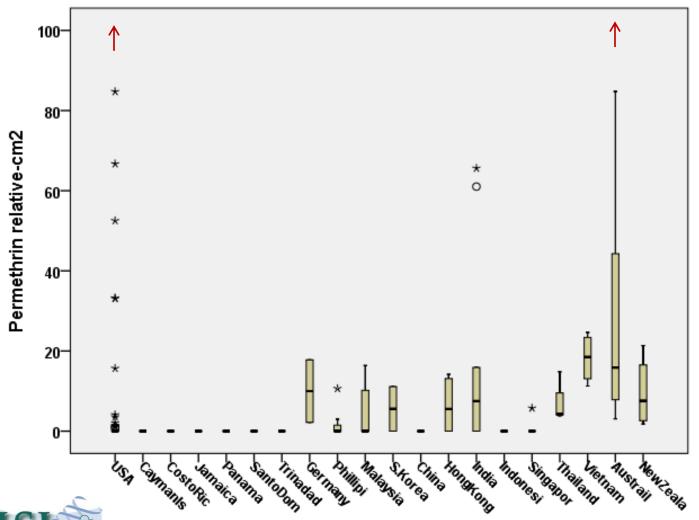
| Destination<br>Continent | Permethrin<br>Mean * (max) | Phenothrin<br>Mean*(max) | Total<br>Flights | Permethrin<br>Above<br>Detection | Phenothrin<br>Above<br>Detection |
|--------------------------|----------------------------|--------------------------|------------------|----------------------------------|----------------------------------|
| Asia                     | 0.034±.002                 | 0.031±.026               | 3                | 2                                | 3                                |
| 8                        | (0.035)                    | (0.061)                  |                  |                                  |                                  |

### Surface Loading by Surface Type


(Relative amounts per cm<sup>2</sup>)






Location

## Surface Loading by Origin (Country) (Relative amounts per cm<sup>2</sup>)





## Surface Loading by Destination (Relative amounts per cm<sup>2</sup>)





#### **Conclusions**

- Pyrethroids were not detected on US domestic flights
- Pyrethroids were routinely detected on international flights
  - To/from countries requiring disinsection, performed maintenance of aircraft or may use aircraft that service selected countries
  - Permethrin detected for residual
  - Permethrin & phenothrin in on board spraying
- Use of KSU's mock Boeing 767 aircraft cabin documented inhalation and dermal exposure during simulated disinection with passengers



## Biomarker of Pesticides in Flight Crew

# Urinary Metabolite Levels of Pyrethroid Insecticides in Flight Crew

References: Wei, B, Mohan, K, Weisel, CP "Exposure of Flight Attendants to Pyrethroid Insecticides on Commercial Flights: Urinary Metabolite Levels and Implications, Occupational and Environmental Medicine, 215(4) 465-473, 2012 and Wei, B, Isukapalli, SS, Weisel, CP "Physiologically Based Pharmacokinetic Modeling of Exposure Pyrethroids Insecticides in Flight Attendants", Journal of Exposure Science and Environmental Epidemiology, 6 March 2013; 10.1038/jes.2013.12,

#### **Project Objectives**

Do we see elevated levels of urinary pyrethroid metabolites in flight crew after they fly on aircraft that were disinsected?

How do those levels compare with other populations?

Can they be used to drive pharmacokinetic models and in population risk estimates?



#### Urinary metabolites of pyrethroids

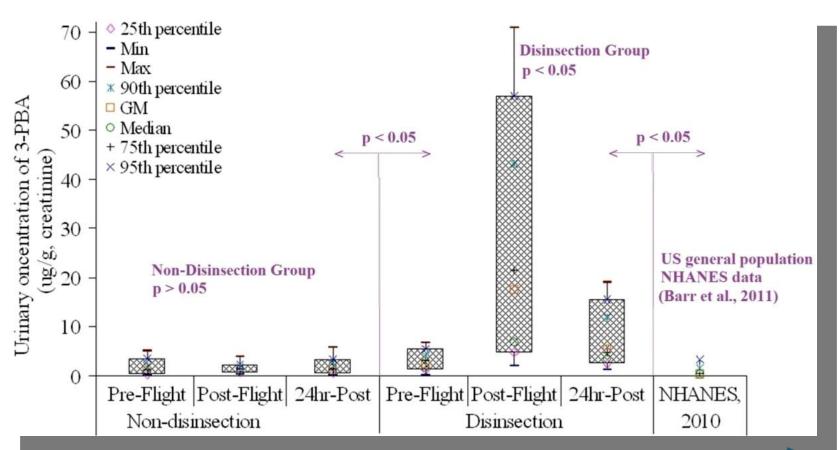
#### Pyrethroid metabolites measured:

3-phenoxybenzoic acid (3-PBA),

cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-, and trans-DCCA),

cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-DBCA)

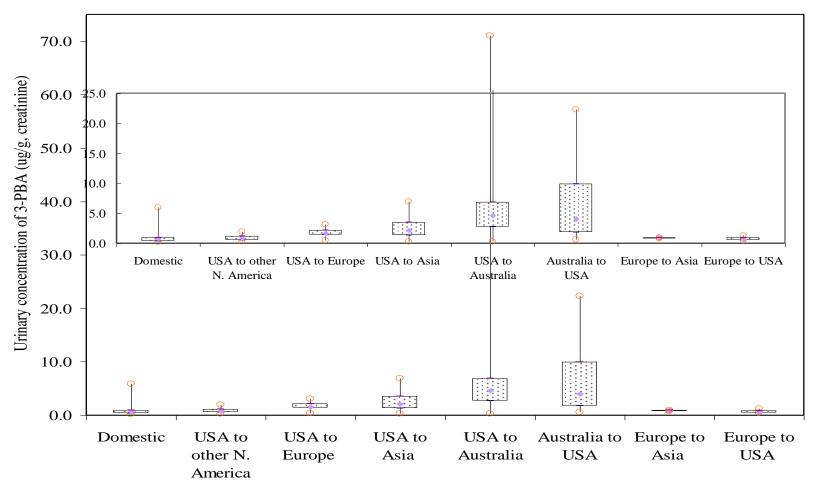
4-fluoro-3-phenoxybenzoic acid (4F-3-PBA)


Table 1. Pyrethroids and their corresponding urinary metabolites.

| Pyrethroid   | Urinary metabolites            |  |
|--------------|--------------------------------|--|
| Permethrin   | 3-PBA, cis- and trans-Cl2CA    |  |
| Cypermethrin | 3-PBA, cis- and trans-Cl2CA    |  |
| Deltamethrin | cis-Br2CA, 3-PBA               |  |
| Cyfluthrin   | 4F-3-PBA, cis- and trans-Cl2CA |  |
| Phenothrin   | 3-PBA, trans-CDCA              |  |



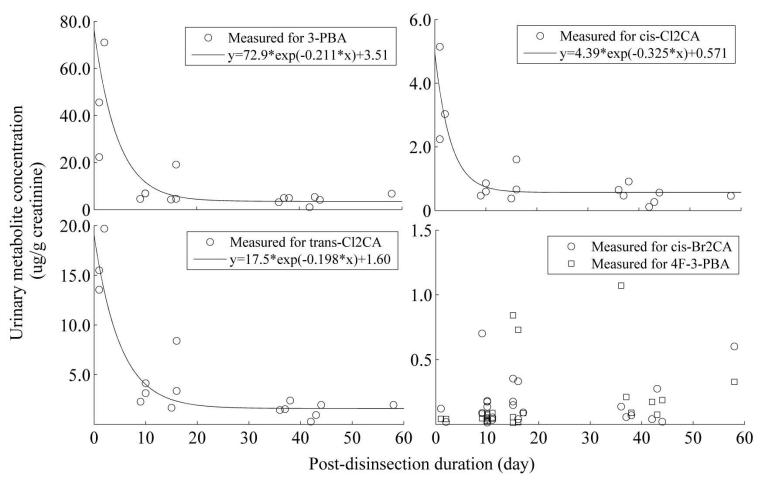



### Urinary metabolite levels of 3-PBA creatinine corrected








## Urinary metabolite 3-PBA Sorted by Domestic & International Flights







## Urinary metabolite levels with time since disinsection





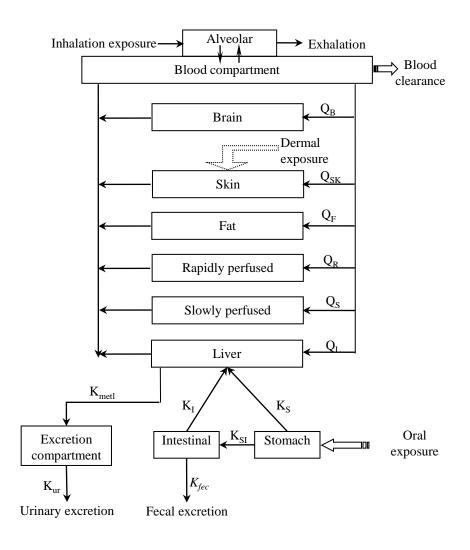


#### Comparison with Other Studies

| Type                  | Conc. of 3-PBA (ug/L)                                             | Reference                   |
|-----------------------|-------------------------------------------------------------------|-----------------------------|
| US general population | 0.324 (GM)<br>0.29 (50 <sup>th</sup> ) - 3.35 (95 <sup>th</sup> ) | Barr et al., (2010)         |
| Greenhouse workers    | 2-52                                                              | Tuomainen et al., 1996      |
| Pest control workers  | 0.5-277                                                           | Leng et al., 1997           |
| Forestry worker       | 260                                                               | Kolmodln-Hedman et al.,1982 |
| Flight attendants     | 0.8 - 81.5  (min - max)<br>$5.2 - 51.0 (50^{th} - 95^{th})$       | This study                  |

Exposure of flight attendant to permethrin is similar to those pesticide applicators

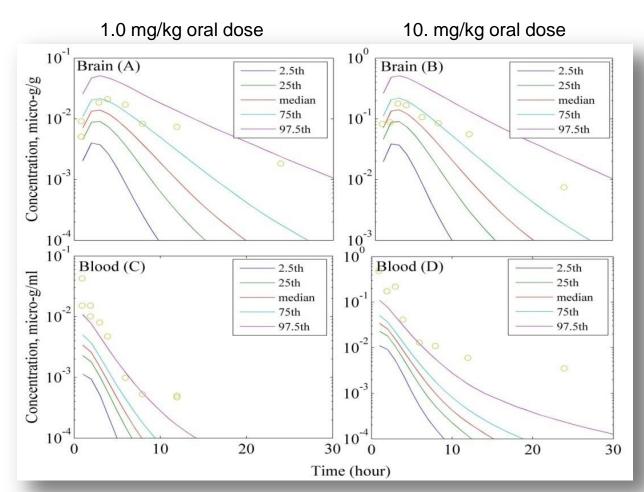


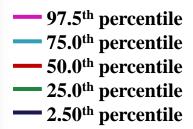

#### Rationale for Model and Approach

- •PBPK models provide estimate of target tissue dose associated with an exposure
- Provide input for risk paradigm
- Develop and validate PBPK model for permethrin
- Assess potential variability in model
- Evaluate it with animal & human data
- Simulate exposure to flight attendants






#### **Model Structure**



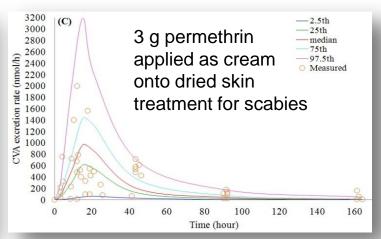


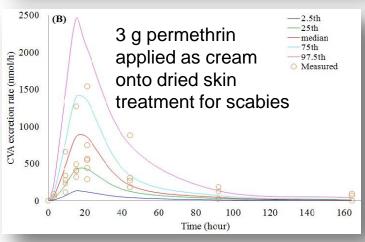



#### **Comparison to Animal Data**






Lines are modeled time-conc profiles Yellow circle are experimental data (USEPA 2007)






#### **Comparison to Human Data**







Modeling total urinary excretion rate of permethrin metabolites, cis/trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (CAV) (data from Tomalik-Scharte et al., 2005).





#### Permethrin Exposure Scenarios

Aircraft Disinsection

Residual Treatment

Pre-flight Spray

Done on the ground, with no crews and passengers on the plane

Surface loading (entire flight) log-normal distribution median: 35; STD: 35; range: 0.5 – 140;

unit: µg/cm2

Air concentration (entire flight) log-normal distribution median: 0.5, STD: 0.5; range: 0.0 – 1.0

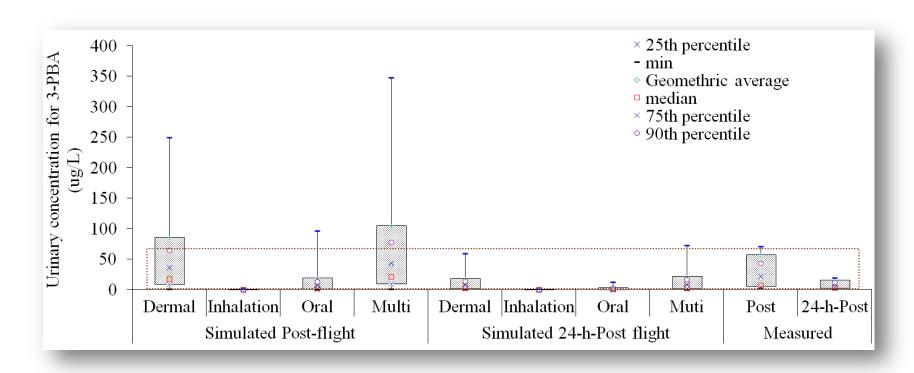
Unit: µg/m3

Surface loading (entire flight) log-normal distribution median: 0.58; STD: 0.58; range: 0 – 2.32;

unit: µg/cm2

Air concentration (stage I) log-normal distribution median: 65; STD: 65; range: 1.0 – 260; unit: µg/m3

Air concentration (stage 2) log-normal distribution median: 0.5, STD: 0.5;

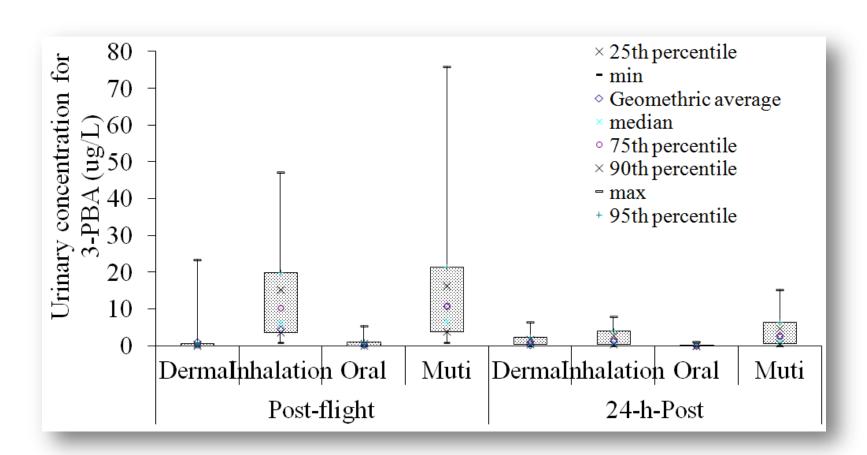

Can be done by crewmembers just prior to a plane's departure

range: 0.0 – 1.0 Unit: µg/m3





## Predicted Urinary 3-PBA Conc for residual treatment scenario




Red box – measured levels for flight attendants





## Predicted Urinary 3-PBA Conc for pre-flight spray scenario







#### **Conclusions**

- Simulated 3-PBA concentrations in post- and 24-h-post urine were comparable to previously measured results.
- For residual disinsection mean (90<sup>th</sup>%)
   predicted 3-PBA levels were 50 (350) µg/L with dermal providing ~84%, oral ~16 %, inhalation ~1 %
- For Pre-spray disinsection mean (90<sup>th</sup>%) predicted 3-PBA levels were 10 (75) µg/L with inhalation providing ~90%, dermal ~5 %, oral ~3 %





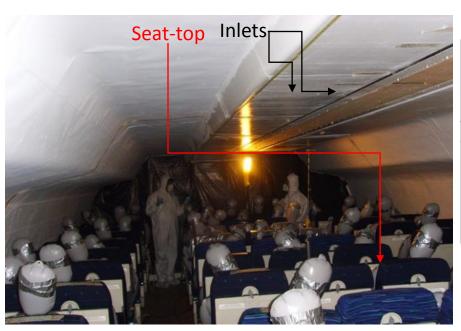
#### **RISK ASSEMENT PARADIGM**

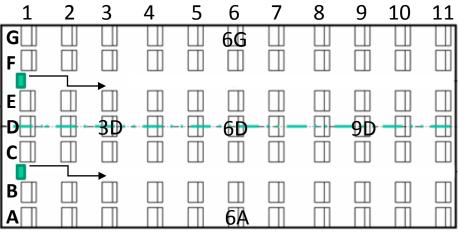
Component 1: Determine air concentrations and surface loading over time Initial conditions CFD Modeling for Spraying or Suggested Loading for Residual Removal with time through contact, cleaning, volatilization

Component 2: Human activity that leads to contact
Frequency and duration of flight
Breathing rate
Inadvertent ingestion
Touching Rate

Component 3: PBPK modeling to determine uptake and distribution in the body

Estimate of risk by comparison to literature hazarc

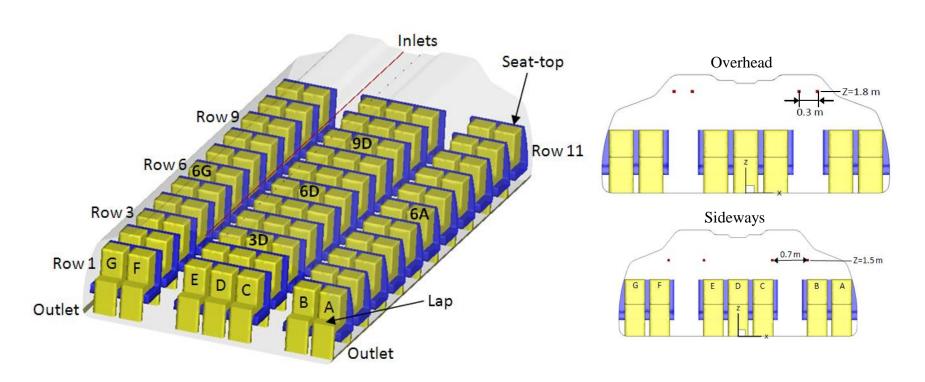




#### **CFD Pesticide Modeling**

- Computational Fluid Dynamic (CFD) models provide an effective methodology for characterizing concentration distributions and exposures at a high spatial and temporal resolution
- •CFD program FLUENT was used with a Re-Normalization Group (RNG) k-ε turbulence model
- •Current model for a twin-aisle 11 row cabin mockup of a Boeing 767 cabin
- •Evaluated the model with air concentration and surface loading measurements following simulated top of descent disinsection application
- •Reference: Isukapalli, SS; Mazumdar, S; George, P; Wei, B; Jones, B; Weisel, C P, Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin. Atmospheric Environment, 68, 198-207, 2013.



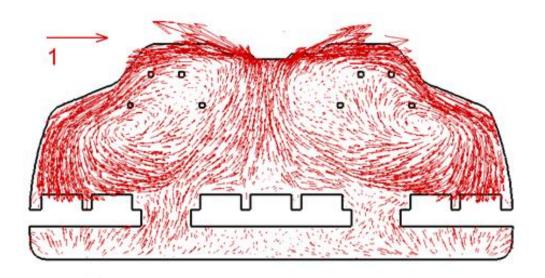
## Data for model evaluation done at KSU Mock Boeing 767 Schematic of the Sampling Locations



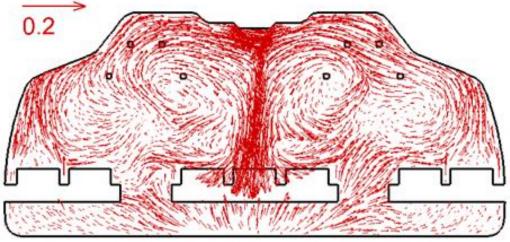








# The CFD model and case setup for sideways and overhead spraying of pesticide in the 11-row cabin mock-up





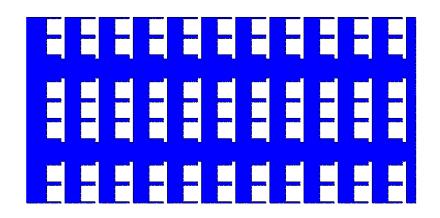



## Comparison of airflow across the cabin cross-section

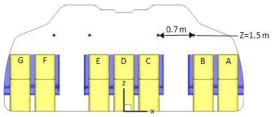


1400 CFM (29 ACH)



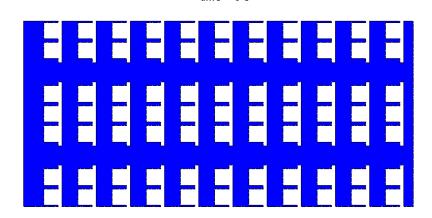

48 CFM (1 ACH)

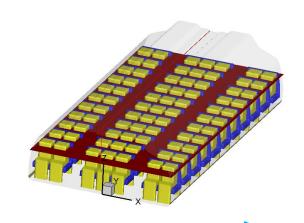





## Breathing Zone Concentration (µg/m³) at 1400cfm (29ACH) and 48cfm (1ACH)

29 ACH (1400 CFM) - Breathing Level time = 0 s

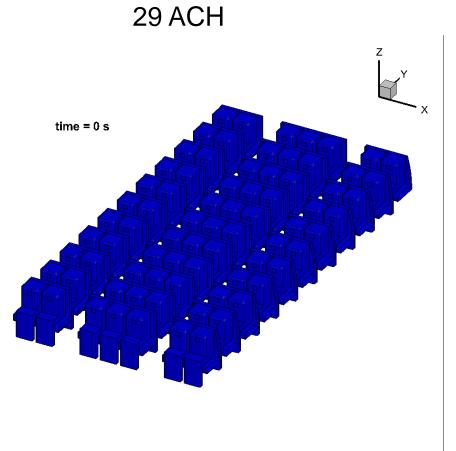


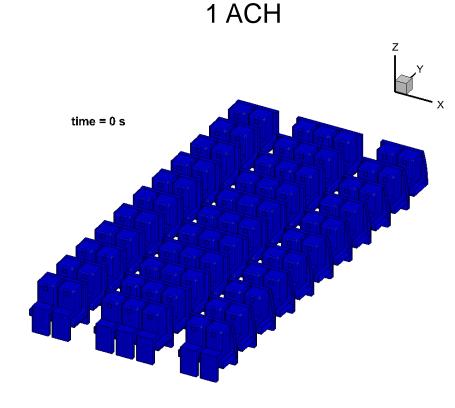






1 ACH (48 CFM) - Breathing Level

time = 0 s



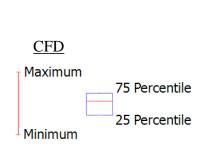



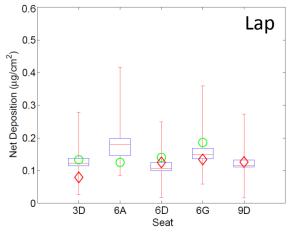


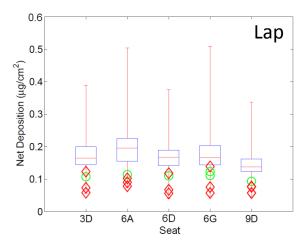



## Net Deposition (µg/cm²) 1400cfm (29ACH) and 48cfm (1ACH)





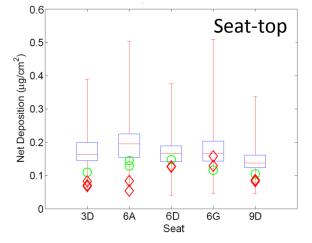


Net Deposition ( $\mu$ g/cm<sup>2</sup>): .05 .125 .25 .375

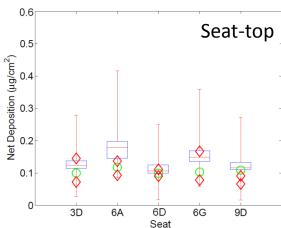

Net Deposition (μg/cm<sup>2</sup>): .125 .25 .5 .75



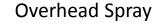
## Comparison of Model and Experimental Deposition (µg/cm²) at High Ventilation





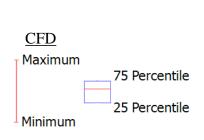



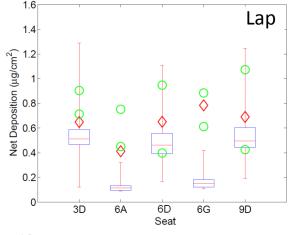

Experiments

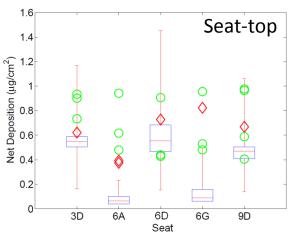

Permethrin

Phenothrin

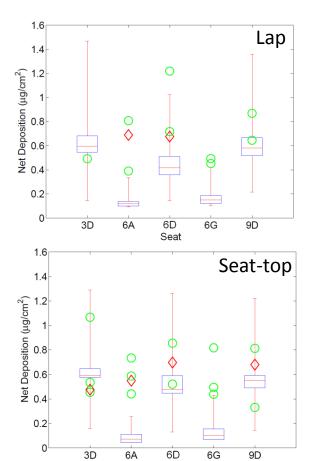


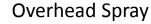




Sideway Spray







## Comparison of Model and Experimental Deposition (µg/cm²) at Low Ventilation














Seat





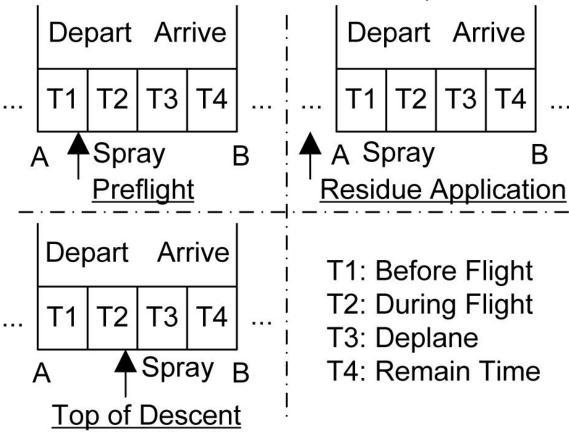
**Experiments** 

Permethrin Phenothrin

#### Conclusions

- •CFD model was effective for studying the spatial and temporal variation of pesticide deposition and concentration
- Contrasting flow features were observed for the high-29
   ACH and the low-1 ACH
- •Surface deposition levels at measured locations varied from 0.33-1.22 µg/cm² to 0.05-0.20 µg/cm² for the low and high ventilation, respectively and the air concentration decline much more rapidly (8 min vs 20 min) at high ventilation
- •CFD Model results at high ventilation matched experiment results well, but at low ventilation differences near the window seat were observed




#### RISK PARADIGM

- Pesticide exposures to crew and passengers can occur
  - –Inhalation while there is active spraying (Top of Descent)
  - -Inhalation from volatilization or resuspension of dust
  - -Dermal from direct contact with ski
  - -Unintentional ingestion from transfer to hands or food
- Top of descent, residual and preflight spray treatments were all considered
- •A methodological approach was developed that can be used for other agents in an aircraft cabin
- •Reference:Zhang, Y, Isukapalli, S, Georgopoulos, PG, Weisel, CP. "Modeling Flight Attendants's Exposures to Pesticides in Disinsected Aircraft Cabins", Environmental Science and Technology: 47(24):14275-14281, 2013. doi: 10.1021/es403613h. Epub



#### **EXPOSURE CONSIDERATIONS**

•Each crew member was assigned four different time periods during which the exposure was calculated for. (Remain time = 24 hours –T1-T2-T3)







## SURFACE LOADINGS AND AIR CONCENTRATIONS

Input from CFD model for spraying.





## Overall Summary and Recommendation

- Flight attendants and passengers are being exposed to pyrethroid pesticides on aircraft that were disinsected
- The urinary metabolite levels of permethrin for flight attendants after working on disinsected aircraft is similar to pesticide applicators
- The risk associated with disinsection should be reevaluated based on these exposure data exposure and new toxicological studies of the adverse health effects of pyrethroids

#### **Conclusions**

- Flight attendants working on the pyrethroids disinsected aircrafts had significantly higher levels of 3-PBA, cis- and trans-Cl2CA in the post- and 24-hpost flight urine samples than those working on nondisinsected aircrafts and the general U.S. population
- The urinary levels of 3-PBA, cis- and trans-Cl2CA exponentially decay with post disinsection duration
- Permethrin exposure of flight attendants flying on disinsected aircrafts is similar to pesticides applicators.



