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RELATIONSHIP OF THE AIRCRAFT MIX INDEX WITH PERFORMANCE AND 
OBJECTIVE WORKLOAD EVALUATION RESEARCH MEASURES AND 

CONTROLLERS’ SUBJECTIVE COMPLEXITY RATINGS

Aircraft mix has been proposed as one of the traffi c 
characteristics contributing to sector complexity in en 
route air traffi c control (e.g., Christien & Benkouar, 2003; 
Federal Aviation Administration [FAA], 1984; FAA, 1999; 
Grossberg, 1989; Histon, Aigoin, Delahaye, Hansman, & 
Puechmorel, 2001; Mogford, Murphy, Roske-Hofstrand, 
Yastrop, & Guttman, 1994; Robertson, Grossberg, & 
Richards, 1979). However, its reputation has primarily 
been based on anecdotal evidence with little attention 
focused on examining this relationship statistically. The 
present study is the third in a series of investigations 
designed to defi ne, quantify, and assess the validity of 
aircraft mix as a contributor to traffi c complexity in en 
route air traffi c control.

First in the series was an investigation of the salient 
features of aircraft mix as it relates to aircraft performance 
characteristics (Pfl eiderer, 2000). For this analysis, 30 
Certifi ed Professional Controllers (CPCs) from several 
en route centers across the United States provided average 
speed, climb, and descent rate estimates for a sample of 
30 distinct aircraft types. A matrix of squared Euclidean 
distances was derived from summary estimates (i.e., means 
of speed, climb, and descent rates) and used to construct 
a multidimensional scaling (MDS) model of controllers’ 
perceptions of the aircraft performance characteristics of 
the aircraft. Interpretation of the two-dimensional MDS 
model suggested that Dimension 1 was related to engine 
type, and Dimension 2 was associated with weight class. 
The results were interpreted as evidence of performance-
based prototypes (for further explanation, see Pfl eiderer, 
2000). However, it was also evident from the position of 
the elements (i.e., aircraft types) in the derived stimulus 
space that it might be possible to develop a measure of 
aircraft mix using these two easily obtained variables.

Pfl eiderer (2003a) continued that line of investigation 
in a study designed to determine whether controllers’ 
perceptions of aircraft performance were comparable to 
the actual recorded performance of aircraft in a sample 
of live air traffi c data. In general, controllers’ perceptions 
of aircraft performance characteristics were similar to the 
actual performance of the aircraft in the recorded data. 
However, weight class was far less salient as a separate 
dimension in the model derived from the matrix of  System 
Analysis Recording (SAR) data than in the model based 

on controller estimates. The relationship between weight 
class and engine type in the SAR data model was a clear 
reminder that weight class is a correlate of engine type (i.e., 
most piston-driven aircraft are Small, most turboprops 
are Large, all Heavy aircraft are jets). This result led to the 
conclusion that engine type alone was an appropriate and 
suffi cient dimension upon which to base the calculation 
of the Aircraft Mix Index. (For a complete description of 
Aircraft Mix Index calculations, see Appendix A.)

Based on the apparent success of the fi rst phase of the 
investigation, a second phase was initiated that focused 
on testing the Aircraft Mix Index for its ability to dis-
criminate between altitude strata. After all, if the index 
had suffi cient variability and precision, it should be able 
to discriminate between high- and low-altitude sectors. 
This was based on the assumption that high-altitude sec-
tors should have a lower incidence of aircraft mix due 
to the relatively low service ceilings of some aircraft, 
whereas low-altitude sectors should have a much higher 
incidence of aircraft mix because all aircraft must climb 
and descend through low-altitude airspace at some point 
in their fl ight. For this analysis, the Aircraft Mix Index 
was calculated in 15-minute intervals for all active sec-
tors within a 1-hour sample of air traffi c data recorded 
at the Kansas City en route center (15 high-altitude and 
13 low-altitude sectors). As anticipated, values of the 
Aircraft Mix Index tended to be higher in low-altitude 
sectors than in high-altitude sectors. A comparison of the 
two groups using the distribution-free Mann-Whitney 
U statistic (Mann & Whitney, 1947) revealed that the 
Aircraft Mix Index was reliably different between high- 
and low-altitude sectors.

Because the Aircraft Mix Index was able to discriminate 
between sector strata, it passed the “minimum test” to 
be considered as a possible addition to the suite of Per-
formance and Objective Workload Evaluation Research 
(POWER) variables. POWER refers to a set of measures 
developed for quantifying en route air traffi c control-
ler activity and task load (for a detailed description of 
POWER measures and methodology, see Mills, Pfl eiderer, 
& Manning, 2002). In the fi rst phase of the present study, 
I conducted an evaluation of the relationship between the 
Aircraft Mix Index and existing POWER measures using 
Principal Components Analysis (PCA). PCA is a statistical 
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technique often used to reveal patterns of correlations 
among variables. Values in the component loading matrix 
produced by PCA represent the correlation of individual 
variables with the underlying dimension the component 
describes. If the Aircraft Mix Index was redundant with 
traffi c volume (as opposed to describing some aspect 
of the complexity associated with that traffi c) it should 
load onto the same component as the total number of 
controlled aircraft. On the other hand, if the Aircraft 
Mix Index provided information about the complexity 
associated with the presence of aircraft with different 
performance characteristics then it should load onto a 
component with others that relate to traffi c complexity. 
Moreover, its loading should be of suffi cient magnitude 
to suggest that this is a reliable relationship.

Though PCA offers insight into the relationship of the 
Aircraft Mix Index relative to the other POWER variables, 
it cannot tell us whether the information it provides is 
unique. More importantly, it does not address the larger 
question regarding the relative contribution of aircraft 
mix to traffi c complexity. Therefore, contingent upon 
the results of the PCA, a multiple regression analysis was 
conducted using a subjective criterion of “Complexity” 
provided by controllers from the each of the en route 
centers sampled. The predictor variable set consisted 
of those variables identifi ed by the PCA as being most 
closely related to the “Complexity” dimension/construct. 
The results of the multiple regression analysis should 
tell us whether aircraft mix (as measured by the Aircraft 
Mix Index) contributes a signifi cant amount of unique 
information to the prediction of controllers’ perceptions 
of sector complexity.

METHOD

System Analysis Recording data and subjective com-
plexity ratings were generously provided by researchers 
associated with the Dynamic Density project (e.g., 
Kopardekar & Magyarits, 2003). Traffi c samples selected 
for the analyses were collected at the Fort Worth and 
Atlanta en route centers. The Fort Worth data consisted 
of samples from six high-altitude and three low-altitude 
sectors. The Atlanta data were from fi ve high-altitude and 
four low-altitude sectors. Two 30-minute samples were 
collected from each of the selected sectors (a total of 36 
samples). Traffi c sample descriptions and sector maps are 
provided in Appendix B.

Three controllers individually viewed Systematic Air 
Traffi c Operations Research Initiative (SATORI; Rodgers 
& Duke, 1993) re-creations and rated the complexity of 
the traffi c situation on a scale from one to seven (lowest to 
highest) at 2-minute intervals throughout the 30-minute 
sample time frame. For the current study, means of the 
individual controller ratings were averaged over 6-minute 
intervals to create a total of 180 observations.

POWER measures were computed in 6-minute inter-
vals for each of the traffi c samples, producing a total of 
180 observations for each POWER measure. Variables 
selected for the PCA (shown in Table 1) consisted of fi ve 
POWER measures that have consistently demonstrated 
a relationship with controller activity and task load (e.g., 
Manning, Mills, Fox, Pfl eiderer, & Mogilka, 2001; Mills, 
Pfl eiderer, & Manning, 2002), and fi ve thought to relate 
to traffi c complexity. The selected Traffi c Complexity/
Proximity variables are relatively new additions to the 

Table 1. POWER Variables Selected for Principle Components Analysis (PCA)

POWER Variable  
Number of Controlled Aircraft 

Number of R-side Entries 

Number of R-side Entry Errors 

Number of RA-side Entries 

Number of RA-side Entry Errors 

Controller Activity/Task load 

Aircraft Mix Index 

Mean Lateral Distance 

Mean Vertical Distance 

Number of Altitude Changes 

Number of Heading Changes 

Traffic Complexity/Proximity 
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POWER suite of measures. (Consequently, this analysis 
also represents a serendipitous opportunity to examine 
whether or not these variables do, in fact, appear to de-
scribe a separate dimension.) The reasons for including 
the Aircraft Mix Index have already been described in 
some detail, but the rationale behind the other variables 
in this group deserves some explanation.

There is little doubt that the number of aircraft within 
a sector affects controller workload. It is also doubtful 
that this measure alone suffi ciently captures all aspects 
of the complexity associated with that traffi c (Hilburn 
& Flynn, 2004; Mogford et al., 1994). One of the traffi c 
complexity issues that should be addressed is the relative 
position of the aircraft. For the suite of POWER mea-
sures, we have opted to incorporate summary measures 
of aircraft proximity (i.e., Mean Lateral Distance, Mean 
Vertical Distance). Though not as elegant as some mea-
sures (e.g., clustering techniques developed by Delahaye 
& Puechmorel, 2000), they do have the advantage of 
refl ecting the dimensions controllers use to evaluate 
aircraft separation.

The number of climbing and descending aircraft is 
well established as a contributor to traffi c complexity 
(e.g., Christien & Benkouar, 2003; Histon et al., 2001; 
EUROCONTROL, 2002b, as cited in EUROCON-
TROL, 2004; Grossberg, 1989; Robertson, Grossberg, 
& Richards, 1979; Stein, 1985). The number of altitude 
changes provides more information than a count of the 
number of aircraft in transition. Altitude changes have 
been shown to correspond well with the number of 
altitude clearances and may provide some indication of 
the amount of workload associated with monitoring the 
response to and the effectiveness of the issued clearance 
(Pfl eiderer, 2003b).

As shown in Figure 1, heading changes have the poten-
tial to profoundly impact the complexity of an air traffi c 
situation, whether they occur as part of the scheduled 
fl ight plan or in response to a clearance. It is not surpris-
ing, therefore, that heading changes have been shown to 
contribute signifi cantly to sector complexity (e.g., Laude-
man, Sheldon, Branstrom, & Brasil, 1998). It should be 
noted that POWER only counts heading changes greater 
than or equal to 10º that persist for a minimum of 36 
seconds. These computer-detected heading changes have 
been shown to correspond well with the number of issued 
heading clearances (Pfl eiderer, 2003b).

RESULTS AND DISCUSSION

Principal Components Analysis
Descriptive Statistics

As shown in Table 2, the distributions of most of the 
variables selected for the PCA approximated normality. 
However, distributions of the Aircraft Mix Index, R-side 
Entry Errors, and Radar Associate Entry Errors deviated 
signifi cantly. Although assumptions regarding normality 
are not generally in effect when PCA is used descriptively, 
in this particular application it is important to remember 
that PCA is sensitive to the sizes of correlations. To the 
extent that normality fails, the solution may be degraded 
and this should be considered when interpreting the results 
of the analysis (Tabachnik & Fidell, 1989).

Preliminary Comparative PCA
Because the data were sampled from different popu-

lations (i.e., en route centers), preliminary comparative 
analyses were conducted to determine whether the two 
data sets were similar enough to justify combining them. 

A. Traffic Pattern Prior to Heading Changes B. Traffic Pattern After Heading ChangesA. Traffic Pattern Prior to Heading Changes B. Traffic Pattern After Heading Changes

Figure 1. Potential Effect of Heading Changes on the Complexity of Traffic Patterns
(Adapted from Hilburn & Flynn, 2004 after van Gent, Hoekstra, & Ruigrok,1997) 
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This was necessary because the number of observations 
available from the individual facility data sets is some-
what small for a successful PCA. Indeed, according to 
Comrey’s (1973) guidelines for sample size in PCA, a 
sample size of 90 (i.e., that seen if the sites were ana-
lyzed separately) would fall somewhere between “poor” 
and “very poor.” Though it is certainly undesirable to 
overanalyze any set of data, the best (and possibly the 
only) way to determine whether or not two data sets are 
similar enough for a combined analysis is to conduct 
separate PCAs and compare the extracted components. 
For these analyses, a maximum of two components (i.e., 
the hypothesized number of dimensions in the selected 
variables) was chosen as the criterion for component 
extraction. This decision was based on the fact that we 
were only interested in the similarities between the two 
data sets and not in the subtle differences that might 
exist between them. In other words, we simply needed 
to know if comparable analyses would yield comparable 
results. Specifying the maximum number of components 
that might be extracted ensured that the analyses were 
comparable.

In the Fort Worth sample, the two extracted compo-
nents accounted for approximately 54% of the variance. 
Component 1 had an eigenvalue of 3.00 and accounted for 
approximately 30% of the variance, whereas  Component 
2 had an eigenvalue of 2.40 and accounted for approxi-
mately 24% of the total variance.

In the sample of data from the Atlanta en route center, 
the two extracted components accounted for approximate-
ly 48% of the variance. Component 1 had an eigenvalue 
of 2.68 and accounted for approximately 27%, whereas 
Component 2 had an eigenvalue of 2.10 and accounted 
for approximately 21% of the total variance.

Though the two samples did not produce identical 
results, the extracted components were reasonably simi-
lar. As shown in Table 3, the fi rst extracted component 
in the Fort Worth sample (ZFW-1) was comparable to 
the second extracted component in the Atlanta sample 
(ZTL-2). Component ZFW-2 was similar to ZTL-1 
except for lateral and vertical distances. (Please note that 
the order of extraction is somewhat irrelevant. Varimax 
rotation tends to reapportion variance among compo-
nents so they become relatively equal in importance.) 
The recommended procedure for statistically comparing 
the pattern and magnitude of component loadings is the 
Pearson product-moment correlation. The correlation 
of ZFW-1 and ZTL-2 yielded a coeffi cient of r = .79. 
The correlation of ZFW-2 and ZTL-1 produced an r 
= .83. Both correlations were signifi cant at the <.01 
level, indicating that the data were similar enough for 
a pooled analysis.

Pooled Sample PCA
Principal components analysis is generally used in the 

exploratory stages of research when the exact number 
and nature of the dimensions are not known. Although 
the selected variables were hypothesized to represent 
elements of two dimensions, extraction of one or more 
additional components would not be entirely unexpected. 
Therefore, a minimum eigenvalue of 1.00 (as opposed to 
a specifi ed number of components) was selected as the 
criterion for component extraction, thus allowing for 
true exploration of the data.

Varimax rotation was selected for the analysis because 
it increases the interpretability of the solution. As the 
name suggests, varimax (variance maximizing procedure) 
simplifi es components by maximizing the variance of 

Table 2. Principal Components Analysis Descriptive Statistics  (N = 180)

Variable Mean S.D. Skew.1 Kurtosis2

Aircraft Mix Index 10.85 14.78 2.23  6.62

Mean Lateral Distance (nm) 48.65 13.84 .25  -.48

Mean Vertical Distance (ft/100) 54.59 17.77 .74  .53

Number of Altitude Changes 6.86 3.71 .37  -.13

Number of Heading Changes 4.41 3.03 .71  -.14

Number of Controlled Aircraft 14.82 4.02 .25  .41

Number of R-side Entries 33.99 11.74 .31  -.46

Number of R-side Entry Errors 2.23 2.35 1.78  4.13

Number of RA-side Entries 6.64 5.97 .98  .41

Number of RA-side Entry Errors .66 1.21 3.04  12.31

1S.E. Skew. =  .181;  2S.E. Kurt. = .360
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the loadings within components. Simply stated, varimax 
makes small loadings smaller and large loadings larger. 
This simplifi es interpretation of the components by mak-
ing it more obvious which variables are associated with 
them (Tabachnik & Fidell, 1989).

Table 4 contains a correlation matrix of the variables 
selected for analysis. It is clear that many of the variables 
are related, though the magnitudes are moderate. Nev-
ertheless, it is encouraging that the Aircraft Mix Index 
appears to be more closely associated with the “Complex-
ity/Proximity” variables than with others in the matrix.

PCA with varimax rotation converged in eight itera-
tions and produced four components with eigenvalues > 
1. These components accounted for approximately 71% 
of the variance in the data set. As shown in the rotated 
component matrix in Table 5, all variables loaded onto at 
least one component with a loading of .40 or greater.

Component 1 had an eigenvalue of 2.40 and accounted 
for approximately 24% of the variance in the data set. 
Without exception, the variables associated with this 
component were selected to represent various aspects of 
traffi c complexity. Values in the loading matrix describe 
the correlation of each variable with the underlying 
dimension the component represents. Notice that the 
Aircraft Mix Index has one of the highest loadings on 
this component.

Component 2 had an eigenvalue of 2.06 and accounted 
for about 21% of the variance. The two variables with 
the highest loadings, the number of controlled aircraft 
and the number of Radar controller computer entries, 
are straightforward activity measures. Radar control-
ler entry errors tend to increase as controller activity 
increases. Therefore, a conservative loading of .54 on 

this component makes sense within the context of the 
other variables.

Component 3 had an eigenvalue of 1.35 and accounted 
for approximately 13% of the variance in the data set. 
Generally, components described by only two variables 
are considered to be unreliable and are not interpreted. 
However, this component has emerged in a number of 
analyses (e.g., Mills, Pfl eiderer, & Manning, 2002) sug-
gesting that it is, in fact, reliable. The extraction of “Radar 
Associate Activity” as a separate component may refl ect 
the unique relationship that Radar Associate Entries and 
Errors share with other activity measures. When activity 
is relatively low, a Radar controller working alone has 
time to make entries on the Radar Associate’s console 
(because some entries can only be made from that con-
sole). As the traffi c situation becomes more demanding, 
the Radar controller no longer has time to make entries 
from the RA-side console. During peak hours, a Radar 
Associate controller is assigned to the sector and entries 
made from the RA-side console become more frequent. 
It is probably the distinctive “J-shaped” distribution of 
RA-Entries and their relationship to RA-Entry Errors 
that distinguishes these variables as a separate component. 
Therefore, Component 3 might be viewed as a subset of 
general activity.

Component 4 had an eigenvalue of 1.27 and accounted 
for approximately 13% of the variance. The same caveat 
regarding two-variable components applies to Component 
4, only in this case it may be more justifi ed. Components 
defi ned by only two variables may be reliable if the  variables 
are highly correlated with one another (i.e., r >.70) and 
are relatively uncorrelated with others in the variable 
set. These variables fail to meet the fi rst criterion in that 

Table 3. Preliminary Comparative PCA – Rotated Component Matrices*

Component Component Variable
ZFW-1 ZFW-2 ZTL-1 ZTL-2 

Aircraft Mix Index .78 .14 -.34 .75
Lateral Distance (nm) -.73 .29 .54 -.44
Vertical Distance (ft/100) .73 -.28 -.66 .24

Altitude Changes .86 .06 .19 .75
Heading Changes .58 .15 .33 .74
Number of Aircraft -.05 .68 .73 .30

R-side Entries -.35 .63 .71 .25

R-side Entry Errors .15 .73 .39 -.02

RA-side Entries -.14 .68 .60 .12

RA-side Entry Errors .23 .57 .39 .00

* Varimax rotation converged in 3 iterations for both analyses. 
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the bivariate correlation between them (r = .35) is less 
than .70. As shown in the matrix in Table 4, bivariate 
comparisons between each of these variables with others 
in the set resulted in a considerable number of signifi cant 
correlations. Consequently, this component fails to meet 
criteria that would indicate it might be reliable. It is also 
important to note that the distributions of both these 
variables are severely positively skewed and leptokurtotic. 
Therefore, it is likely that the communality described 
by this component refl ects a similarity of distribution 
rather than of meaning. On the other hand, data entry 
errors tend to increase with the number of entries. As 
such, Component 4 might also be viewed as a subset or 
correlate of general activity.

The results of the PCA demonstrate that the Aircraft 
Mix Index was consistently associated with other vari-
ables thought to relate to traffi c complexity. Moreover, 
the magnitude of its loading (.71) suggests that this is a 
reliable relationship. This leads us to the next phase of 
the experiment: Multiple regression analysis using the 
variables associated with the “Complexity” dimension 
(Aircraft Mix Index, Mean Lateral Distance, Mean Verti-
cal Distance, Number of Altitude Changes, and Number 
of Heading Changes) to predict controllers’ subjective 
“Complexity” ratings.

Multiple Regression Analysis
Perhaps the most important assumption of a regression 

analysis is that the observations are sampled from the 
same population. Although the preliminary compara-
tive PCA indicated that the data from the two facilities 

were similar enough to justify pooling, the results of 
comparisons of the Aircraft Mix Index in high- and 
low-altitude sectors in a previous study (i.e., Pfl eiderer, 
2003b) suggested that high- and low-altitude sectors 
might constitute heterogeneous samples. Therefore, 
initial data screening was conducted by visually exam-
ining scatterplots of each predictor variable against the 
criterion with observations color-coded according to 
altitude strata. It was immediately apparent that high- 
and low-altitude sectors should be analyzed separately. 
Unfortunately, splitting the sample resulted in a sample 
size of 70 for the low-altitude sectors (i.e., a 14:1 case 
to independent variable ratio). Ideally, we would want a 
ratio of 20 cases for every predictor to ensure suffi cient 
statistical power to detect small effect sizes and to accom-
modate measurement error. Nevertheless, a 14:1 ratio 
exceeds the absolute minimum requirement of fi ve cases 
for every predictor (Tabachnik & Fidell, 1989).1

Descriptive Statistics
Descriptive analyses were conducted separately for 

the high- and low-altitude samples. The criterion vari-
able (i.e., Complexity ratings provided by controllers) 
originally consisted of discrete values representing anchor 
points along an underlying continuum of the control-
lers’ perceptions of traffi c complexity. However, the 
Complexity ratings used in this analysis represent the 
means of ratings taken every 2 minutes, summarized over 
6-minute intervals. As such, these ratings were normally 
distributed in both sample sets (see Table 6).

Table 5. Principal Components Analysis Rotated Component Matrix

 Component 
Variable 1 2 3 4 
Aircraft Mix Index .71   

Mean Lateral Distance (nm) -.67   

Mean Vertical Distance (ft/100) .61   

Number of Altitude Changes .80   

Number of Heading Changes .64   

Number of Controlled Aircraft .85   

Number of R-side Entries .79   

Number of R-side Entry Errors .54   .69

Number of RA-side Entries .89  

Number of RA-side Entry Errors .47  .79

* Component loadings < .40 not shown.

1 Please note that splitting the sample into high- and low-altitude sectors was not an option for the principal components analysis. Simply 
stated, if N=90 was insuffi cient for PCA then N=70 was even more so.
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In the low-altitude sector sample, the distribution of 
the Aircraft Mix Index deviated by as much as fi ve standard 
deviations in both skewness and kurtosis. Square root 
transformation of the Aircraft Mix Index in this sample 
reduced deviations to less than one standard deviation 
from normal. In the high-altitude sector sample, trans-
formation of the Aircraft Mix Index was contraindicated 
because transformation would create unacceptable devia-
tions in a distribution that was acceptable in its natural 
state. (Indeed, all the selected variables were normally 
distributed in the high-altitude sample.)

Correlations. Tables 7 and 8 contain matrices of Pear-
son’s product-moment correlations for all variable pairs 
in each of the sub-samples. In the low-altitude sample 
(Table 7), the Aircraft Mix Index exhibits a signifi cant 
relationship with both the criterion and several of the 
predictors. However, the Aircraft Mix Index failed to 
demonstrate a signifi cant bivariate association with any 
of the other variables in the high-altitude sector sample 
(Table 8).

Tests of Assumptions
Multicollinearity. Multicollinearity refers to a very 

strong linear relationship between sets of predictor 
variables that renders the regression coeffi cients unstable 
(Fox, 1991; Tabachnik & Fidell, 1989). It is important 
to note that it is not the bivariate correlations among 
the predictors that creates multicollinearity, but rather 
the multiple correlation of the regression of a particular 
predictor on the others. Therefore, the best way to test 
for multicollinearity in the predictor set is to conduct a 
series of regressions with each of the predictors taking 
turns as the criterion and examining the squared multiple 
correlations for perfect or near perfect values (which 
would indicate multicollinearity). The results of these 
tests when conducted on the selected set of independent 
variables revealed no indication of multicollinearity in 
either the high- or low-altitude samples.

Outliers. No univariate outliers (i.e., cases with values 
greater than three standard deviations from the mean) 
were detected in either the low-altitude or high-altitude 
sector samples. Mahalanobis distances using p < .001 
failed to uncover any multivariate outliers (i.e., cases with 
an unusual pattern of values) in either data set.

Table 6. Multiple Regression Analysis Descriptive Statistics
Low-Altitude Sample (N = 70)

Variable Mean S.D. Skew.1 Kurtosis2

Low Altitude Sample (N = 70) 

Complexity Ratings 2.65 1.05 .35  -.93

Aircraft Mix Index 22.91 17.53 1.43  2.95

Square Root Aircraft Mix Index 4.44 1.79 .35  -.02

Mean Horizontal Distance (nm) 36.23 7.54 .20  -.57

Mean Vertical Distance (ft/100) 66.46 17.99 .37  .25

Number of Altitude Changes 8.83 3.79 .05  -.05

Number of Heading Changes 5.10 3.10 .55  -.29

High-Altitude Sample (N = 110) 

Complexity Ratings 3.84 1.07 .13  -.26

Aircraft Mix Index 8.63 3.88 -.16  -.21

Mean Horizontal Distance (nm) 56.55 10.80 .28  .06

Mean Vertical Distance (ft/100) 47.04 12.88 .59  .37

Number of Altitude Changes 5.60 3.07 .26  -.47

Number of Heading Changes 3.97 2.91 .83  .10

1 Low-Altitude: S.E. Skew. = .287; High-Altitude: S.E. Skew. = .230
2 Low-Altitude: S.E. Kurt. = .566; High-Altitude: S.E. Kurt. = .457
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Table 7. Correlation Matrix: Low-Altitude (N = 70)

Complexity 
Ratings 

Aircraft Mix 
Index

(Transformed)

Mean
Lateral 

Distance 

Mean
Vertical

Distance 

Altitude 
Changes 

Aircraft Mix Index (Transformed) .34**     
Mean Lateral Distance -.04 .35*    
Mean Vertical Distance -.06 .30* .1

1
   

Altitude Changes .45** .29* -
.3
2

** .02

Heading Changes .67** .48** -
.0
4

 -.11 .54**

** p = < .01; * p < .05 

Table 8. Correlation Matrix: High-Altitude Sample (N = 110)

Complexity 
Ratings 

Aircraft 
Mix Index 

Mean
Lateral 

Distance 

Mean
Vertical
Distance 

Altitude 
Changes 

Aircraft Mix Index -.01     
Mean Lateral Distance -.28** .09    
Mean Vertical Distance -.23* -.08 -.10   
Altitude Changes .26** -.04 -.13 .29**
Heading Changes .48** -.07 -.22* .04 .39**
** p = < .01; * p < .05 

Table 9. Regression of POWER Complexity Variables on ATC Complexity Ratings: 
Low-Altitude Sample

Model Summary R R2 Adj. R2 S.E. Est. 

 .68** .47 .42 .79 

Variable b S.E. ß sr2

Transformed Aircraft Mix Index .003 .072  .005  .00 

Mean Lateral Distance (nm) .001 .015  .009  .00 

Mean Vertical Distance (ft/100) .001 .006  .024  .00 

Number of Altitude Changes .032 .033  .113  .01 

Number of Heading Changes .216 .042  .620  .22**

Significance levels derived from t-tests: ** p < .01; * p <.05
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Linearity and equality of variance. The assumption of 
linearity and the assumption of constant variance of Y for 
all values of X can be easily tested by visually examining a 
plot of residuals against predicted values. If both assump-
tions are met, there will be no systematic pattern in the 
plots. Studentized residuals against the predicted values 
were randomly distributed in a horizontal band around 
zero, indicating that the assumptions were met.

Normal distribution of errors. One of the simplest ways 
to test whether errors of prediction are normally distrib-
uted is by visual examination of a cumulative probability 
plot of the observed distribution of residuals against that 
expected of a normal distribution. If the two distribu-
tions are identical, a straight line results. Cumulative 
probability plots demonstrated that the assumption of 
normally distributed errors was met.

Independence of errors. Because the scenario data were 
collected sequentially, they were screened to determine 
whether the time series had produced systematic vari-
ance in errors. Unfortunately, statistical procedures for 
testing sequential correlation of adjacent error terms 
(e.g., the Durbin-Watson) were not designed to test dis-
crete groups of sequential data. Therefore, Studentized 
residuals were plotted against the sequence variable and 
visually examined. Non-independence of prediction 
errors in these data would manifest itself in “zigzag” or 
“herringbone” patterns. That is, each sequential group 
of fi ve observations would have a discernable pattern of 
increasing or decreasing error. No patterns were detected, 
thus indicating that the assumption of independence of 
errors had been met.

Regression Model: Low-Altitude Sample
Standard multiple regression analysis of the low-al-

titude sector sample produced a multiple R=.69 which 
was signifi cantly different from zero, F(5,62) = 10.97, p 
<.01. As shown in Table 9, the regression model derived 
from the selected variables accounted for approximately 

47% of the variance in Complexity ratings. Table 9 also 
contains unstandardized regression coeffi cients (b), their 
standard errors (S.E.), standardized regression coeffi cients 
(ß), and squared semipartial correlations (sr2) for each 
of the predictors. In standard multiple regression, sr2 
represents the unique contribution of a predictor to the 
total variance explained. It is clear that the Number of 
Heading Changes was the only variable that accounted 
for a signifi cant amount of unique variance (22%). The 
difference between R2 and the sum of sr2 for all predic-
tors in the variable set represents shared variance. Thus, 
23% of the variance described by R2 was unique whereas 
24% was shared.

Regression Model: High-Altitude Sample
Because the value of the Aircraft Mix Index is set to 

“system missing” in the absence of any aircraft with dif-
fering performance characteristics within a given sector, 
there were a considerable number of missing values in 
the high-altitude data set. Nevertheless, standard multiple 
regression analysis produced a multiple R=.57, which 
was signifi cantly different from zero, F(5,40) = 3.94, p 
<.01. As shown in Table 10, the only variable to account 
for a signifi cant amount of unique variance in this data 
set was Mean Vertical Distance (16%). The Number of 
Altitude Changes (7%), the Number of Heading Changes 
(5%), and Mean Lateral Distance (3%) added to the total 
31% unique variance explained, but these contributions 
were not statistically signifi cant. Again, the Aircraft Mix 
Index failed to contribute any unique information to the 
prediction of controllers’ Complexity ratings.

CONCLUSIONS

It is important to note that the list of predictors in-
cluded in the regression analyses was not intended to be 
exhaustive. It is certainly possible, even probable, that 
other measures might account for additional variance in 

Table 10. Regression of POWER Complexity Variables on ATC Complexity Ratings: 
High-Altitude Sample

Model Summary R R2 Adj. R2 S.E. Est. 

 .57** .33 .25 .80 

Variable b S.E. ß sr2

Aircraft Mix Index .000 .031  -.002  .00 

Mean Lateral Distance (nm) -.017 .013  -.175  .03 

Mean Vertical Distance (ft/100) -.034 .011  -.502  .16**
Number of Altitude Changes .123 .063  .321  .07 

Number of Heading Changes .108 .061  .250  .05 

Significance levels derived from t-tests: ** p < .01; * p <.05
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controllers’ complexity ratings. Therefore, the results 
should not be interpreted as evidence that a single vari-
able is suffi cient to describe complexity in the en route 
environment. The focus of the analyses was simply to assess 
the relative contribution of aircraft mix to sector complex-
ity. The fact that the Aircraft Mix Index failed to explain 
a signifi cant amount of unique variance in controllers’ 
Complexity ratings was disappointing, particularly with 
respect to the low-altitude sample, but not entirely un-
anticipated. Historically, the evidence supporting aircraft 
mix as a complexity factor has been anecdotal rather than 
statistical, no doubt because aircraft mix was considered 
to be “non-quantifi able” (e.g., FAA, 1984). Certainly 
controllers’ verbal representations/reports constitute a 
valuable heuristic, but with such evidence comes the risk 
of misattribution. For example, a specifi c factor might 
be particularly salient to the controller during periods of 
perceived increases in “workload” or “complexity” and 
yet be a mere correlate of the factor that is actually driv-
ing their subjective experience. Thus, it is particularly 
important to make every attempt to quantify and assess 
each proposed complexity factor to determine its relative 
infl uence and relationship with other factors. 

This is not to say that aircraft mix should be automati-
cally discounted based on the results of a single analysis. 
It is entirely possible that aircraft mix does not, in fact, 
share a linear relationship with complexity and therefore 
cannot be captured using a linear regression analysis. 
Hilburn and Flynn (2004) have proposed that linear 
regression is ill suited for the study of air traffi c complex-
ity because “complexity factors combine in a non-linear 
way. Though the constellation of factors might well apply 
across contexts, the relative importance of each differs 
by context” (p. 200). 

Another potential reason that aircraft mix failed to 
describe a signifi cant amount of variance in controllers’ 
complexity ratings is that it might only be a relevant 
factor in a few sectors, but in those sectors it is a major 
contributor to traffi c complexity. Every sector is unique. 
This presents a challenge when attempting to build models 
that will generalize. It is, therefore, vital to investigate the 
potential of aircraft mix and other prospective complexity 
factors using data collected at multiple facilities with a 
number of different statistical strategies before drawing 
any fi rm conclusions.

In that same vein, as gratifying as it may be that all 
the variables selected to represent “Traffi c Complexity/
Proximity” in the principal components analysis formed 
a single dimension, there is no guarantee that this would 
be the case in all data sets. Neither do these variables 
represent a comprehensive list of factors that might relate 

to sector complexity. A considerable amount of work 
has been done in this area (for an excellent review of the 
literature, see EUROCONTROL, 2004) and many of 
the proposed measures will be considered as possible ad-
ditions to the POWER variables. Each candidate will be 
tested with the same rigor as the Aircraft Mix Index using 
similar methodology (i.e., examining the validity of each 
measure individually, testing its performance within the 
framework of the POWER variable suite, then examining 
its contribution relative to an external criterion). Each 
iteration of this process brings us closer to developing a 
set of measures that might comprehensively describe the 
sector environment to better understand the nature of 
sector complexity and its effects on controller workload 
and performance.
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APPENDIX A 

Calculation of the Aircraft Mix Index 

The first step in calculating the Aircraft Mix Index is assigning aircraft type codes, which have values 
ranging from one to four. Piston-driven aircraft are assigned a code value of 1, turboprops a value of 2, jet 
aircraft a value of 3, and high-performance jet aircraft a value of 4. The next step is creating a half matrix of 
aircraft type differences for all pairs of aircraft within a given sector. Table A1 lists aircraft type differences for 
the sample of aircraft in Figure A1. For instance, DAL589 is a commercial jet and has been assigned an 
aircraft mix code of 3. N149RJ is a turboprop with an aircraft mix code of 2. The aircraft mix difference 
between N149RJ and DAL589 is 1. The final step in the computation of the index involves summing all 
items in the half matrix. For example, the Aircraft Mix Index for the group of aircraft in Figure A1 is 17.00 
(see Table A1). For each minute of data, the Aircraft Mix Index is calculated for all aircraft pairs at 
approximately 12-second intervals and stored in an array. At the end of each minute, the mean of these values 
is calculated and sent to an array. These stored values are used to calculate the average Aircraft Mix Index for 
whatever processing interval (e.g., 15-minutes, 30-minutes, etc.) has been selected. 

Figure A1. Sample Sector  
With Aircraft Mix Codes 

Table A1. Aircraft Mix Index

DAL589 AAL123 N149RJ UAL556 BLADE76

AAL123 0     
N149RJ 1 1    
UAL556 0 0 1   
BLADE76 1 1 2 1  
N456CP 2 2 1 1 3 
Index = 17 4 4 4 2 3 
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APPENDIX B 

Traffic Sample Descriptions and Sector Maps

Atlanta High-Altitude Airspace Samples
Sector Time (local) 

03 1945-2015 

03 2030-2100 

06 1918-1948 

06 1940-2010 

20 1730-1800 

20 1935-2005 

22 1725-1755 

22 1918-1948 

39 1450-1520 

39 2240-2310 

Atlanta Low-Altitude Airspace Samples
Sector Time (local) 

04 2005-2035 

04 2012-2042 

19 1240-1310 

19 1830-1920 

38 1645-1715 

38 1815-1845 

41 1330-1400 

41 1950-2020 

03

06

20

22

39
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Fort Worth High-Altitude Airspace Samples 
Sector Time (local) 

28 0035-0105

28 1815-1845

46 1520-1550

46 1505-1535

47 1550-1620

47 1555-1625

48 1223-1253

48 2235-2305

49 1505-1535

49 1825-1855

86 1245-1315

86 1855-1925

Fort Worth Low- and Intermediate-Altitude* Airspace Samples 
Sector Time (local) 

29 1240-1310 

29 1845-1915 

75 1555-1625 

75 2235-2305 

96 1255-1325 

96 1325-1355 

* Low/Intermediate SFC to FL230
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