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Predicting Subjective Workload ratingS: 
a comPariSon and SyntheSiS of 

oPerational and theoretical modelS

INTrOduCTION

Workload is a term often used to refer to the amount 
of work or effort required to perform an activity over a 
given time period [1, 2]. Although certain variables have 
been shown to moderate the exact relationship between 
performance and workload for given situations [3, 4, 5], 
high levels of workload generally tend to be associated 
with increases in operator error and decreases in overall 
performance [6, 7]. These findings have led to an enduring 
interest in workload research. This is particularly true in 
the domain of air traffic control (ATC) where safety and 
operational efficiency often hinge upon performance of 
highly complex tasks. Researchers recognize that high 
workload inherent in cognitively complex ATC tasks 
may lead these tasks to be vulnerable to performance 
decrements.

Unfortunately, research findings of over the last three 
decades have also revealed the workload construct to be a 
challenging one to characterize [2, 8, 9]. Workload seems 
to result from several different contributing factors. These 
factors include operator individual differences, fatigue, 
expertise, environment, time pressure, number of tasks, 
task modality, and task difficulty.

Despite obstacles, advancement in workload research 
has enabled the development of mathematical models 
used to support the analysis of operator workload. Many 
of these models have been developed for use in the 
ATC domain. Computer models provide predictions of 
workload that approximate those that would otherwise 
have to be gained from the use of system prototypes and 
subject-matter expert (SME) interactions. Through the 
use of valid workload models, analysts can predict how 
effective a system will be and where failures or reductions 
in performance are likely to occur.

There are a large number of variables that modelers 
can choose to make workload predictions. Consequently, 
many different types of models have been developed 
to predict workload and workload-related concepts 
such as dynamic density [10, 11, 12, 13, 14, 15, 16]. 
Workload models vary in the domains to which they 
have been applied and in the amount and method of 
validation they have received. These models often differ 
in their approaches as well. Some approaches rely on 
objective variables observable in the environment or 
situation, while other models rely on variables derived 

from theoretical constructs or processes. Even though 
these models were created to predict the same general 
theoretical concept, their approaches rely on entirely 
distinct sets of predictor variables.

One type of model applied to workload prediction is 
the queuing model. Queuing theorists model complex 
task performance by representing the process in terms 
of servers and clients [15, 16]. In Schmidt’s model, the 
ATC specialist was represented as a server, and the ATC 
tasks to be completed were represented as the customers 
of the server. In this type of theoretical model, number 
of activities, the difficulty associated with performing 
the activities, and the relative priority of activities are 
all used to predict workload [15, 16].

Researchers in the ATC domain have used the oc-
currence of certain quantifiable situational factors and 
observable air traffic controller behaviors as variables to 
predict workload as well [7, 17, 18, 19]. Variables such 
as these are often selected for analysis as they provide 
objective measures of workload that can be accessed 
without interfering with a controller’s work. The discus-
sion herein shall refer to models that use these variables 
as operational models due to the association they have 
with a specific domain.

The identification of variables for use in operational 
models requires an understanding of the domain un-
der consideration. In the ATC domain, for example, 
controllers typically monitor a radar scope showing 
the positions of aircraft and deliver control commands 
to the aircraft verbally over a radio channel. Control 
commands, or clearances, include changes to aircraft 
altitudes, headings, and speeds. Clearances are given 
to direct aircraft to particular waypoints, increase or 
assure a safe distance between all aircraft, or slow and 
descend an aircraft so as to land on a runway. Further-
more, different types of controllers control aircraft at 
different points in their journey. In our example, an 
Air Route Traffic Control Center (or simply Center) 
controller may hand off an aircraft to a Terminal Radar 
Approach Control (TRACON) controller who slows 
and descends the aircraft, and hands the aircraft off 
to a Tower controller for landing. From these ATC 
activities, researchers have identified variables such as 
number of aircraft under control, altitude changes, and 
handoffs performed as means of estimating workload 
[7, 17, 18, 19]. 
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In Manning et al. [17], a wide range of operational 
variables was used in a regression analysis to predict work-
load. Twenty-three operational variables were analyzed 
along with variables for number of communications and 
communication time. The operational variable values 
were derived from video and audio data recordings of 
air traffic control. Manning et al. first used a Principle 
Component Analysis on the values and reduced the vari-
ables into five sets. These sets were then used in multiple 
regression analyses to predict controller workload ratings. 
In this way the authors were able to identify a model that 
could predict 72% of the variance in workload.

In addition to the number of variables used, the 
Manning et al. [17] study was also interesting because 
of the way the authors collected the workload values that 
the operational variables were used to predict. In this 
study, workload was represented by subjective workload 
ratings. Although criticized due to findings that show 
dissociation between subjective workload ratings and 
performance [20], subjective ratings are among the 
most popular workload measurement techniques. The 
subjective technique has a great deal of face validity 
and theoretically allows the researcher to tap personal 
perceptions of workload that result from the interactions 
of both observable and unobservable workload factors 
[21]. Subjective workload ratings are usually collected 
from operators as they perform their tasks or shortly 
afterward. Operators report the amount of workload 
personally experienced. However, in the Manning et al. 
study, controller SMEs instead observed recordings of 
air traffic control and indicated the amount of workload 
they believed the controller controlling the traffic was 
experiencing.

Although the Manning et al. study showed that opera-
tional variables provided promising results for predicting 
controller workload in a known ATC system, the ability 
of operational models to predict workload for a system 
that currently does not yet exist remains to be determined. 
Take, for example, the application of the operational 
modeling approach to the prediction of workload associ-
ated with an ATC operational concept that includes the 
use of new technology (e.g. datalink) to deliver aircraft 
clearances. The operational approach would seem to as-
sume that a message delivered by voice would result in 
the same amount of workload as a message delivered by 
a new technology. It may be the case, however, that the 
weighting of workload predictive variables is different for 
a system that uses a different mode of communication, 
supports the controller with automated decision aids, or 
relies on a different set of procedures.

Cognitive models are a type of theoretical model 
that may be useful for the prediction of workload with 
proposed new systems. Cognitive models allow for a 

representation of performance at the sensory, cogni-
tive, and motor resource level. Although this level of 
representation requires an additional investment in time 
and effort, it provides a theoretical way to account for 
the unobservable aspects of workload that operational 
models do not. By modeling the cognitive aspects of 
workload, cognitive modeling can provide a way to ac-
count for the differences between any alternate systems 
that are modeled.

Although there are many types of cognitive models, 
most cognitive models applied to workload research 
are based on Wicken’s Multiple-Resource Theory [22]. 
Multiple-Resource Theory posits that there are separate 
and independent pools of resources for separate types of 
processing. There are different sensory resources (audio, 
visual, etc.) and response resources (manual, vocal, etc.) 
for example. If two tasks require simultaneous use of 
the same resource, interference will occur and task 
performance will suffer. As the concept of workload 
assumes that human performance is limited by finite 
resources, Multiple-Resource models rely on sensory, 
cognitive, and motor resource usage and interference 
to predict workload.

Models such as those based on Multiple-Resource 
Theory were developed to describe cognitive pro-
cesses at a minute level. Before these models could be 
applied to the prediction of workload, a method of 
extrapolating the models to represent the processing 
involved in complicated real world tasks was needed. 
Task analysis is a means of describing all the steps that 
must be carried out to perform a function and the se-
quence with which those steps must be taken. In task 
analysis, activities such as knowledge elicitation and 
role-playing exercises are used to identify functions and 
then break those functions down into activities. Many 
types of task analyses produce task networks. In task 
networks, activities are further broken down into tasks, 
and the information requirements for each task are 
defined. Task analysis provides a means to extrapolate 
cognitive models for efficient application to complex, 
real-world situations.

Aldrich and Szabo [10] developed a process whereby 
they mapped uses of theoretical cognitive, sensory, and 
motor resources onto a task network. Their model be-
came known as the VACP model because separate task 
networks were created for Visual, Auditory, Cognitive, 
and Psychomotor resource usage. Tasks along these net-
works were also rated for difficulty. Workload predictions 
were calculated for any given moment by adding up the 
difficulty ratings for all tasks being performed at that 
moment. The VACP model was capable of providing 
additional information regarding which resources were 
being utilized when and with what frequency.
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Another early workload prediction model utilizing 
Multiple-Resource Theory was Parks and Boucek’s 
Time-Line Analysis and Prediction (TLAP) model [13], 
developed to predict pilot workload. Similar to the VACP 
approach, the approach created by Parks and Boucek used 
separate task networks for each different resource type. 
Networks were created for cognitive, visual, auditory, 
manual hands, and manual feet resources. By enhancing 
the task analysis with a cognitive architecture, Parks and 
Boucek were able to provide a theory-based prediction of 
when tasks could be performed in parallel. The aggregate 
ratio of overall operator busy time to time available that 
emerged from these theoretical task networks was used 
to predict level of workload.

North and Riley [12] extended the above approaches by 
incorporating an interference matrix into their Workload 
Index (W/INDEX) model. The interference matrix indi-
cated the degree to which tasks interfere with each other 
at the resource level. Values from 0 to 1.0 were estimated 
to represent how much different parallel resource usages 
would interfere with performance. Workload predictions 
were found to be similar to the VACP approach except 
that the value for relative task interference was also a 
factor in the calculations. 

Without validation it would be impossible to know 
whether models such as W/INDEX perform better at 
workload prediction than models such as VACP or TLAP. 
Although it is important that any model type be validated, 
validation is particularly important for cognitive models 
because they are based on cognitive theories that may be 
controversial or otherwise difficult to confirm. 

Sarno and Wickens [1] tested and compared the as-
sumptions of Parks and Boucek’s [13] TLAP, Aldrich 
and Szabo’s [10] VACP, and North and Riley’s [12] 
W/INDEX. These models were tested against two types 
of performance data: data recorded from participants 
as they attempted a combination of derived tracking, 
monitoring, and decision making tasks, and data collected 
from participants as they took part in a TASKILLAN 
helicopter simulation. All models tested accounted for 
56 to 84% of the performance variation in the derived 
tasks but accounted for only 12 to 42% of the variance 
in TASKILLAN performance. By removing and com-
bining model features, Sarno and Wickens were able 
to narrow down which model variables were associated 
with improvements in prediction. Results showed that 
prediction was best for models that represented the use of 
multiple resources. The results also showed that workload 
prediction was not improved when the degree of resource 
usage interference was included in the analysis.

Although Sarno and Wicken’s study was useful for a 
comparison among subtypes of cognitive models, for de-
signers and researchers to answer the broader question of 

whether workload can be better characterized by queuing, 
operational, or cognitive model variables, requires that 
the model types be tested together, against the same data. 
All three types of models have been employed with some 
degree of success to the analysis of real-world problems. 
However, even when differing model types have been 
applied to the same domain, they were not validated 
against the same data set. 

The current paper used output from Boeing Air Traf-
fic Management’s Regional Traffic Model (RTM) and its 
Human Agent Module (HAM) to test and compare the 
assumptions of both the operational and theoretical mod-
els. The RTM output includes variables such as number 
of aircraft under control and number of communications 
by type. Furthermore, the cognitive architecture found 
within the HAM models the use of cognitive, sensory, 
and motor resources and records when tasks requesting 
those resources are in conflict.

Two air traffic scenarios were run using the RTM, and 
the output was used to derive queuing, operational, and 
cognitive model variables. These variables were used in 
regression analysis to predict subjective workload ratings. 
The workload ratings were provided by ATC SME’s who 
observed the two scenarios as they were being run by the 
model in real time.

METhOd

Participants
Two ATC subject matter experts were compensated 

for their participation in this study. Both of these par-
ticipants were former air traffic controllers employed as 
training consultants. One participant’s specialization was 
in TRACON environments and the other participant’s 
specialization was in Center environments.

Materials
The Regional Traffic Model. Boeing Air Traffic Man-

agement’s RTM is a fast-time, discrete event-modeling 
tool developed to allow engineers and decision makers 
to compare and assess the impact of theoretical new 
technologies and procedures on air traffic management 
performance. Through the use of models like the RTM, 
analysts can predict to some degree how effective a system 
will be and where failures or enhancements in performance 
are likely to occur. Analysts can make changes to the 
system as it is represented in the model and collect data 
in a relatively quick and cost-efficient fashion. 

The RTM is made up of a number of modules that 
represent the generic functionalities inherent in the air 
traffic management system: Aircraft, Airspace, Commu-
nication, Surveillance, Traffic Generation, and Human 
Agent Modules among others. In the Traffic Generation 
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Module, stochastic traffic generation, for example: “can 
be configured in terms of inter-arrival times to specify 
various demand scenarios as well as in terms of traffic 
type and wake vortex class composition. This provides the 
ability to represent aircraft arrivals into Center airspace 
at appropriate miles-in-trail” [23]. The HAM was devel-
oped as part of the RTM to represent the behavior and 
performance of human air traffic controllers and pilots. 
It was also developed to enable the prediction of human 
operator workload. The HAM is a part task network 
model and part cognitive architecture model. Whereas 
there are modules in the RTM that produce data regarding 
traffic generation, aircraft performance, aircraft spacing, 
surveillance, and communication channel performance, 
the HAM produces data regarding the time of occurrence, 
duration, and frequency of controller activities and tasks, 
and the usage of motor, sensory, and cognitive resources 
in the completion of those tasks. These data are used to 
derive human task performance delay, error rate, and 
communication channel congestion metrics.

The controller HAM controls air traffic in a way that 
is representative of how traffic is controlled today or in 
a way that we expect it to be controlled under alternate 
operational concepts. It accepts control of an aircraft and 
guides it along its course by issuing altitude, heading, or 
speed clearances through the communication channels. 
The controller HAM also uses these clearances to maintain 
safe distances between the aircraft and provide collision 
avoidance maneuvers. In today’s air traffic environment, 
controllers are differentiated by the type of airspace they 
control. TRACON controllers control the airspace im-
mediately around airports and deal with the arrival and 
departure phases of flight. Center controllers typically deal 
with aircraft undergoing the en route phase of flight often 
associated with higher altitudes. The HAM is capable of 
representing both types of controllers. 

The controller HAM accomplishes ATC as described 
in Figure 1. First, the HAM receives traffic-related events 
from other RTM modules. Events include notification 
that an aircraft has passed a waypoint or deviated from 
assigned altitude, among others. The processing of these 
events may be delayed, depending upon the availability 
of the sensory resources represented within the HAM. 
Once the existence of an event is known, it must be 
recognized. The HAM recognizes events by associating 
them with programmed activities and tasks. In the HAM, 
activities are operational goals (e.g. Accept Handoff, 
Resolve Conflict). Activities are achieved through the 
performance of two or more tasks (e.g. Issue Altitude 
Clearance, Determine if Aircraft is in Conformance). The 
representative tasks performed in response to the events 
were obtained from previously performed task analyses 
[24] and through knowledge elicitation from controller 

SMEs. Relative priority rankings and difficulty rankings 
for all of the activities were also elicited, and the priority 
rankings were used in the model. 

When the controller HAM performs tasks associated 
with traffic events, it calls upon representations of sensory, 
cognitive, and motor resources. These resources make up 
the HAM’s cognitive architecture. Tasks are theorized to 
require the use of certain resources before they can be 
successfully completed. Two tasks that require the use 
of two different resources can be performed in parallel. 
However, if a task requires a resource that is currently 
in use, a resource conflict is logged, and the subsequent 
task is placed in a model queue until the other task is 
completed. If the two tasks require the resource simul-
taneously, the task associated with the higher priority 
activity will gain access to the resource first. In this way, 
controller activities can be interrupted by higher priority 
activities but tasks cannot.

Finally, the performance of the HAM is set through 
parameters associated with each task. Therefore, not only 
is the HAM able to represent the way in which a human 
solves given air traffic control problems but also, through 
instantiation of these parameters, is able to represent 
differing amounts of human performance accuracy and 
delay in the implementation of the solution.

The Total Airport and Airspace Modeler (TAAM). The 
TAAM tool, from Preston Aviation Solutions, provides 
a viewer functionality that enables visualization of model 
results using a perspective similar to ATC radar displays. 
This tool allows RTM data to be replayed at a rate repre-
sentative of real time. Aircraft are depicted as radar targets 
accompanied by data blocks showing aircraft speed and 
altitude. Sector boundaries and the airway routes on 
which the aircraft flew are also depicted.

Procedure
The RTM was used to run two 150 minute air traffic 

scenarios. These scenarios depicted a representation of 
westbound arrivals from three Chicago Center sectors into 
Chicago O’Hare’s (ORD) TRACON and runway 14L. 
One of the scenarios modeled a Low traffic-level condition 
and the other modeled a High traffic-level condition. The 
RTM output from these runs included a record of human-
controller task completions, air-ground communications, 
and sensory and cognitive resource uses. 

The RTM Traffic Generator parameters were popu-
lated to provide aircraft that differed in equipage (weight 
and performance classes). The ratio of aircraft equipage 
types used was representative of traffic into ORD dur-
ing a typical day from August 2000. The scenario that 
depicted the Low traffic condition was populated such 
that approximately 15 aircraft would land on runway 
14L per hour. The scenario that depicted the High 
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 traffic condition was populated such that approximately 
24 aircraft would land per hour.

An illustration of the approximate lateral profile fol-
lowed by the simulated aircraft can be seen in Figure 
2. Aircraft enter the Center sector at the FLINT and 
SALEM waypoints and travel westward. The Center 
sector controller merges the two traffic streams at 
PULMAN before handing the aircraft off to the next 
controller. Aircraft enter the TRACON just after PIVOT 
in the Northeast and after BEARZ in the south. The 
TRACON Final controller takes control of the air 
traffic from the south just after the northward vector, 
merges the two traffic streams, and vectors the aircraft 
on the downwind to ensure spacing at the Final Ap-
proach Fix (FAF) before handing the aircraft off to the 
Tower controller.

The RTM input parameters that represented the 
behavior and performance of both the humans and the 
technological systems in these scenarios were chosen and 
instantiated to model the way traffic is controlled today 
with today’s technology. Air routes used in the model 
of Center airspace and vectors used in the model of 
TRACON airspace matched those used in current Chi-
cago operations. Communication system performance 
matched that of today’s analog voice systems. 

The output from the two model runs was loaded 
into the TAAM viewer and replayed in real-time for the 
participants to observe. The participants each viewed 80 
minutes of the output, 40 minutes from the Low traffic-
level condition and 40 minutes from the High traffic-level 
condition. Each time segment observed started with a 
representative number of aircraft already in its respective 
airspace. The TAAM depicted display was limited to the 

Pullman sector for the participant that specialized in 
Center control and the ORD sector for the TRACON 
control specialist. Prior to viewing, both participants 
were briefed as to the nominal flight profiles used in the 
respective scenarios. It is also worthy of note that, as the 
RTM produces no audible output, participants viewing 
the scenarios had to infer communication messages by 
observing changes to aircraft heading, speed, and altitude 
visible in the aircraft data blocks. 

Workload ratings were elicited from the participants 
as they observed the scenarios. The workload rating col-
lection procedure was a modification of the Air Traffic 
Workload Input Technique [21]. The participants were 
informed that at 4-minute intervals during the scenarios 
they would be asked to estimate the level of workload 
they believed someone controlling the current traffic 
situation would be experiencing. The participants pro-
vided their answers, in pencil and paper format, on a 
scale from 1 to 10 with 1 being extremely low workload 
and 10 being extremely high workload.

rEsulTs

descriptive statistics
Several RTM output variables were selected for 

analysis to predict the workload ratings provided by the 
participants. These variables were selected based on their 
theoretical ability to predict workload as suggested in 
previous studies. The variables are listed on Table 1, in the 
first column. These variables were derived from scenario 
output for each 4-minute period that a workload rating 
was collected. Means for the variables and the workload 
ratings are shown in columns 2-5.

FLINT

SALEM

PULLMAN

PIVOT

BEARZ

FAF

ORD

14L
Chicago
Center

Figure 2. Lateral Flight Paths Modeled Within the RTM. Figure 2. Lateral Flight Paths Modeled Within the RTM.
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Means
TRACON TrafficCenter Traffic Model Performance

Variable per 4 Minute Time Segment Low High Low High R R2 F p
Subjective Workload Ratings (1-10) 3.57 5.25 2.00 2.57

Operational Variables
Number of Aircraft 3.00 5.38 2.00 2.71 0.828 0.686 61.161 0.000
Number of Heading Changes 5.14 9.50 0.63 9.00 0.619 0.384 17.425 0.000
Number of Communications 10.29 19.88 4.50 19.00 0.610 0.372 16.579 0.000
Communication Congestion (in seconds) 50.15 92.37 22.32 91.07 0.596 0.355 15.406 0.001
Number of Speed Changes 1.71 3.38 0.63 3.43 0.541 0.292 11.565 0.002
Number of Altitude Changes 1.71 3.50 1.88 3.14 0.390 0.152 5.035 0.033
Number of Handoffs (accepted & initiated) 1.00 1.63 0.63 1.71 0.376 0.141 4.610 0.041

Theoretical Variables - Queuing
Number of Activities Completed Weighted by Priority 39.86 71.63 16.38 28.14 0.876 0.767 92.346 0.000
Number of Activities Completed Weighted by Difficulty 37.71 66.00 14.13 24.86 0.857 0.735 77.714 0.000
Number of Activities Completed 9.43 17.25 4.38 7.71 0.849 0.721 72.335 0.000
Task Load (time on tasks/240 seconds) 56.79 78.96 38.33 42.50 0.671 0.450 22.880 0.000
Number of Tasks Performed 28.57 54.63 13.25 53.29 0.599 0.358 15.643 0.000

Theoretical Variables - Cognitive
Resource Usage Conflicts 2.57 7.88 0.00 6.43 0.639 0.408 19.279 0.000
Verbal Cognition Resource Requests 15.00 28.25 7.50 27.00 0.592 0.350 15.106 0.001
Visual Processor Resource Requests (task specific only) 10.29 20.00 5.13 19.71 0.584 0.341 14.502 0.001
Spatial Cognition Resource Requests 2.57 4.75 0.63 4.86 0.521 0.271 10.432 0.003

Top 5 Combination Models
Activities by Priority & Resource Usage Conflicts 0.889 0.791 50.950 0.000
Activities by Priority & Number of Aircraft 0.889 0.790 50.689 0.000
Activities by Priority & Spatial Cognition Requests 0.887 0.787 49.869 0.000
Activities by Priority & Task Load 0.881 0.775 46.578 0.000
Activities by Difficulty & Number of Aircraft 0.878 0.770 45.298 0.000

Table 1. Variable Types, Means From the Scenarios, and Results of the Regression Analyses.
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All derived variable values showed an increase from 
the Low traffic condition to the High traffic condition. 
Number of aircraft controlled was greater for the TRA-
CON controller. This was because the TRACON sector 
was being fed by more than one Center sector. An increase 
in runway arrival rate, for the scenarios, was attained by 
proportionately increasing air traffic frequencies at each 
of the Center airspace entry points.

Workload levels were rated higher for the TRACON 
sector than for the Center sector. The Center sector 
controller for this model did not have to perform some 
of the common tasks that many real Center controllers 
would have to perform, including responding to pilot 
requests and overflights. Neither sector under Low or High 
traffic conditions was rated as presenting the simulated 
controller with more than a moderate level of workload. 
These low ratings may have given rise to a floor effect 
for some variables.

Model Performance
Each of the variables recorded was used in a regression 

analysis to predict workload ratings. The results of these 
analyses are provided in columns 6-9 of Table 1. The 
table provides both the R and the R2 value indicating the 
amount of variance accounted for by each model. The 
table also provides the F and p values indicating the level 
of significance the model reached. These results indicate 
the ability to predict subjective workload for each of the 
model types as represented by the HAM and the RTM. 
Successful models identify candidates from among the 
operational and theoretical variable types that could be 
used in place of subjective workload ratings when it comes 
to predicting workload for new ATC systems.

The operational variables analyzed for this study 
included number of communications, communication 
channel congestion, number of clearances by type (alti-
tude, heading, and speed changes), number of aircraft 
being controlled, and handoffs. Unfortunately, neither 
of the communication variables predicted more than 
38% of the variance in subjective workload ratings in 
this study (as compared to 49% found by Manning et 
al. [17]). Even the best predictor among the clearance 
types (number of heading changes) did not predict more 
than 39% of the variance. 

Number of aircraft, however, performed well, predict-
ing almost 69% of the variance. These results suggest 
that a measure as simple as number of aircraft can be a 
relatively strong representative of subjective workload 
by itself. Its usefulness is limited by the fact that the 
number of aircraft found in a scenario tells us very little 
about how one system contributes to workload levels 
versus another. 

The theoretical queuing variables tested were task load, 
number of activities completed, and number of activi-
ties completed weighted by either difficulty or priority. 
These variables represent aggregates of tasks performed 
to complete activities. The task load model was successful 
at predicting 45% of the variance in workload ratings. 
However, three activity level models performed better, 
accounting for between 72 and 77% of variance. It is 
interesting to note that the best-predicting model of the 
three used priority, a relative measure of time criticality, 
to weight the number of activities. As has previously been 
suggested in the literature [8], time pressure is an important 
contributor to the subjective workload experience.

The theoretical cognitive variables analyzed included 
total number of tasks performed by the HAM, as well 
as the number of calls to the verbal, spatial, and visual 
processor resources, and resource usage conflicts for each 
4-minute segment. The highest performing variable from 
this list, resource usage conflicts, predicted roughly 41% 
of the variance in subjective workload ratings. Resource 
usage conflicts predicted relatively well, considering that 
this variable requires the most detail about how tasks are 
being carried out and relies heavily on cognitive theory. 
Although the cognitive variable models may not fare well 
by themselves, they can potentially provide designers with 
useful information regarding resource usage.

Further regression analyses were conducted by testing 
pairs of variables together. In this study, there was an 
insufficient amount of workload ratings to perform any 
regression procedures using more than two variables at a 
time. Operational variables, theoretical queuing variables, 
and theoretical cognitive variable pairs were all tested, 
except where prohibited by co-linearity. Additionally, as 
the RTM and HAM output includes both operational 
and theoretical variables from the same scenario, it was 
theorized that the operational and theoretical model 
types could be directly compared. Toward this end, 
regressions were also performed on pairs that included 
one variable from both the theoretical and operational 
variable types.

The regressions identified 17 variable pairs that produced 
models accounting for more than 75% of the variance 
in workload ratings. Model performance for the top five 
predicting models is shown in Table 1. A Bootstrap analysis 
was applied to the predicted workload values for each of 
these models. Results of this analysis showed that none of 
the predicted values for any of the models was significantly 
different from any of the others. Although comparing the 
amount of variance accounted for across the various mod-
els may provide hints as to trends in model performance, 
the small number of workload ratings does not allow for 
statistically reliable comparisons to be made.
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All 17 top predicting pairs included either number 
of activities weighted by priority or number of activities 
weighted by difficulty as a variable. Number of activi-
ties weighted by priority in combination with any one 
of either taskload, number of aircraft, spatial cognitive 
resource use, or number of resource conflicts produced 
the four best prediction models.

The model pairing number of activities weighted 
by priority and number of resource conflicts produced 
the highest R2 value. The coefficients and constant for 
this model make up the following workload prediction 
equation: Workload = 1.328 + 0.067 (resource conflicts) 
+ 0.049 (activities weighted by priority). The results of 
this analysis suggest the model equation for number of 
activities weighted by priority and number of resource 
conflicts is the most suitable to represent workload levels 
in design situations where actual subjective workload 
ratings cannot be assessed.

dIsCussION

Results of this study suggest that number of activities 
completed per 4-minute time period is a good predictor 
of workload. By itself, this variable predicted 72% of 
the variance in workload ratings. As derivation of this 
variable requires only a minimal task analysis, this is 
potentially good news for designers who lack in-depth 
knowledge about new task procedures or who lack the 
time and budget to perform in-depth cognitive analyses. 
In this study, number of activities was a better workload 
predictor than the domain specific operational variables 
such as frequencies of clearances by type, number of 
handoffs, average number of aircraft under control, and 
those related to communications. 

The predictability of number of activities increased 
when this variable was weighted either by activity pri-
ority or difficulty. Priority is an indicator of the time 
criticality of an activity. The finding that the priority 
weighting improved this model tends to corroborate 
workload theories that have identified time pressure as 
a major influence on resulting workload [8]. As the rela-
tive priority rankings of activities is not likely to change 
across systems, the “number of activities weighted by 
priority” model will be insensitive to comparisons of 
systems that change the amount of workload contributed 
by activities without changing the number of activities 
that need to be performed. This limitation would not 
exist for the “number of activities weighted by difficulty” 
model, should it be possible to estimate a different set 
of difficulty weightings for activities performed using 
the new technology.

The R2 value of activities weighted by priority was 
further improved when paired with the variable repre-
senting the number of resource conflicts that occurred 
during the 4-minute time period. Based on the results of 
the regression analysis alone, the model using activities 
weighted by priority and number of resource conflicts is 
the preferred model to use to predict workload. However, 
taken at face value these results only show a 2% increase 
in prediction associated with the cognitive component 
of the equation.

Gaining this extra prediction accuracy required the 
development of a cognitive architecture and the assign-
ment of cognitive resource usage estimates to tasks in a 
task network. The cost in budget and schedule needed 
to perform this cognitive modeling may not seem worth 
the extra 2% gain. However, there are other important 
reasons to consider using cognitive modeling to predict 
workload associated with new systems. 

One reason to include cognitive modeling is that a 
descriptive analysis of resource usage provides guidance 
to designers regarding factors that are likely to impact the 
workload of a new system. The model using number of 
activities weighted by priority can be used to predict when 
a system is likely to foster a high level of workload, but it 
is unlikely, by itself, to say much about which elements 
may be causing the workload increase. Descriptive statistics 
such as number of uses of the visual processing resource or 
number of uses of the communication channel can suggest 
to a designer where the problem areas are likely to occur, 
should suboptimal workload levels be predicted. 

A second reason is that the inclusion of the variable 
representing number of resource conflicts into the equa-
tion with number of activities weighted by priority brings 
the model a much-needed consideration for behaviors 
that take place within the activities. A workload model 
that uses number of activities weighted by priority, as-
suming the priorities of activities do not change between 
systems, will not distinguish between systems that require 
similar numbers of activities. Even workload models that 
predict and record cognitive resource usage at the task 
level will not distinguish between two systems that simply 
shift the resource usage modality without changing the 
number of tasks being performed. However, measures 
such as resource usage conflicts provide information as 
to how the system and procedures integrate with human 
limitations and therefore increase the sensitivity of the 
model. As the results of this analysis suggest a predictive 
value to resource usage conflicts, the authors suggest that 
a cognitive architecture model, such as that portrayed in 
the HAM, can be a valuable tool for systems designers 
concerned with the prediction of human workload.
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