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COMPARISON STUDY OF MICROARRAY AND RNA-SEQ FOR 

DIFFERENTIAL EXPRESSION 
 

INTRODUCTION 
 

 In the past four decades, since Sanger sequencing (Sanger et al., 1977) was developed 

and Chang (1983) first introduced the concept of microarrays, the study of genetics has 

undergone revolutionary changes in what genetic data can be collected and how it is analyzed. 

Microarrays became a commonly used technology through the efforts of Southern, whose 

laboratory developed techniques to automate scanning of deoxyribnucleic acid (DNA) 

sequencing gel data by computer (Elder et al., 1986). Fodor founded Affymetrix, which produces 

high-density microarrays for quantitation and identification of DNA and ribonucleic acid (RNA) 

samples (Fodor et al., 1991). Brown‘s publications enabled laboratories to construct their own 

spotted microarrays (Shalon et al., 1996). Schena’s use of Brown’s microarrays proved the utility 

of microarrays for examining gene expression (Schena et al., 1995). Initially, microarray chips 

were limited to dozens or hundreds of probes, but currently the most advanced microarray chips 

incorporate millions of probes, covering the entire human genome or transcriptome; the 

GeneChip® Human Transcriptome Array 2.0 contains more than six million probes (Affymetrix, 

n.d.) and the ClariomTM D Human microarray (ThermoFisher, 2017) contains more than 6.8 

million probes. 

 RNA-seq is a more recent innovation that utilizes methods and technologies developed 

for next generation sequencing. Some of the earliest DNA sequencing was performed using 

Sanger sequencing, initially capable of determining the sequence of approximately 200 

nucleotides at a time (Sanger et al., 1977). Later, 454 sequencing was developed by Margulies et 

al. (2005). This method utilized shotgun sequencing of up to 25 million bases in a four-hour run 

through pyrosequencing. Currently, RNA-seq incorporates molecular techniques to fragment 

RNA sequences into small reads, convert RNA to complementary DNA (cDNA), and then 

determine the sequence of those reads by utilizing “sequencing by synthesizing” technologies 
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that allow the detection of bases added to complementary strands of cDNA as they are 

synthesized (Bentley et al., 2008) with a high level of accuracy and efficiency.  

The purpose of this study was to determine which of these two methods, microarrays or 

RNA-seq, provide the most accurate, effective, and economical results for biomarker detection. 

In the past, the Federal Aviation Administration’s (FAA) Civil Aerospace Medical Institute’s 

(CAMI) Functional Genomics Research Laboratory has used microarrays for biomarker studies, 

but there are some concerns related to the quality, dynamic range, and limit-of-detection of data 

generated using microarrays. One concern is that the maximum microarray detection threshold is 

determined by the number and specificity of complementary oligonucleotides printed onto the 

array for each target. This approach could interfere with detection of highly expressed genes, 

where thousands of copies may be present. Microarrays also are known to be statistically noisy 

(Mantione et al., 2014; Wang et al., 2014), which could dampen their ability to detect genes at 

low concentrations. Wang et al. (2009), found that there was reasonable concordance between 

measured expression levels from microarrays and RNA-seq for moderately expressed genes, but 

poor concordance for genes that had high or low levels of expression. RNA-seq is capable of 

detecting low-expressing genes expressed with little interference from statistical noise, and also 

genes expressed at very high levels, with thousands of copies present or more. These findings 

would indicate that RNA-seq is potentially a more robust methodology for biomarker detection 

using differential expression.  

There were two objectives to the study and was split into two parts in order to optimize 

biomarker discovery methodology. First, two different amplification methods for microarray 

hybridization were compared to determine differences, if any, between the Affymetrix 

GeneChip® WT PLUS (ThermoFisher P/N 902280) amplification method and the NuGEN 

Ovation® Pico WTA system V2 (NuGEN P/N 3302-12) amplification method, with respect to 

RNA differential expression (DE) results used for potential biomarker discovery. Our laboratory 

has previously used the NuGEN amplification kit with success but determined it was worthwhile 

to compare the effectiveness of the NuGEN kit with the newer Affymetrix WT PLUS kit, which 

could potentially be better optimized for use with the Affymetrix microarrays typically used. The 

second objective was to determine which transcript detection method, RNA-seq or Affymetrix 

GeneChip® Human Transcriptome Array 2.0 (ThermoFisher P/N 902162), was most effective at 

identifying and quantifying levels of RNA present in samples. The Affymetrix GeneChip Human 
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Transcriptome Array 2.0 (HTA 2.0) was selected for comparison to RNA-seq analysis as it 

contains over six million probes specifically recognizing more than 65,000 genes (Affymetrix, 

n.d.), including non-coding (ncRNA) and regulatory RNA, and represented the most complete 

coverage of the human transcriptome available in microarray format. Total RNA-seq was chosen 

as the best comparison to microarrays, as it detects ncRNA and other non-poly-A RNA species. 

To determine which method of gene expression data collection produced results best suited for 

biomarker discovery in our hands, we compared DE results from Affymetrix’s HTA 2.0 

microarrays to total RNA-seq.  

Blood-derived RNA was chosen as a sample source for multiple reasons. Blood samples 

are widely used in many studies for RNA quantification and analysis. One advantage of utilizing 

blood-derived RNA is that blood samples are easily collected and are minimally invasive, as 

compared to extracting RNA from other tissues, such as tumors, which are of clinical interest in 

medical studies but require surgery to obtain samples (Shabihkhani et al., 2014). Additionally, 

protocols to collect blood and stabilize any RNA present are thoroughly documented and simple 

to utilize. Using well-studied collection methods, such as PAXgene® blood RNA collection 

tubes and PAXgene’s® blood RNA kit, can also minimize risks of processing or handling -

induced changes in RNA expression (Feezor et al., 2004). Blood also typically contains a wide 

variety of RNA originating from various sources, including cell-free RNA (Koh et al., 2014) as 

well as intracellular RNA and is therefore well suited to DE studies. Brain-derived RNA was 

also used in this research to provide a basis for comparison against blood RNA, based upon the 

differences in genetic expression between blood and brain (GTEx Consortium 2015).  

Analysis of RNA allows researchers to evaluate gene expression of individuals at a given 

moment in time. Studies using RNA enable evaluation of which genes are being differentially 

expressed and how gene expression alters due to various stimuli. Specifically, DE analysis 

allows researchers to study and identify which genes are being over- or under- expressed under a 

given condition. In the design of this study, which was modeled after that of the MicroArray 

Quality Control Project (MAQC; Shi et al., 2006), samples were purposefully mixed in defined 

ratios to ensure that they would demonstrate differential expression when compared, similar to 

biomarker discovery studies. 

Blood-derived RNA and brain-derived RNA were both chosen for this study because they 

would be expected to produce a sizeable number of DE genes for analysis when comparing the 
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transcript levels of genes found in both tissues (Melé et al., 2015). To this end, four samples 

were created containing varying proportions of blood and brain RNA. The samples contained 

100% blood RNA/0% brain RNA (all-blood), 67% blood RNA/33% brain RNA (2/3-blood), 

33% blood/67% brain RNA (1/3-blood), and 0% blood RNA/100% brain RNA (all-brain). 

Differential expression comparisons between these samples could reasonably be expected to 

detect log2 fold changes of one, as when 2/3-blood RNA expression levels are compared to 1/3-

blood RNA, or more, as when all-blood RNA expression levels are compared to all-brain RNA 

for example.  

The four blood/brain samples were amplified using Affymetrix’s GeneChip® WT PLUS 

and using NuGEN’s Ovation® Pico WTA system V2. The cDNA produced from these two 

amplification methods was then hybridized onto Affymetrix HTA 2.0 microarray chips and 

evaluated to determine which amplification method produces the greatest number of DE genes 

for use in biomarker discovery studies. The data from the optimum amplification method was 

then compared to data produced from total RNA-seq analysis of the four blood/brain samples. 

This contrast was used to determine whether RNA-seq or microarrays identify the most DE 

genes useful for biomarker studies, as well as taking fold-change of DE genes, quality control, 

and cost into account in determining the ideal method to use in future studies. 

MATERIALS AND METHODS 
 
Sample preparation and processing 

Total RNA from both blood and brain were used in this study. A brain-derived RNA 

sample, FirstChoice® Human Brain Reference RNA (1 mg/mL; P/N AM6050), was purchased 

from Life Technologies™ for use in this study. To obtain blood-derived RNA, blood samples 

were voluntarily given by FAA employees with informed consent (IRB Protocol No. 10028) and 

samples were collected using PAXgene® blood RNA tubes (Fisher Scientific, P/N 23-021-01). 

Blood-derived RNA was extracted using a PAXgene® Blood RNA kit IVD (Qiagen/BD, P/N 

762164). The quality of purified blood RNA samples was evaluated by micro-capillary 

electrophoresis using RNA Nano Chips (Agilent Technologies©, P/N 5067-1521) on an Agilent 

2100 Bioanalyzer (Agilent, P/N G2939BA) and RNA concentrations from blood samples were 

determined at A260 using a NanoDrop™ 2000 (Thermo Scientific™; P/N ND-2000). Such 

quality measurements for brain RNA were taken from the manufacturer’s certificate of analysis 
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(lot number 105P055201A). Blood RNA samples from three individuals were then pooled, the 

concentrations were measured, divided into aliquots, and stored at -80oC. Three of the pooled 

blood-derived RNA aliquots were concentrated by speed-vac to reach desired concentration and 

combined with the brain-derived RNA in the following ratios: 100% blood / 0% brain (all-

blood), 67% blood / 33% brain (2/3-blood), 33% blood / 67% brain (1/3-blood), and 0% blood / 

100% brain (all-brain). The samples were prepared containing a total of 1500 ng in each sample. 

From these master samples, aliquots were made in duplicate for RNA-seq (500 ng total per 

blood/brain mixture), Affymetrix amplification (50 ng total per blood/brain mixture), and 

NuGEN amplification (50 ng total per blood/brain mixture). The samples were stored at -80oC.  

 

Microarray preparation and processing 

Affymetrix GeneChip® WT PLUS and NuGEN Ovation® Pico WTA system V2 kits 

utilize different amplification methods to produce cDNA for downstream hybridization and 

quantification, so it is possible that these varying methods could affect the quality of the data 

produced in DE comparisons. Affymetrix’s GeneChip® WT PLUS kit utilizes the Eberwine 

protocol to first produce cDNA from RNA samples, utilize that cDNA to produce amplified 

RNA by in vitro transcription, which in turn, is the substrate to synthesize cDNA for downstream 

analysis (Van Gelder et al., 1990). NuGEN’s Ovation® Pico WTA System V2 uses SPIA 

technology, an RNA/DNA chimeric mix of primers and reverse transcriptase to generate and 

amplify cDNA (NuGEN 2016).  

Affymetrix Poly-A RNA controls (GeneChip® WT PLUS Reagent Kit, P/N 703147) 

were added prior to amplification to aliquots for both Affymetrix and NuGEN kits. Samples for 

Affymetrix and NuGEN amplification each started with 50 ng of RNA in 2.5 µL of sample, an 

acceptable input RNA quantity for both kits. Amplification for both Affymetrix GeneChip® WT 

Plus and NuGEN Ovation® Pico WTA System V2 was performed according to manufacturer’s 

instructions. After amplification, sample quality was assessed using an Agilent 2100 Bioanalyzer 

and concentration was determined using a NanoDropTM 2000. The cDNA products of these 

methods were frozen at -20oC until needed for fragmentation and hybridization onto HTA 2.0 

microarray chips. In order to produce enough cDNA for hybridization, the NuGEN amplification 

had to be performed twice. Samples from the first NuGEN amplification and second 

amplification were mixed 50/50 by mass of RNA for hybridization. In order to reach required 
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quantities (ng) of RNA in specified volumes, combined samples were concentrated by speed-vac 

to 25 µL. Nuclease-free water was added as needed if sample volumes were less than 25 µL after 

drying. 

 For both amplification methods, the purified cDNA was fragmented, biotin labeled, and 

hybridized onto HTA 2.0 Affymetrix microarrays using Affymetrix’s GeneChip® Hybridization, 

Wash, and Stain Kit (P/N 900720). Samples were loaded onto microarrays and incubated for 18 

hours at 45oC rotating at 60 rpm, according to the manufacturer’s instructions. All microarrays 

were stained and washed using a GeneChip® fluidics station 450 (Affymetrix, P/N 00-0079) 

using protocol FS450-0001, in accordance with the kit manual from Affymetrix. Microarray 

expression intensities were then read using an Affymetrix 7G GeneChip® Scanner 3000 (P/N 

00-00212).  

 

Microarray data QC 

In R (R Core Team, 2018) using the oligo package (Carvalho & Irizarry, 2010), quality 

control assessment was performed on individual samples using fitProbeLevelModel() on each 

.cel file individually. It was also run on all Affymetrix-amplified samples pooled together as well 

as all NuGEN-amplified samples pooled together. Additional QC evaluation was performed 

using the R package arrayQualityMetrics (Kauffmann et al., 2009) and command 

arrayQualityMetrics() to evaluate the raw .cel data for Affymetrix-amplified samples and for 

NuGEN-amplified samples separately.  

 

Microarray data filtering 

 Primary data analysis for HTA 2.0 microarray expression data was performed in R using 

oligo and limma (Ritchie et al., 2015) packages. Bioconductor’s chip-based package, pd.hta.2.0 

(MacDonald, 2017) was used to read in and interpret HTA 2.0 chip information. Raw .cel files 

were normalized using the rma() command from the oligo package. Filtering was performed 

using kOverA(), genefilter(), and nsFilter() from the genefilter (Gentleman et al., 2017) package. 

Two methods of filtering were applied for both the NuGEN- and the Affymetrix- amplified 

arrays. The first filtering method was based on the normalized expression values of the HTA 2.0 

microarray’s antigenomic transcript clusters. Expression levels of the antigenomic transcript 

clusters should be indicative of background noise. For both NuGEN and Affymetrix 
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preparations, the quantiles of the antigenomic transcript clusters were determined and the 

normalized “core” datasets were filtered using limma to only retain transcript clusters in which at 

least one sample had a normalized expression value that was greater than or equal to the third 

quantile value of the antigenomic transcript clusters.  

 The second method of filtering transcript clusters utilized the median values for the 

normalized core transcript clusters. For both Affymetrix and NuGEN filtered samples, the 

normalized data set was sub-setted, removing any antigenomic or control transcript clusters, and 

quantile values for the core transcript clusters were determined. Both datasets were filtered to 

require that at least one sample had a normalized expression value equal to or greater than the 

median value of the core transcript clusters. Median filtering was performed because there were 

concerns about comparing transcript cluster results from data sets of notably different sizes, as 

was seen with antigenomic filtering, where the Affymetrix-amplified antigenomic filtered dataset 

is roughly half the size of the NuGEN amplified antigenomic filtered dataset.  

 

Microarray differential expression comparisons 

 Using the limma package in R, contrast matrices were constructed for all data sets to 

compare all-blood v. 2/3-blood, 2/3-blood v. 1/3-blood, 1/3-blood v. all-brain, and all-blood v. 

all-brain for each amplification and filtering method. The limma command model.matrix() was 

used to create a design matrix for each comparison, which was then adjusted using lmFit() to 

create a linear model fit for the data. The command makeContrasts() was used to carry out pair-

wise comparisons between sample concentrations. makeContrasts() results were fit using 

contrasts.fit() and eBayes(). Finally, topTable() performed a T-test comparing the expression 

levels at varying sample concentration to analyze for DE with significance. Total numbers of 

differentially expressed transcript clusters, based on adjusted p-value (Benjamini-Hochberg), 

were found using decideTests() and vennDiagrams(). Results of these t-tests represent the log2 

fold change difference between samples. Log2 fold changes, which were significantly different 

from each other, determined by adjusted p-values, were utilized for creating volcano plots. R was 

used to generate additional analyses including principal component analysis using prcomp() and 

violin plots (Wickham, 2016) of expression value ranges. 
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RNA-seq preparation 

Duplicate blood/brain-derived RNA mixtures containing 500 ng of RNA were analyzed 

by RNA-seq separately. For both sets of samples, library preparation was carried out using 

TruSeq Stranded Total RNA with Ribo-Zero Globin (Illumina 20020613) to remove globin and 

ribosomal RNA from the input RNA, shear the RNA, synthesize first- and second-strand cDNA, 

add indexed sequencing adaptors, and enrich the purified resulting fragments to produce the final 

dual-indexed library. The quantity of the resulting libraries was determined using the KAPA 

Library Quantitation kit. Dual indexed libraries were multiplexed and sequenced on a single high 

output NextSeq 500 flowcell (Illumina) to produce 150 base paired-end reads (2x150).  

 

RNA-seq data QC and processing 

 Initial QC was performed using fastQC (Andrews, 2010) on raw read files. Reads were 

trimmed using trimmomatic (Bolger et al., 2014) requiring paired ends, leading and trailing 

PHRED scores of at least 30, a minimum length of 100 bp, and using the flag “MAXINFO” to 

allow the program to automatically balance read length with sequence error rate. The provided 

adapter file “TruSeq3-PE-2.fa” was used and all other command line settings used with 

trimmomatic were done according to recommended settings. After trimming, all files were 

rechecked with fastQC to ensure high PHRED scores throughout reads and adapter removal from 

sample data. 

 Read alignment was done using the Rsubread package (Liao et al., 2013) in R using 

UCSC’s hg38 human genome assembly 

(rsync://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz, downloaded on 1 Jun. 

2018). Hg38 was used with Rsubread’s buildindex() to build the alignment index, which was 

then used to align all of the RNA-seq samples via the align() command, set to output BAM files 

allowing for 10 subreads extracted from each read with a consensus threshold for the forward 

and reverse reads of 3. The command align() was also set to allow a maximum of one mismatch 

and one indel. The minimum length for reads was set to 100 bp. Reads were aligned both with 

multi-mapping and without multi-mapping. After alignment, Rsubread’s featureCounts() (Liao et 

al., 2013) was used to generate count tables. The “hg38.fa.gz” annotation index was used with 

the command featureCounts(), with “useMetaFeatures=TRUE,” and designating that the sample 

is a paired-end sample but not requiring both ends to be mapped to include in the counts table. 
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Two sets of counts tables were generated, one with and one without multi-mapping of reads 

permitted.  

 
RNA-seq differential expression analysis 

 After generating feature count tables in R using Rsubread, limma and edgeR (Robinson et 

al., 2010), Bioconductor packages were used in R to detect significantly differentially expressed 

genes. Similar to the analysis done for microarray DE analysis, limma and edgeR were used to 

construct model.matrix() and normalized using calcNormFactors(). Dispersion was estimated 

and generalized linear modelling was performed using estimateGLMCommonDisp(), 

estimateGLMTrendedDisp(), estimateGLMTagwiseDisp(), and glmFit(). Contrast matrices were 

created using makeContrasts() to compare the expression levels of genes between the different 

blood/brain mixtures. Results were fit to a linear model using glmLRT() and log2 fold changes of 

blood/brain contrasts were extracted, along with false discovery rate (FDR) to indicate 

significance, using topTags(), producing counts of DE genes. Volcano plots were created using 

genes that were significant by FDR.  

 

Comparisons between microarray and RNA-seq differential expression 

After determining the optimum amplification and filtering method for microarrays, 

Affymetrix HTA 2.0 transcript cluster notations had to be converted to Entrez gene IDs to be 

comparable to RNA-seq results. The conversion between Affymetrix HTA 2.0 transcript cluster 

IDs to Entrez IDs was a multi-step process. First, “HTA-2_0-na36_hg19-transcript-csv” was 

downloaded on 4 June 2018 from the ThermoFisher/Affymetrix website. Using this file, a list of 

HTA 2.0 transcript cluster IDs with their corresponding Entrez ID was created. Problematically, 

some of the HTA 2.0 transcript cluster IDs were annotated to more than one Entrez ID and were 

removed from the list. Because microarray transcript clusters that annotated to multiple Entrez 

IDs had been discarded from further analyses, the decision was made to use the RNA-seq dataset 

without any multi-mapping reads included, to maintain parity of sample treatment between the 

two analysis methods. 

The list of HTA 2.0 transcript cluster IDs, which annotated to single Entrez IDs, was then 

used to add Entrez IDs to any transcript cluster IDs that matched in the datasets. Any transcript 

clusters that did not annotate to an Entrez ID were removed from the data sets. These new 
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microarray Entrez ID datasets had a further problem to resolve: Any individual transcript cluster 

ID that annotated to multiple Entrez IDs had been removed, but there were also multiple 

transcript cluster IDs that annotated to the same Entrez ID. Because each of these transcript 

clusters could be expected to map to different locations within the Entrez IDs’ gene region, it 

was determined to take the means across values for these transcript clusters and thereby merge 

all data into a single Entrez ID. This was considered to be equivalent to combining counts of 

different reads all falling within the same gene in RNA-seq.  

Normalized expression values from microarrays cannot be directly compared to 

normalized count values from RNA-seq; log2 fold changes, or what the MAQC consortium 

(MAQC; Shi et al., 2006) referred to as log ratio comparison, can be directly compared. Log2 

fold changes (LFC) from Entrez IDs common to both the optimum amplification and filtering 

method for microarrays and RNA-seq analysis without multi-mapping genes were collated 

together and compared. Principal components analysis was performed and violin plots were 

generated on the overlapping LFC dataset. Comparisons were also made using LFC without 

limiting datasets to only overlapping Entrez IDs. Violin plots comparing LFC were performed 

for datasets containing only significant DE changes by FDR/adjusted p-value and on a smaller 

biomarker subset, containing only significant DE changes by FDR/adjusted p-value and which 

had an LFC greater than |1.0|. Additionally, comparison of significant DE gene counts between 

RNA-seq and microarray datasets for each blood/brain mixture comparison were made. 

 

RESULTS 
The overall purpose of our study was to determine the most accurate, efficient, and 

economical method to collect DE data from RNA samples. Processing time required and data 

quality were two key factors to determine which methodology to be the optimum choice for our 

laboratory. Affymetrix-amplified samples were prepared first and produced adequate quality and 

quantities of cDNA to proceed to hybridization onto HTA 2.0 microarray chips. Overall, the 

Affymetrix GeneChip® WT PLUS amplification took roughly 16 hours of laboratory time, 

spread across 3 days, to complete, not including an overnight incubation between the first and 

second days of the amplification. This is similar to the estimates from the kit manual, which 

estimates 2 days of laboratory time to complete the procedure and prep samples to proceed to 

hybridization.  



11 
 

NuGEN’s Ovation® Pico WTA System V2 kit manual estimates the required laboratory time 

to complete amplification at roughly 5 hours, without the final bead purification step. In our 

laboratory, it required approximately 10 hours of laboratory work to complete, including the 

bead purification step. The quality of the amplified material produced was adequate, but the first 

amplification we performed using the NuGEN Ovation® Pico WTA System V2 amplification kit 

did not produce enough of each sample to proceed to hybridization and had to be repeated. Any 

time advantage from using the NuGEN amplification kit was negated by having to repeat the 

amplification. 

R was used to perform QC evaluation of the raw and normalized microarray expression data. 

In all instances, samples passed the “fitProbeLevelModel” QC test performed on the raw .cel 

files. Outliers were detected by MAplots on raw .cel files from the arrayQualityMetrics reports 

(Appendix 1:Supplementary Tables 1, 2) for two Affymetrix-amplified samples (2/3-blood A, 

1/3-blood A) and for three NuGEN-amplified samples (2/3-blood B, 1/3-blood A, all-brain B). 

No outliers were detected from boxplots or distances between arrays in arrayQualityMetrics 

reports. After normalization and log-transformation, however, no outliers were detected for 

Affymetrix-amplified or NuGEN-amplified samples (Appendix 1:Supplemetary Tables 3, 4). All 

samples were retained for analysis for two reasons. First, while raw .cel file expression values 

did produce outliers in one QC test, the technical replicates for each of these samples did not 

produce outliers, and no other QC metrics indicated outlier results. Second, when expression 

values were log transformed and normalized, none of the Affymetrix- or NuGEN- amplified 

samples produced any outliers.  

After normalization, datasets were filtered to remove non-informative transcript clusters 

by two different methods. Filtration was performed at the third quartile value for the 

“antigenomic” subset of each amplification method (Affymetrix amplified and NuGEN 

amplified) and at the “median” value of the “core” transcript clusters for each dataset. 

Antigenomic filtering required at least one sample to have a value of 6.0 or 3.7 for Affymetrix or 

NuGEN samples respectively. Median filtering required at least one sample to have a value of 

3.9 or 3.1 for Affymetrix or NuGEN samples respectively. Antigenomic filtering resulted in the 

retention of 17,389 of 70,523 transcript clusters for Affymetrix amplified samples and 34,101 of 

70,523 transcript clusters for NuGEN-amplified samples. After this filtering step, any remaining 

control transcript clusters were removed, resulting in final datasets containing 15,386 transcript 
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clusters from Affymetrix amplified antigenomic filtered samples and 31,862 transcript clusters 

from NuGEN amplified antigenomic filtered samples (Table 1). Median filtering was also 

performed on the normalized Affymetrix and NuGEN datasets and resulted in the retention of 

40,004 transcript clusters (30,519 discarded) from the Affymetrix amplification and 41,752 

transcript clusters (28,771 discarded) from the NuGEN amplification. Removal of any remaining 

control / antigenomic transcript clusters resulted in 37,696 transcript clusters remaining (2,308 

discarded) in the Affymetrix amplified dataset and 39,384 transcript clusters retained (2,368 

discarded) in the NuGEN amplified dataset (Table 1). 

 
Table 1. Microarray transcript clusters and filtering results by amplification and filtering method. 

Amplification 
Method 

Transcript 
Clusters 

Filtering 
Method 

Transcript 
Clusters 

after 
Filtering 

Transcript Clusters 
after Filtering and 

Removal of Controls 

Affymetrix 70,523 Antigenomic 17,389 15,386 
Affymetrix 70,523 Median 40,004 37,696 

 NuGEN 70,523 Antigenomic 34,101 31,862 
 NuGEN 70,523 Median 41,752 39,384 

 

Principal components analysis (PCA) of raw .cel expression values demonstrate a distinct 

separation between the two amplification methods along the first and second principal 

components, which accounted for 31.5% and 14.7% of variation respectively (Figure 1A). 

Improved results were seen with PCA after normalization, with preparation method separating 

principal component 1 (PC1) and sample composition separating the second component. 

Separation along PC1 from both raw and normalized data indicates that preparation method 

comprises the main variance component, also indicated by the number of filtered transcript 

clusters (Table 1). Principal component 2 (PC2) indicates that both sample preparation methods 

produce a general trend from all-blood through the 2/3-blood and 1/3-blood dilutions to the all-

brain samples and that the Affymetrix-prepared replicates are more consistent than the NuGEN-

prepared replicates (Figure 1B). PCA of Affymetrix-amplified samples only (Figure 1C) shows 

separation along PC1 roughly based on blood/brain concentration and accounts for 56.6% of the 

variation. Distribution of NuGEN-amplified samples in the PCA plot (Figure 1D) demonstrates 
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separation based on blood/brain concentration along both PC1 and PC2 axes, incorporating 

38.8% and 27.1% of the variation respectively. 

A 

B 
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Figure 1. 
A. PCA plot of raw .cel expression values from NuGEN and Affymetrix amplified blood/brain samples.
B. PCA plot of normalized Affymetrix-amplified and NuGEN-amplified blood/brain mixtures expression values.
C. PCA plot of normalized Affymetrix-amplified expression values for blood/brain mixtures after normalization.
D. PCA plot of normalized NuGEN-amplified expression values for blood/brain mixtures after normalization.

 Violin plots display normalized expression value ranges for Affymetrix and NuGEN 

amplified data sets for both antigenomic (Figure 2) and median (Figure 3) filtering. Affymetrix-

amplified samples demonstrate consistently higher normalized expression values for both 

antigenomic and median filtering methods. Differential expression was determined between 

blood/brain concentrations and the numbers of significant DE transcript clusters produced were 

C 

D 
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compared (Table 2). In all cases, Affymetrix amplification produced a greater number of 

significant DE transcript clusters than NuGEN amplification. Comparisons between antigenomic 

and median filtering demonstrate an important difference between transcript cluster filtering 

methods. For Affymetrix-amplified samples, the all-blood vs. 2/3-blood and the all-blood vs. all-

brain contrasts had more DE transcript clusters with median filtering, indicating that the more 

expansive median filtering method used was better suited for lower-expressing transcript 

clusters. The 2/3-blood vs. 1/3-blood and the 1/3-blood vs. all-brain contrasts resulted in more 

DE transcript clusters with antigenomic filtering. For the NuGEN-amplified samples, the 

antigenomic and median filtering produced similar results, with the exception of the 2/3 blood 

vs. 1/3 blood contrast.  

Figure 2. Affymetrix (A) and NuGEN (N) amplified antigenomic filtered dataset violin plot showing normalized 
expression value ranges. The middle line indicates the mean (50th percentile) value in the dataset. The lines above 
and below the middle are the 75th percentile and the 25th percentile for the dataset and the width indicates the 
proportion of observations at that percentile. 
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Figure 3. Affymetrix (A) and NuGEN (N) amplified median filtered dataset violin plot showing normalized expression 
value ranges. The middle line indicates the mean (50th percentile) value in the dataset. The lines above and below 
the middle are the 75th and 25th percentiles for the dataset and the width indicates the proportion of observations at 
that percentile. 

Table 2. Tissue comparisons list the number of DE transcript clusters (adjusted p-value <0.05) under varying 
amplification and filtering methodologies. Total number of transcript clusters for each amplification and filtering 
method listed in parentheses. 

Tissue 
Affymetrix 

Antigenomic 
(15,386) 

Affymetrix 
Median 
(37,696) 

NuGEN 
Antigenomic 

(31,862) 

NuGEN 
Median 
(39,384) 

all-blood v. 2/3-blood 8,080 16,989 3,103 3,088 
2/3-blood v. 1/3-blood 3,933 3,427 0 0 
1/3-blood v. all-brain 2,427 2,118 207 198 
all-blood v. all-brain 11,685 25,640 10,031 10,882 

In this study, the 2/3-blood vs. 1/3-blood contrast was considered the most stringent test 

of differential gene expression. Affymetrix amplification produced over 3,400 DE transcript 

clusters for each filtering method, while NuGEN detected no significant DE transcript clusters 

for this comparison from either antigenomic or median filtering (Table 2). Additionally, 

Affymetrix amplified samples also tended to produce greater LFC differences than NuGEN 

amplified samples (Table 3). This trend is repeated when comparing antigenomic filtered 

datasets, even though Affymetrix amplified samples were reduced to roughly half the number of 
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transcript clusters as NuGEN amplified samples (15,386 vs. 31,862 respectively). Volcano plots 

also demonstrate Affymetrix amplified samples produce many more significant DE transcript 

clusters than when using NuGEN amplification methods (Figures 4 and 5) regardless of the 

filtering method used. 

Table 3. Comparison of LFC ranges between differing blood/brain concentrations. All transcript clusters (TC) in this 
count are significant by adjusted p-value (< 0.05).  

Amplification 
& Filtering 

Method 

Tissue 
Comparison 

< -
2.0 

LFC 

-1.0 to
-2.0
LFC

-0.5 to
-1.0
LFC

0.5 to 
1.0 

LFC 

1.0 to 
2.0 
LFC 

> 2.0
LFC

Affymetrix 
Antigenomic 
(15,386 TC) 

all-blood v. 
2/3-blood 587 931 1,199 1,995 56 0 

Affymetrix 
Antigenomic 
(15,386 TC) 

2/3-blood v. 
1/3 blood 0 4 744 1,324 103 0 

Affymetrix 
Antigenomic 
(15,386 TC) 

1/3-blood v. 
all-brain 0 1 42 757 604 183 

Affymetrix 
Antigenomic 
(15,386 TC) 

all-blood v. 
all-brain 1,179 1,542 1,472 2,203 1,533 1,067 

NuGEN 
Antigenomic 
(31,862 TC) 

all-blood v. 
2/3-blood 509 1,000 648 689 252 5 

NuGEN 
Antigenomic 
(31,862 TC) 

2/3-blood v. 
1/3 blood 0 0 0 0 0 0 

NuGEN 
Antigenomic 
(31,862 TC) 

1/3-blood v. 
all-brain 0 2 0 3 98 104 

NuGEN 
Antigenomic 
(31,862 TC) 

all-blood v. 
all-brain 910 1,751 1,781 2,100 2,305 935 

Affymetrix 
Median 

(37,696 TC) 

all-blood v. 
2/3-blood 597 1,100 1,753 4,567 173 20 
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Affymetrix 
Median 

(37,696 TC) 

2/3-blood v. 
1/3 blood 0 12 684 1,546 109 0 

Affymetrix 
Median 

(37,696 TC) 

1/3-blood v. 
all-brain 0 2 61 872 635 183 

Affymetrix 
Median 

(37,696 TC) 

all-blood v. 
all-brain 1,299 2,276 2,662 6,770 2,608 1,268 

NuGEN 
Median 

(39,384 TC) 

all-blood v. 
2/3-blood 

509 1,002 659 661 252 5 

NuGEN 
Median 

(39,384 TC) 

2/3-blood v. 
1/3 blood 

0 0 0 0 0 0 

NuGEN 
Median 

(39,384 TC) 

1/3-blood v. 
all-brain 

0 2 0 2 91 103 

NuGEN 
Median 

(39,384 TC) 

all-blood v. 
all-brain 

910 1,838 2,007 2,498 2,446 935 
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Figure 4. Log fold changes are shown for Affymetrix-amplfied and NuGEN-amplified antigenomic filtered samples. 
The numbers list on each graph, from left to right, are the number comparisons with a LFC < -2, LFC between -2 and 
-1, LFC between -0.5 and -1, LFC between 0.5 and 1.0, LFC between 1 and 2, and LFC > 2. Dotted lines show the
cutoff for LFC > |2.0|. Dashed lines show the cutoff for LFC < |1.0|. Solid lines show the cutoff for LFC < |0.5|. A
volcano plot is not presented for 2/3-blood vs. 1/3-blood NuGEN because no DE genes were detected in this
comparison.
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Figure 5. Log fold changes are shown for Affymetrix-amplfied and NuGEN-amplified median filtered samples. The 
numbers list on each graph, from left to right, are the number comparisons with a LFC < -2, LFC between -2 and -1, 
LFC between -0.5 and -1, LFC between 0.5 and 1.0, LFC between 1 and 2, and LFC > 2. Dotted lines show the cutoff 
for LFC > |2.0|. Dashed lines show the cutoff for LFC < |1.0|. Solid lines show the cutoff for LFC < |0.5|. A volcano 
plot is not presented for 2/3-blood vs. 1/3-blood NuGEN because no DE genes were detected in this comparison.  

The performance of Affymetrix and NuGEN amplified and filtered data subsets for 

biomarker discovery was also examined, limited to transcript clusters with a statistically 

significant (adjusted p-value < 0.05) expression level difference between different concentrations 

and with a log-fold change greater than |1.0|. Table 4 lists the number of DE biomarker 

candidates from each amplification and filtration method subset. The results of the Affymetrix 

and NuGEN amplification comparison are somewhat mixed. NuGEN still produces no DE 

transcript clusters for the 2/3-blood v. 1/3-blood comparison. However, NuGEN antigenomic and 
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median both produce more DE transcript clusters than Affymetrix antigenomic for the all-blood 

v. 2/3-blood comparison and the NuGEN median subset produces more DE transcript clusters

than the Affymetrix antigenomic subset for the all-blood v. all-brain comparison. Affymetrix-

amplified samples produce more DE transcript clusters at the 1/3-blood v. all-brain comparison

for both filtration methods. Volcano plots of the biomarker subsets (Figures 6 and 7) also

demonstrate the differences between Affymetrix-amplified and NuGEN-amplified samples.

Generally, the numbers of DE transcript clusters between the two filtration methods are similar,

despite the different sizes of datasets after filtration. Affymetrix-amplified samples were chosen

for further analysis because they were able to detect differentially expressed transcript clusters at

all-blood/brain contrasts and, for most of the comparisons performed, Affymetrix amplification

produced more DE transcript clusters than NuGEN amplification.

Table 4. Numbers of transcript clusters (TC) that could be considered to be potential biomarkers reported above. All 
reported transcript clusters have an LFC greater than |1.0| and an adjusted p-value of 0.05 or less. 

Tissue Affymetrix 
Antigenomic 

Affymetrix 
Median 

NuGEN 
Antigenomic 

NuGEN 
Median 

all-blood v. 2/3-blood 1,574 1,890 1,766 1,768 
2/3-blood v. 1/3-blood 107 121 0 0 
1/3-blood v. all-brain 788 820 204 196 
all-blood v. all-brain 5,321 7,451 196 6,129 
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Figure 6. Log fold changes are shown for the biomarker subset of Affymetrix-amplfied and NuGEN-amplified 
antigenomic filtered samples. All samples have an adjusted p-value of < 0.05 and a LFC > |1.0|. The numbers list on 
each graph, from left to right, are the number comparisons with a LFC < -2, LFC between -2 and -1, LFC between 1 
and 2, and LFC > 2. Dashed lines show the cutoff for LFC > |2.0|. Solid lines show the cutoff for LFC < |1.0|. A 
volcano plot is not presented for 2/3-blood vs. 1/3-blood NuGEN because no DE genes were detected in this 
comparison.  
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Figure 7. Log fold changes are shown for the biomarker subset of Affymetrix-amplfied and NuGEN-amplified median 
filtered samples. All samples have an adjusted p-value of < 0.05 and a LFC > |1.0|. The numbers list on each graph, 
from left to right, are the number comparisons with a LFC < -2, LFC between -2 and -1, LFC between 1 and 2, and 
LFC > 2. Dashed lines show the cutoff for LFC > |2.0|. Solid lines show the cutoff for LFC < |1.0|. A volcano plot is not 
presented for 2/3-blood vs. 1/3-blood NuGEN because no DE genes were detected in this comparison.  
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The effectiveness of antigenomic and median filtering methods on Affymetrix sample 

data were also compared for biomarker detection. When looking at counts of differentially 

expressed transcript clusters (Table 2), antigenomic filtering produces more DE transcript 

clusters than median filtering at the 2/3-blood v. 1/3-blood and the 1/3-blood v. all-brain 

concentrations. Median filtering produced more DE transcript clusters for the all-blood v. 2/3-

blood and the all-blood v. all-brain contrasts. Table 4 shows that, for the biomarker subsets, 

median filtering does produce greater numbers of DE transcript clusters for all-blood/brain 

contrasts, but that for the most sensitive contrast, 2/3-blood v. 1/3-blood, and also for 1/3-blood 

v. all-brain, the numbers of DE transcript clusters are very similar. There is considerable overlap

between the antigenomic and median filtered biomarker subsets (Table 5). Only one contrast,

median all-blood v. all-brain, had less than a 96% overlap with the other filtration method due to

the increased number of transcript clusters considered in the median-filtered data set. Table 6

notes the LFC ranges for the biomarker subsets for both filtration methods. The numbers of DE

transcript clusters at each LFC range were similar for the 2/3-blood v. 1/3-blood and 1/3-blood v.

all-brain comparisons. Median filtering did produce notably more biomarker candidate DE

transcript clusters than antigenomic filtration for the all-blood v. 2/3-blood and all-blood v. all-

brain comparisons. Therefore, in this study, median filtering of Affymetrix amplified samples

will be used for comparison to RNA-seq data.

Table 5. The above table lists the percentage of transcript clusters in each biomarker subset (Affymetrix antigenomic 
or Affymetrix median) that is also found in the other biomarker subset. 

Tissue Contrast 

Percentage of Affymetrix 
antigenomic transcript 
clusters also found in 

Affymetrix median 
subset 

Percentage of Affymetrix 
median transcript 

clustes also found in 
Affymetrix antigenomic 

subset 
all-blood v. 2/3-blood 100.00% 96.84% 
2/3-blood v. 1/3-blood 99.95% 99.81% 
1/3-blood v. all-brain 99.91% 99.59% 
all-blood v. all-brain 100.00% 78.69% 

Table 6. LFC ranges for Affymetrix antigenomic and median biomarker subsets, in which adjusted p-value < 0.05 and 
LFC > |1|. 

Filtering 
Method Tissue Contrast < -2

LFC
< -1, > -
2 LFC

> 1, <
2 LFC

> 2
LFC Total 

Antigenomic all-blood v. 2/3-blood 587 931 56 0 1,574 
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Antigenomic 2/3-blood v. 1/3-blood 0 4 103 0 107 
Antigenomic 1/3-blood v. all-brain 0 1 604 183 788 
Antigenomic all-blood v. all-brain 1,179 1,542 1,533 1,067 5,321 

Median all-blood v. 2/3-blood 597 1,100 173 20 1,890 
Median 2/3-blood v. 1/3-blood 0 12 109 0 121 
Median 1/3-blood v. all-brain 0 2 635 183 820 
Median all-blood v. all-brain 1,299 2,276 2,608 1,268 7.451 

Total RNA-seq produced between 55.3 and 88.4 million reads for the blood/brain 

samples, as shown in Table 7. Initial quality control was performed using fastQC and did 

demonstrate the need to trim reads for quality. After using trimmomatic, the number of reads 

ranged from 40.3 to 76.3 million and fastQC was run again to verify the results of trimming. 

Reads were found to have adapters removed and have median PHRED scores of 30 or greater 

across all reads. Reads were then mapped to the human genome (hg38), resulting in the retention 

of between 34.3 and 72.5 million reads (85.2% to 89.5%). Mapping to annotated genes (hg38) 

resulted in a decline in the number of reads being retained, with between 13.7 and 36.9 million 

reads being annotated within annotated features of the hg38 genome. Finally, numbers of reads 

were totaled by Entrez ID using featureCounts (RSubread) and resulted in 17,979 Entrez IDs 

without multi-mapping and 18,374 Entrez IDs with multi-mapping (Table 7). 

Table 7. Read counts for raw RNA-seq data, after trimming, mapping, annotation, and featureCount totals per Entrez 
ID. 

all-
blood 

A 

2/3-
blood 
A 

1/3-
blood 

A 

all-
brain 

A 

all-
blood 

B 

2/3-
blood 

B 

1/3-
blood 

B 

all-
blood 

B 
Raw Reads 56.3 M 59.7 M 59.0 M 55.3 M 88.4 M 87.3 M 73.7 M 78.9 M 
Reads after 

trimming 40.3 M 43.0 M 44.4 M 40.5 M 76.3 M 74.1 M 62.6 M 67.1 M 

Reads mapped (no 
multi-mapping 34.3 M 37.0 M 38.6 M 34.5 M 67.2 M 65.7 M 55.4 M 60.1 M 

% Reads mapped 
(no multi-mapping) 85.2% 85.9% 86.8% 85.3% 88.1% 88.6% 88.5% 89.5% 

Reads mapped 
(with multi-
mapping) 

37.7 M 40.7 M 42.2 M 37.9 M 72.5 M 70.7 M 60.0 M 64.3 M 
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% Reads mapped 
(with multi-
mapping) 

93.5% 94.7% 94.9% 93.6% 95.1% 95.3% 95.3% 95.8% 

Reads uniquely 
mapped (both) 34.3 M 37.0 M 38.6 M 34.5 M 67.2 M 65.7 M 55.4 M 60.1 M 

Reads multi-
mapped (no multi-

mapping) 
0 0 0 0 0 0 0 0 

Reads multi-
mapped (with 

multi-mapping) 
3.3 M 3.8 M 3.6 M 3.3 M 5.4 M 5.0 M 4.3 M 4.3 M 

Reads not mapped 
(no multi-mapping) 6.0 M 6.1 M 5.9 M 6.0 M 9.1 M 8.4 M 7.2 M 7.1 M 

Reads no mapped 
(with multi-
mapping) 

2.6 M 2.3 M 2.3 M 2.6 M 3.7 M 3.5 M 2.9 M 2.8 M 

Assigned 
fragments (no 

multi-mapping) 
13.7 M 17.7 M 20.5 M 20.0 M 27.2 M 31.3 M 29.8 M 34.8 M 

% Assigned 
fragments 34.0% 41.1% 46.0% 49.5% 35.6% 42.2% 47.7% 51.9% 

Assigned 
fragments (with 
multi-mapping) 

14.9 M 19.1 M 21.8 M 21.4 M 29.3 M 33.4 M 31.7 M 36.9 M 

% Assigned 
fragments (with 
multi-mapping) 

36.9% 44.3% 49.0% 52.9% 38.4% 45.1% 50.7% 54.9% 

Entrez IDs with 
fragments 

assigned (both) 
28,395 28,395 28,395 28,395 28,395 28,395 28,395 28,395 

Entrez IDs after 
normalization (no 
multi-mapping) 

17,979 17,979 17,979 17,979 17,979 17,979 17,979 17,979 

Entrez IDs after 
normalization (with 

multi-mapping) 
18,374 18,374 18,374 18,374 18,374 18,374 18,374 18,374 

In order to directly compare the results of microarray to RNA-seq methodology, 

Affymetrix HTA 2.0 transcript cluster IDs needed to be converted to Entrez IDs, which were 
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used in RNA-seq annotation. The Affymetrix median filtered dataset started with 37,698 

transcript clusters. After converting these to Entrez IDs, we were left with 18,385 microarray 

Entrez IDs. There are multiple reasons why the number of Entrez IDs for the microarrays is so 

much smaller than the number of Affymetrix transcript cluster IDs. Roughly one-third of the 

Affymetrix transcript cluster IDs did not annotate to any Entrez ID and were excluded. There 

were also a large number of Affymetrix transcript cluster IDs that annotated to more than one 

Entrez ID for an individual transcript cluster and were also excluded. Similarly, any RNA-seq 

reads that annotated to more than one location in the genome were similarly excluded (no multi-

mapping). Lastly, there were a number of different Affymetrix transcript cluster IDs that 

annotated to a single Entrez ID. In this case, the mean of LFC across these transcript clusters was 

taken so that a single value could be used. By using the Affymetrix median data set, after 

conversion to Entrez IDs, we were left with a data set with 18,385 Entrez IDs, which was similar 

in size to the RNA-seq dataset with 17,979 Entrez IDs. In comparison, the Affymetrix 

antigenomic filtered dataset, after conversion to Entrez IDs, contained only 8,963 Entrez IDs. 

Statistically speaking, the normalized log2 expression values between the Affymetrix 

median dataset and the RNA-seq data set should not be compared directly, but their LFC can be 

compared (MAQC; Shi et al., 2006). To compare LFC, an overlapping subset of Entrez IDs from 

the non-multimapping RNA-seq dataset and the Affymetrix-amplified median filtered dataset 

was found. There were 14,552 Entrez IDs common to both datasets. This combined dataset was 

used to perform a principal components analysis (Figure 8), which indicates clear differences 

within and between microarray and RNA-seq data. The overlap of the two datasets was also used 

to explore the range of LFC observed in the RNA-seq and Affymetrix median datasets through 

violin plots (Figure 9). RNA-seq demonstrates notably greater LFC ranges than the Affymetrix 

median microarray dataset in each comparison.  
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Figure 8. PCA plot of RNA-seq and Affymetrix-amplified median filtered LFC for entrez ID’s common to both 

datasets. 

Figure 9. Violin plot of LFC ranges for entrez IDs common to both RNA-seq® and Affymetrix-amplified median(A) 
filtered datasets. The middle line indicates the mean (50th percentile) value in the dataset. The lines above and below 
the middle are the 75th percentile and the 25th percentile for the dataset and the width indicates the proportion of 
observations at that percentile. 

Log2 fold change datasets not limited to overlapping Entrez IDs were also compared and 

demonstrated the same trend. Violin plots (Figure 10) of the significant transcript clusters/Entrez 

IDs (adjusted p-value or FDR <0.05) continue to indicate that the RNA-seq dataset displays a 
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greater LFC range than the Affymetrix median datasets. Finally, a violin plot of the biomarker 

subset, containing only those transcript clusters/Entrez IDs that are significant (adjusted p-value 

or FDR <0.05) and have an LFC > |1|, display the differences in LFC ranges observed (Figure 

11). Volcano plots of the biomarker subsets are shown in Figure 12. Transcript cluster/Entrez ID 

counts of LFC ranges are shown in Table 8. All indicate that RNA-seq identifies more DE genes 

and more LFC greater than |2.0| in comparison to the Affymetrix-amplified median filtered 

dataset. 

Figure 10. Violin plot of LFC ranges for RNA-seq(R) and Affymetrix-amplified median(A) filtered datasets. Datasets 
are limited to transcript clusters/entrez IDs which were significant by adjusted p-value < 0.05. The middle line 
indicates the mean (50th percentile) value in the dataset. The lines above and below the middle are the 75th percentile 
and the 25th percentile for the dataset and the width indicates the proportion of observations at that percentile. 
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Figure 11. Violin plot of LFC ranges for RNA-seq(R) and Affymetrix-amplified median(A) filtered data subsets. Data 
subsets are limited to transcript clusters/entrez IDs which have a LFC > |1.)| and an adjusted p-value < 0.05. The 
middle line indicates the mean (50th percentile) value in the dataset. The lines above and below the middle are the 
75th percentile and the 25th percentile for the dataset and the width indicates the proportion of observations at that 
percentile. 
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Figure 12. Log fold changes are shown for the biomarker subset of RNA-seq and Affymetrix-amplfied median filtered 
samples. All samples have an FDR/adjusted p-value of < 0.05 and a LFC > |1.0|. The numbers list on each graph, 
from left to right, are the number comparisons with a LFC < -2, LFC between -2 and -1, LFC between 1 and 2, and 
LFC > 2. Dashed lines show the cutoff for LFC > |2.0|. Solid lines show the cutoff for LFC < |1.0|.  
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Table 8. LFC ranges for Affymetrix median and RNA-seq biomarker subsets, in which adjusted p-value/FDR < 0.05 
and LFC > |1|. 

Sample Preparation 
Method Tissue Comparison < -2.0 

LFC 

-1.0 
to -
2.0 
LFC 

1.0 
to 
2.0 
LFC 

> 2.0 
LFC Total 

RNA-seq all-blood v. 2/3-blood 3,124 1,415 1,653 23 6,215 
RNA-seq 2/3-blood v. 1/3-blood 2 46 1,247 58 1,353 
RNA-seq 1/3-blood v. all-brain 3 1 680 1,088 1,772 
RNA-seq all-blood v. all-brain 3,965 1,840 2,033 2,890 10,728 

Affymetrix amplified, 
median filtered all-blood v. 2/3-blood 597 1,100 173 20 1,890 

Affymetrix amplified, 
median filtered 2/3-blood v. 1/3-blood 0 12 109 0 121 

Affymetrix amplified, 
median filtered 1/3-blood v. all-brain 0 2 635 183 820 

Affymetrix amplified, 
median filtered all-blood v. all-brain 1,299 2,276 2,608 1,268 7,451 

 

 Cost and processing time were also considerations in determining which methodology to 

use in processing and analyzing samples. When comparing the Affymetrix GeneChip® WT Plus 

amplification kit to the NuGEN Ovation® Pico WTA System V2 amplification kit, it was 

initially expected, based on the kit manuals, for the NuGEN amplification to be the more rapid of 

the two; however, the total preparation time of each method was largely equivalent. Because the 

NuGEN amplification had to be repeated, the actual costs to use NuGEN in this instance were 

even higher and no time was saved. Table 9 lists the costs associated with Affymetrix and 

NuGEN amplification. NuGEN amplification has a significantly higher cost, roughly 2.5 times 

that of the Affymetrix kit per sample. 

 In order to perform the microarray hybridization, an additional one and a half laboratory 

days were needed. The cost of the hybridization was $3,500.00 for ten samples (Table 9). To 

compare to the costs for RNA-seq processing, an average was taken from multiple RNA-seq 

processing facilities in the U. S., with similar requirements to those used for our sample and 

found an average of $6,400 to process ten RNA-seq samples under the same conditions used in 

this study. In comparison, to perform Affymetrix amplification and microarray hybridization, the 

cost would be around $4,500 and an additional three and a half workdays in the laboratory. 
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Table 9. Associated costs for amplification methods and hybridization used as well as an average estimate of RNA-
seq processing costs. 

Amplification Item Reference 
# 

Kit 
Quantity Cost Total per 

method: 

Affymetrix GeneChip ® WT Plust 
Reagent Kit 902280 10 

reactions $1014.00 $1014.00 

NuGEN Eukaryotic Poly A RNA 900433 100 
reactions $306.00  

NuGEN Ovation Pico ® WTA 
System V2 3302-12 12 

reactions $1038.40  

NuGEN Encore Biotin Module 4200-12 12 
reactions $692.00  

NuGEN Genechip ® Oligo B   $295.00  

NuGEN Beckman Agencourt 
RNAClean XP Beads 41105518  $700.00 $3031.40 

Microarray 
Hybridization 

GeneChip Hybridization, 
Wash, and Stain Kit 900720 30 

reactions $528.00  

Microarray 
Hybridization 

GeneChip HTA 2.0 
Array, 10 pk 902309 10 

arrays $2950.00 $3478.00 

Total cost for Affymetrix amplification and hybridization of 10 samples $4492.00 
Total cost for NuGEN amplification (2 kits) and hybridization of 10 samples $9540.80 
RNA-seq estimate Lab A $4950.00  
RNA-seq estimate Lab B $6520.50  
RNA-seq estimate Lab C $6832.00  
RNA-seq estimate Lab D $7665.00  
RNA-seq estimate Lab E $6224.25 $6438.35 

(average 
for 10 
samples 

 

DISCUSSION  
 The first goal of this study was to determine which amplification method, Affymetrix 

GeneChip® WT Plus or NuGEN Ovation® Pico WTA System V2, produced greater numbers of 

DE genes for biomarker detection using microarrays. PCA plots were expected to show technical 

replicates plotted near each other and with a distribution of samples based on their 

concentrations. The expected observation was to see all-blood plotted near 2/3-blood, 2/3-blood 

near 1/3-blood, and 1/3-blood near all-brain. Distinct separation between kits was not expected 

on PCA plots. When raw .cel expression values were evaluated using principal component 

analysis, differences between the two amplification kits were apparent (Figure 1A). Variations 

from the expected pattern were observed in the plotting of technical replicates and in sample 
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concentrations. Additionally, Affymetrix-amplified samples and NuGEN-amplified samples 

demonstrated obvious separation along both PC1 and PC2. After normalization, the separation of 

samples based on amplification kit accounts for a greater proportion of the variation observed 

(Figure 1A, B). Separation based on kit was observed with raw .cel file expression values on 

both PC1 and PC2 axes, accounting for 31.5% and 14.7% of the variation respectively (Figure 

1A). After normalization, separation based on amplification kit was demonstrated on PC1 and 

accounts for 69.5% of the variation (Figure 1B). While it is expected that there should be 

separation of samples based on blood/brain concentrations, it was not expected, after 

normalization, to see such obvious differences in expression from identical samples amplified by 

different kits. 

When plotted separately, Affymetrix-amplified samples (Figure 1C) show the expected 

distribution of samples across PC1, accounting for 56.6% of the observed variation. NuGEN-

amplified samples (Figure 1D) do not adhere as clearly to the expected pattern of distribution 

between samples, where the expected sequence would be all-blood next to 2/3-blood, 2/3-blood 

next to 1/3-blood, and 1/3-blood next to all-brain. PC1 accounts for 38.8% of the variation for 

NuGEN-amplified samples. In Figure 1D, the all-brain samples and the 2/3-blood samples align 

diagonally, along both the PC1 and PC2 axes, rather than only along the PC1 axis as expected, 

nor do the 2/3-blood and 1/3-blood samples fall between the all-blood and the all-brain as 

expected. Comparing Figure 1C to 1D, Affymetrix-amplified samples demonstrate a greater 

consistency than NuGEN-amplified samples for plotting of technical replicates and for 

distribution of samples based on blood/brain concentration. 

 Commonly, microarray datasets are filtered for the purpose of removing transcript 

clusters with normalized expression values similar to dataset background noise. Ha et al. (2009) 

suggest removing any transcript clusters with a normalized log2 expression value less than 5.0. 

Quackenbush (2002) states that statistical power is improved in DE detection when datasets are 

filtered at two standard deviations above the dataset background mean. Affymetrix HTA 2.0 

microarrays include a small group of antigenomic transcript clusters that are useful in 

determining the background for a microarray dataset. For our datasets, the mean value for the 

Affymetrix amplified antigenomic transcript clusters was 4.047 and the upper and lower values 

for two standard deviations from the mean were 3.630 and 4.465. The mean value for the 

NuGEN amplified antigenomic transcript clusters was 2.725 and two standard deviations away 
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from the mean were 2.475 and 2.975. The Affymetrix median filtering value of 3.9 did come 

close to the upper value, 4.465, of two standard deviations from the Affymetrix antigenomic 

mean and did indeed become the method of filtering that was chosen. The antigenomic third 

quartile value used for the Affymetrix-amplified samples, at 6.0, was considerably higher and 

may have been too selective for detecting DE, as it produced lower numbers of DE transcript 

clusters. Both values chosen to filter the NuGEN-derived data, 3.1 for median filtering and 3.7 

for antigenomic filtering, were higher than two standard deviations above the NuGEN 

antigenomic mean. Neither was able to improve detection of DE transcript clusters for further 

analysis. For this study, median filtering was chosen as the optimum method to be used for DE, 

but, as was demonstrated by both datasets, it is worthwhile to also look at the values for two 

standard deviations above the mean for further guidance in selection of a filtering threshold. 

Volcano plots (Figure 4 & 5) of LFC from both filtering methods demonstrated that the 

Affymetrix GeneChip® WT Plus amplification system clearly produced more differentially 

expressed transcript clusters than the NuGEN Ovation® Pico WTA System V2 with Affymetrix 

HTA 2.0 microarrays. Affymetrix amplification also produces a greater range of expression 

values than NuGEN amplification for both filtering methods, as shown in violin plots (Figure 2 

& 3). Counts of differentially expressed genes (Table 2) and their fold change ranges (Table 3) 

also indicate that Affymetrix amplification outperforms NuGEN amplification when used with 

HTA 2.0 microarrays for DE detection. In this analysis, the most stringent test of DE would be 

the 2/3-blood vs. 1/3-blood contrast, as the log2 fold change is expected to be |1.0|. The NuGEN 

amplification system produced no significant differentially expressed transcript clusters in this 

contrast. For the other contrasts, all-blood v. all-brain, all-blood v. 2/3-blood, and 1/3-blood v. 

all-brain, Affymetrix consistently outperformed NuGEN’s amplification method for detection of 

DE transcript clusters. These results indicated that Affymetrix amplification was optimum for 

use in DE detection with HTA 2.0 microarrays. When considering only those transcript clusters 

with an adjusted p-value of less than 0.05 and removing any transcript clusters that did not have 

a LFC of at least |1.0| (biomarker subset), we saw the same pattern repeated, where Affymetrix 

amplification consistently produced greater numbers of DE transcript clusters (Table 4) and a 

greater LFC range (Table 6). Median filtering was selected over antigenomic filtering for 

Affymetrix-amplified samples for multiple reasons. While median filtering did not always 

produce more DE transcript clusters than antigenomic filtering for the whole dataset (Table 2), 
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median filtering did produce more DE transcript clusters for the biomarker subset (Table 4), 

where only those transcript clusters with an adjusted p-value < 0.05 and LFC > |1.0| were 

considered. Nearly all (99.9% or more) of the transcript clusters in the antigenomic filtered 

dataset were also in the median filtered dataset, so little would be lost by utilizing the median 

filtered dataset. If the antigenomic filtered dataset was used, some transcript clusters would be 

lost, mainly from the all-brain v. all-blood comparison (Table 5). Lastly, median filtering 

produced an equal number or more DE transcript clusters with LFC greater than |1.0| in all 

contrasts tested (Table 6). 

 The second goal of this study was to compare DE detection between microarray datasets 

and RNA-seq datasets. The PCA performed on LFC for Entrez IDs common to RNA-seq and the 

Affymetrix median datasets indicate differences between microarray and RNA-seq processing 

(Figure 8). The RNA-seq samples are aligned based on concentration along PC1, with little 

variation along PC2, demonstrating that differences within the RNA-seq dataset derive mainly 

from concentration variations, as would be expected. The Affymetrix median dataset aligns 

along both the PC1 and PC2 axes. There is separation based on concentration, as would be 

expected, but it is unclear why the microarray samples would demonstrate separation along both 

axes. It is possible that there are other factors affecting the microarray dataset that are not 

affecting the RNA-seq dataset. PC1 accounts for 65.8% of the variation and PC2 accounts for 

16.1% of the variation. It is not known if the additional variation observed from the microarray 

dataset is affecting data quality. Violin plots of the overlapping Entrez IDs common to both 

RNA-seq and Affymetrix median microarrays consistently demonstrate a greater LFC range for 

RNA-seq as compared to microarray data, which would enable researchers to better detect 

differential expression (Figure 10).  

When comparing between the full RNA-seq and the Affymetrix-amplified median 

filtered datasets, RNA-seq consistently demonstrated advantages over microarrays in DE 

detection. RNA-seq produced greater counts of DE Entrez IDs (Table 8) within the restrictive 

biomarker candidate subset, where only significant Entrez IDs/transcript cluster IDs with an 

FDR/adjusted p-value less than 0.05 and an LFC of greater than |1.0| are considered. Comparison 

of the Affymetrix-amplified median filtered dataset to the RNA-seq dataset also clearly 

demonstrated another advantage in biomarker detection. Greater LFC ranges in DE RNA-seq 

Entrez IDs were observed (Table 8). In the 2/3-blood v. 1/3-blood comparison, RNA-seq 
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produces a total of 1,353 significant and DE Entrez IDs with LFC > |1.0| or more. The 

Affymetrix median dataset, in the same comparison, only produced 121 significant and DE 

transcript cluster IDs, none of which had an LFC greater than |2.0|. Volcano plots (Figure 12) 

and count tables (Table 8) also clearly show the RNA-seq biomarker subset produced far more 

Entrez IDs with LFC > |2.0| than the Affymetrix median biomarker subset, enabling clearer 

biomarker detection. 

The work presented by Wang et al. (2009) correlates with the improvement in sensitivity 

of DE genes detected by RNA-seq over the optimum microarray methodology determined by our 

study. Wang et al. 2009 found concordance between microarray and RNA-seq results for 

moderately expressed genes but found RNA-seq to have greater sensitivity for high and low 

expressed genes as compared to microarrays. RNA-seq is capable of sequencing the entire 

transcriptome from a sample, including unknown transcripts, depending on the depth of 

sequencing used (Kukurba & Montgomery, 2015). For microarrays to detect and quantify a gene, 

the gene must be known and a probe for it must be present on the microarray, although with 

well-characterized species, this is a less significant detraction. The improvement in sensitivity is 

still obvious when comparing RNA-seq to microarray results for our study using human blood 

and brain RNA. 

CONCLUSION 
Affymetrix’s GeneChip® WT PLUS outperformed NuGEN’s Ovation® Pico WTA 

system V2 for RNA amplification in data quality and cost. The time required to perform both 

amplifications was roughly equivalent as well. For microarray data filtering, in this instance, it 

was determined that median filtering provided the greatest sensitivity in differential expression 

detection for Affymetrix-amplified data, but the NuGEN-amplified dataset does indicate that 

median filtering may not always prove successful and should be compared with other means of 

data filtering to ensure optimum results. Total RNA-seq also provided a higher quality of results 

for differential expression detection, as evidenced by wider log fold change ranges and increased 

numbers of DE genes detected. While there was a notable price increase to use total RNA-seq for 

analysis, as compared to Affymetrix amplification and microarrays, there was also a decrease in 

the time costs to the laboratory and a significant improvement in the quality of data collected. 
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Section 1: Between array comparison
Distances between arrays
Principal Component Analysis

Section 2: Array intensity distributions
Boxplots
Density plots

Section 3: Variance mean dependence
Standard deviation versus rank of the mean

Section 4: Individual array quality
MA plots

- Array metadata and outlier detection overview
 array sampleNames *1 *2 *3 index concentration

1 1000BloodA x 1 2/3_blood
2 1000BloodB 2 2/3_blood
3 1500BloodA 3 all_blood
4 1500BloodB 4 all_blood
5 1500BrainA 5 all_brain
6 1500BrainB 6 all_brain
7 500BloodA x 7 1/3_blood
8 500BloodB 8 1/3_blood

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

1. outlier detection by Distances between arrays
2. outlier detection by Boxplots
3. outlier detection by MA plots

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are
marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the
checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the
HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints
which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform
and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison

- Figure 1: Distances between arrays.

Supplementary Table 1
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 Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances
encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended
experimental factors (batch effects). The distance dab between two arrays a and b is computed as the mean absolute difference (L1-distance)
between the data of the arrays (using the data from all probes without filtering). In formula, dab = mean | Mai - Mbi |, where Mai is the value of
the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, Sa
= Σb dab was exceptionally large. No such arrays were detected.

+ Figure 2: Outlier detection for Distances between arrays.
- Figure 3: Principal Component Analysis.
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Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays
cluster, and whether this is according to an intended experimental factor, or according to unintended causes such as batch effects. Move the
mouse over the points to see the sample names.
Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of
each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall data (dis)similarity
between the arrays.

Section 2: Array intensity distributions

- Figure 4: Boxplots.
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 Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one
array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this
may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic Ka between each
array's distribution and the distribution of the pooled data.

+ Figure 5: Outlier detection for Boxplots.
- Figure 6: Density plots.
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Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar
shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various
features of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's
distribution to the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal
saturation.

Section 3: Variance mean dependence

- Figure 7: Standard deviation versus rank of the mean.
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 Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean
on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to
a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a
hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Individual array quality

- Figure 8: MA plots.

Figure 8 (PDF file) shows MA plots. M and A are defined as:
M = log2(I1) - log2(I2)

 A = 1/2 (log2(I1)+log2(I2)),
 where I1 is the intensity of the array studied,and I2 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of
A. If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed
by background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed
by non-linear normalisation (e.g. quantile normalisation).
Outlier detection was performed by computing Hoeffding's statistic Da on the joint distribution of A and M for each array. The value of Da is
shown in the panel headings. 2 arrays had Da>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see
the manual page of the function hoeffd in the Hmisc package.
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- Figure 9: Outlier detection for MA plots.

 Figure 9 (PDF file) shows a bar chart of the Da, the outlier detection criterion from the previous figure. The bars are shown in the original
order of the arrays. A threshold of 0.15 was used, which is indicated by the vertical line. 2 arrays exceeded the threshold and were
considered outliers.

This report has been created with arrayQualityMetrics 3.34.0 under R version 3.5.0 (2018-04-23).

(Page generated on Fri Aug 10 16:52:18 2018 by hwriter )
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arrayQualityMetrics report for raw NuGEN dataset

Section 1: Between array comparison
Distances between arrays
Principal Component Analysis

Section 2: Array intensity distributions
Boxplots
Density plots

Section 3: Variance mean dependence
Standard deviation versus rank of the mean

Section 4: Individual array quality
MA plots

- Array metadata and outlier detection overview
 array sampleNames *1 *2 *3 index concentration

1 1000Blood A 1 2/3_blood
2 1000Blood B x 2 2/3_blood
3 1500Blood A 3 all_blood
4 1500Blood B 4 all_blood
5 1500Brain A 5 all_brain
6 1500Brain B x 6 all_brain
7 500Blood A x 7 1/3_blood
8 500Blood B 8 1/3_blood

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

1. outlier detection by Distances between arrays
2. outlier detection by Boxplots
3. outlier detection by MA plots

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are
marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the
checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the
HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints
which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform
and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison

- Figure 1: Distances between arrays.

Supplementary Table 2
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 Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances
encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended
experimental factors (batch effects). The distance dab between two arrays a and b is computed as the mean absolute difference (L1-distance)
between the data of the arrays (using the data from all probes without filtering). In formula, dab = mean | Mai - Mbi |, where Mai is the value of
the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, Sa
= Σb dab was exceptionally large. No such arrays were detected.

+ Figure 2: Outlier detection for Distances between arrays.
- Figure 3: Principal Component Analysis.
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Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays
cluster, and whether this is according to an intended experimental factor, or according to unintended causes such as batch effects. Move the
mouse over the points to see the sample names.
Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of
each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall data (dis)similarity
between the arrays.

Section 2: Array intensity distributions

- Figure 4: Boxplots.
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 Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one
array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this
may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic Ka between each
array's distribution and the distribution of the pooled data.

+ Figure 5: Outlier detection for Boxplots.
- Figure 6: Density plots.
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Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar
shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various
features of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's
distribution to the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal
saturation.

Section 3: Variance mean dependence

- Figure 7: Standard deviation versus rank of the mean.
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 Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean
on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to
a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a
hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Individual array quality

- Figure 8: MA plots.

Figure 8 (PDF file) shows MA plots. M and A are defined as:
M = log2(I1) - log2(I2)

 A = 1/2 (log2(I1)+log2(I2)),
 where I1 is the intensity of the array studied,and I2 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of
A. If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed
by background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed
by non-linear normalisation (e.g. quantile normalisation).
Outlier detection was performed by computing Hoeffding's statistic Da on the joint distribution of A and M for each array. The value of Da is
shown in the panel headings. 3 arrays had Da>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see
the manual page of the function hoeffd in the Hmisc package.
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- Figure 9: Outlier detection for MA plots.

 Figure 9 (PDF file) shows a bar chart of the Da, the outlier detection criterion from the previous figure. The bars are shown in the original
order of the arrays. A threshold of 0.15 was used, which is indicated by the vertical line. 3 arrays exceeded the threshold and were
considered outliers.

This report has been created with arrayQualityMetrics 3.34.0 under R version 3.5.0 (2018-04-23).

(Page generated on Mon Aug 13 08:50:48 2018 by hwriter )
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arrayQualityMetrics report for normalized Affymetrix dataset

Section 1: Between array comparison
Distances between arrays
Principal Component Analysis

Section 2: Array intensity distributions
Boxplots
Density plots

Section 3: Variance mean dependence
Standard deviation versus rank of the mean

Section 4: Individual array quality
MA plots

- Array metadata and outlier detection overview
 array sampleNames *1 *2 *3 index concentration

1 1000 Blood A 1 2/3_blood
2 1000 Blood B 2 2/3_blood
3 1500 Blood A 3 all_blood
4 1500 Blood B 4 all_blood
5 1500 Brain A 5 all_brain
6 1500 Brain B 6 all_brain
7 500 Blood A 7 1/3_blood
8 500 Blood B 8 1/3_blood

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

1. outlier detection by Distances between arrays
2. outlier detection by Boxplots
3. outlier detection by MA plots

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are
marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the
checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the
HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints
which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform
and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison

- Figure 1: Distances between arrays.

Supplementary Table 3
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 Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances
encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended
experimental factors (batch effects). The distance dab between two arrays a and b is computed as the mean absolute difference (L1-distance)
between the data of the arrays (using the data from all probes without filtering). In formula, dab = mean | Mai - Mbi |, where Mai is the value of
the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, Sa
= Σb dab was exceptionally large. No such arrays were detected.

+ Figure 2: Outlier detection for Distances between arrays.
- Figure 3: Principal Component Analysis.
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Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays
cluster, and whether this is according to an intended experimental factor, or according to unintended causes such as batch effects. Move the
mouse over the points to see the sample names.
Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of
each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall data (dis)similarity
between the arrays.

Section 2: Array intensity distributions

- Figure 4: Boxplots.
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 Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one
array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this
may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic Ka between each
array's distribution and the distribution of the pooled data.

+ Figure 5: Outlier detection for Boxplots.
- Figure 6: Density plots.
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Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar
shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various
features of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's
distribution to the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal
saturation.

Section 3: Variance mean dependence

- Figure 7: Standard deviation versus rank of the mean.
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 Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean
on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to
a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a
hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Individual array quality

- Figure 8: MA plots.

Figure 8 (PDF file) shows MA plots. M and A are defined as:
M = log2(I1) - log2(I2)

 A = 1/2 (log2(I1)+log2(I2)),
 where I1 is the intensity of the array studied,and I2 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of
A. If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed
by background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed
by non-linear normalisation (e.g. quantile normalisation).
Outlier detection was performed by computing Hoeffding's statistic Da on the joint distribution of A and M for each array. The value of Da is
shown in the panel headings. 0 arrays had Da>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see
the manual page of the function hoeffd in the Hmisc package.
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arrayQualityMetrics report for normalized NuGEN dataset

Section 1: Between array comparison
Distances between arrays
Principal Component Analysis

Section 2: Array intensity distributions
Boxplots
Density plots

Section 3: Variance mean dependence
Standard deviation versus rank of the mean

Section 4: Individual array quality
MA plots

- Array metadata and outlier detection overview
 array sampleNames *1 *2 *3 index concentration

1 1000 Blood A 1 2/3_blood
2 1000 Blood B 2 2/3_blood
3 1500 Blood A 3 all_blood
4 1500 Blood B 4 all_blood
5 1500 Brain A 5 all_brain
6 1500 Brain B 6 all_brain
7 500 Blood A 7 1/3_blood
8 500 Blood B 8 1/3_blood

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

1. outlier detection by Distances between arrays
2. outlier detection by Boxplots
3. outlier detection by MA plots

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are
marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the
checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the
HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints
which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform
and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison

- Figure 1: Distances between arrays.

Supplementary Table 4
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 Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances
encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended
experimental factors (batch effects). The distance dab between two arrays a and b is computed as the mean absolute difference (L1-distance)
between the data of the arrays (using the data from all probes without filtering). In formula, dab = mean | Mai - Mbi |, where Mai is the value of
the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, Sa
= Σb dab was exceptionally large. No such arrays were detected.

+ Figure 2: Outlier detection for Distances between arrays.
- Figure 3: Principal Component Analysis.
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Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays
cluster, and whether this is according to an intended experimental factor, or according to unintended causes such as batch effects. Move the
mouse over the points to see the sample names.
Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of
each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall data (dis)similarity
between the arrays.

Section 2: Array intensity distributions

- Figure 4: Boxplots.
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 Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one
array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this
may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic Ka between each
array's distribution and the distribution of the pooled data.

+ Figure 5: Outlier detection for Boxplots.
- Figure 6: Density plots.
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Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar
shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various
features of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's
distribution to the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal
saturation.

Section 3: Variance mean dependence

- Figure 7: Standard deviation versus rank of the mean.
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 Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean
on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to
a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a
hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Individual array quality

- Figure 8: MA plots.

Figure 8 (PDF file) shows MA plots. M and A are defined as:
M = log2(I1) - log2(I2)

 A = 1/2 (log2(I1)+log2(I2)),
 where I1 is the intensity of the array studied,and I2 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of
A. If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed
by background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed
by non-linear normalisation (e.g. quantile normalisation).
Outlier detection was performed by computing Hoeffding's statistic Da on the joint distribution of A and M for each array. The value of Da is
shown in the panel headings. 0 arrays had Da>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see
the manual page of the function hoeffd in the Hmisc package.
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