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Introduction 

This was a follow-on study to our previous research efforts (Kratchounova et al., 2020a; 

Kratchounova et al., 2020b) that were focused primarily on the operational impact of using head-

up display (HUD) with localizer guidance in lieu of Center Line Lights (CLL) for takeoff in low 

visibility conditions. In those studies, we identified the differential effects of guidance type, 

runway visual range (RVR), lighting conditions (day/night) and runway lighting infrastructure on 

crew workload and performance, as measured by the NASA Task Load Index (NASA-TLX) and 

Flight Technical Error (FTE), respectively. Only the total weighted NASA-TLX scores were 

used for those analyses.  

Here, we focused on the relationship between the objective measure of performance (i.e., 

FTE) and the subjective assessment of workload (i.e., NASA-TLX). However, instead of the 

total weighted scores, we analyzed the raw, unweighted NASA-TLX subscale ratings. Based on 

these analyses, we propose methods to utilize FTE data in predicting individual pilot workload 

ratings and vice versa. 

Background 

In the last few decades, the evolution of workload research has advanced from trying to 

measure it, through trying to define it, to applying it to relevant real-world settings (Young et al., 

2015). While the scientific definition of workload is still passionately debated, it is a commonly 

recognized notion in the literature that workload is a multidimensional construct defined by the 

task demands, the capacity of the operator performing the task, and the context in which the 

performance occurs (Hancock et al., 1995; McKendrick & Cherry, 2018; Young et al., 2015).  

Hart (2006) underscored the concept of workload as “the human cost (e.g., fatigue, stress, 

illness, and accidents) of maintaining performance” (p. 904). When that cost is too high, the 

capacity of a human operator to perform a given task safely, efficiently and effectively, may be 

depleted. In that context, workload only becomes evident in the interaction between the operator 

and other components of a system during task performance. Therefore, examinations of 

workload attempt to measure this very interaction to determine where the operator is within a 

workload “envelope” (Lysaght et al., 1989). 

At times, performing a difficult task well may be at a cost of an excessively high level of 

workload. Nonetheless, the cost of performing a less difficult task could likewise be very high 
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but this time - driven by boredom. Therefore, subjective workload ratings may or may not 

associate with measures of performance. Consequently, a concurrent examination of 

performance and workload adds an advantage in addressing the ongoing debate regarding the 

mapping between performance and workload in different task situations. Hancock (1996) pointed 

out that ‘‘if workload response always followed performance variation, then there would be little 

reason to collect such additional measures’’ (p. 1156). Yet, workload ratings and performance 

measures often exhibit a repeating pattern. That is, higher levels of subjective workload ratings 

are associated with poorer performance (Hart, 2006; Lysaght et al., 1989; Yeh & Wickens, 

1988). Thus, it is our strong conviction that pairing subjective workload ratings (e.g., NASA-

TLX) with objective measures of performance (e.g., FTE) is a prudent approach to use in the 

context of empirical research.  

Due to its extensive usage, the NASA-TLX has become almost synonymous with the 

concept of workload. It was developed based on the assumption that a combination of six 

workload related factors - Mental Demand, Physical Demand, Temporal Demand, Performance, 

Effort, and Frustration - represents the workload experienced by most people performing most 

tasks. These dimensions of the larger construct of workload were operationalized as the six 

subscales of the NASA-TLX. Furthermore, they were selected after extensive analyses of factors 

that identify the subjective experience of workload for different people performing activities 

ranging from simple to complex tasks such as flying an aircraft (Hart, 1986; Hart 2006; Hart & 

Staveland, 1988). A series of frequently cited studies comparing subjective workload measures 

(Hill et al., 1992; Lysaght et al., 1989) reported that NASA-TLX ratings were more closely 

related to performance, had the highest inter-rater reliability, the highest overall workload factor 

validity, and the best user acceptance.  

Although immensely popular and well established, especially for empirical research, the 

NASA-TLX has not been without criticism regarding its construct validity. Without engaging in 

this continuing debate, we thought it would be sensible to mention its critics’ claim. Specifically, 

instead of measuring perceived task workload, the NASA-TLX measures perceived task 

difficulty (Byers et al., 1989; de Winter, 2014; McKendrick, & Cherry, 2018).  

Analyzing the subscale scores individually rather than a single overall workload score has 

been one of the two most common modifications of the NASA-TLX workload scale. According 

to Hart (2006), over 40 studies conducted subscale-rating analyses instead of generating a single 
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overall workload score and demonstrated the potency of the scale and the diagnostic value of the 

component subscales. The author concluded that the high reliability, sensitivity, and utility of the 

NASA-TLX component ratings allow for a very narrow identification of sources of a workload 

or performance issues. Hart (2006) also recognized one potential drawback of the NASA-TLX 

scale. Namely, because the subscale ratings are measuring different aspects of the same 

underlying construct, they may often be significantly correlated (Hart, 2006). 

Method 

Twenty-four pilot crews participated in this research: 12 airline crews and 12 business jet 

crews, who were deemed proficient in using a HUD. For normal operational scenarios, three 

independent variables were considered including three levels of RVR (300ft, 500ft, and 700ft), 

two levels of Lighting conditions (Day and Night), and five levels of Type of Guidance as 

follows: 

• HUD; No Localizer guidance; Centerline markings only;  

• HUD; No Localizer guidance; Centerline marking and lighting;  

• No HUD; Centerline marking and lighting;  

• HUD with Localizer guidance and centerline markings;  

• HUD with Localizer guidance and no centerline markings or lighting.  

The full research matrix for normal operation is shown in Table 1. For the six abnormal 

operations (failure conditions), three levels of RVR (300ft, 500ft, and 700ft), and two levels of 

Lighting conditions (Day and Night) were examined (Table 2). The study was conducted in the 

Federal Aviation Administration’s Boeing 737-800NG Level D simulator, equipped with a 

Rockwell Collins Head-up Guidance System Model 6700. There were 60 normal takeoff 

scenarios and 36 abnormal takeoff scenarios per crew. In the normal operations scenarios, winds 

speeds ranged between 3kt (calm) and 22ktm from various directions. In the abnormal operations 

scenarios, winds ranged between 3kt (calm) and 15kt from various directions. All tailwinds were 

limited to 10kt (Boeing, 2017). 
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Table 1.  

Research matrix for normal operations. 
 

Operation Type / Condition Lighting Conditions 

Baseline 1: HUD, no LOC 
guidance*, Centerline markings 
(RCLM) only 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Baseline 2: HUD, no LOC 
guidance, Centerline lighting 
(CLL)** 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Baseline 3: No HUD, with 
Centerline lighting 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Condition 1: HUD, with LOC 
guidance, RCLM only 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Condition 2: HUD with LOC 
guidance; no RCLM, no CLL 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

  * Localizer 
  ** All CLL conditions assume existing RCLM 

Table 2.  

Research matrix for abnormal operations. 

Operation Type / Condition Lighting Conditions 

Failure Condition 1: Engine fail 
above V1 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Failure Condition 2 : Engine fail 
below V1 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Failure Condition 3: Engine fail 
below Vmcg 

Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Failure Condition 4: LOC fail Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Failure Condition 5: LOC Bend Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

Failure Condition 6: Loss of HUD Day/ 
Night 

Day/ 
Night 

Day/ 
Night 

 

Notionally, NASA-TLX workload ratings may differ based on previous flight experiences. For 

example, some pilots may have previously experienced a situation (e.g., an emergency) that led 

to an extremely high workload level. Others may lack such experience. Consequently, reported 

workload levels may be higher for those pilots who never experienced a similar situation before 
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and relatively lower for those who did. To minimize the variance of workload ratings due to 

differences in experience between pilots, we applied a standardization process (Fischer & 

Milfont, 2010). The raw NASA-TLX subscale ratings were standardized for each individual pilot 

by subtracting the individual pilots’ average NASA-TLX subscale score from the raw rating then 

dividing by the individual standard deviation as shown in (1). Figure 1 outlines all steps we 

followed analyzing the data for this study. 

Standardized NASA TLX score   = TLXraw−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑋𝑋 𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠 𝑠𝑠𝐴𝐴𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  1 

Figure 1.  

Procedural steps for entire analytical methods.  

 

Correlation Analysis, Kernel Density Estimation and Simple Regression Analysis 

(workload ~ FTE) 

To ensure the raw FTE scores and the standardized NASA-TLX subscales were related, a 

correlation analysis using Pearson’s R was conducted first. Before creating regression models, 

data density estimation was conducted of each variable’s distribution. Building histograms was 

the starting point (Silverman, 2018). To examine the distributions for the raw FTE and the 

standardized NASA-TLX scores, two separate histogram graphs were constructed – one for 
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normal and one for abnormal operations. Setting the graphical origin and scale of the x-axis is 

essential for a meaningful graphical representation of the histogram and distribution. More 

specifically, dividing the x-axis into equal sections called bins, allows for an accurate graphical 

representation. For example, if the bins were set very narrow, the histogram would appear to 

have many artificial gaps. Conversely, if the bins are very wide, the distribution may not be 

visible and may even appear as a single density column. Therefore, examining the distributions 

created by the separate histograms helps with the selection of appropriate bin width (i.e., sub-

intervals) (Silverman, 2018). Bin width selection dictates the amount of required smoothing for 

density estimation analysis. The goal of smoothing the data is to retain the original trends of the 

distributions while removing the noise around the bin width sectors. If the data is fundamentally 

Gaussian in nature (i.e., follows a normal distribution), then the width of these bins can be 

described by (2) (Silverman, 2018).  

                          ℎ = �4𝜎𝜎
5

3𝑠𝑠
�
−15 2 

Both the normal and abnormal operation distributions of the standardized NASA-TLX scores 

and the raw FTE data were set with 100 bins across the range of the distributions. 

After standardizing the NASA-TLX subscale scores and the preliminary data exploration 

described above; Kernel density estimation (KDE) - a data smoothing technique - was 

implemented. This method of smoothing was proposed by Rosenblatt (1956) for estimating 

stochastic variables.  To estimate standardized individual NASA-TLX subscale scores as a 

function of FTE, multiple simple regression analyses were conducted as described by (3). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑇𝑇𝑇𝑇𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝛽𝛽0 +  𝛽𝛽1 ∗  𝐹𝐹𝐹𝐹𝐹𝐹 3 

Multiple Regression (FTE ~ workload) for Normal Operations 

For the purpose of methodological consistency, a model was fit independently to the 

distributions of normal and abnormal operations. The first model was an attempt to predict FTE 

scores as a function of the standardized individual NASA-TLX subscales during normal 

operations. After several failed attempts to construct a regression model with the raw FTE scores 

and standardized NASA-TLX subscales, it was determined that a transformation of the FTE 

scores was necessary for the model residuals to meet the parametric assumption of normality. 

Thus, a natural log transformation was applied to the raw FTE scores. We also established a 
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criterion stating that a predictor had to increase the explained variance by at least 5% to be 

included in the model. Otherwise, the variable was excluded. 

Multiple Regression (FTE ~ workload) for Abnormal Operations 

In the abnormal operational scenarios, each failure condition was associated with various system 

failures occurring during takeoff. Three conditions included an engine failure. Failure Condition 

1 involved an engine failure above V1
1 with the expectation for a continued takeoff. Failure 

Conditions 2 and 3 included engine failures below Vmcg
2 or below V1 with the expectation of a 

rejected takeoff. Failure Conditions 4, 5 and 6 included issues with the HUD display, such as 

localizer bending, localizer failing, or a complete loss of HUD.  

Based on the fundamentally different nature of these two groups of failure conditions, it was 

anticipated that the type of failure could affect the model and function of the predictor variables. 

The model for abnormal operations included the individual NASA-TLX subscales and a dummy 

variable indicating whether the failure situation involved an engine failure. To address the non-

normality of residuals discussed earlier, a Generalized Linear Model was applied for abnormal 

operations. 

Results 

Correlation between FTE and Workload 

The results from the Pearson’s correlation indicated all NASA-TLX subscale score coefficients 

were statistically significant (p < 0.001). The coefficients for normal and abnormal operations 

are listed in Table 2 and Table 3, respectively. The subscales with the highest correlation were 

Performance and Physical Demand for both normal and abnormal operations. 

 

 
 
 
 

                                                      
1 V1 – The speed beyond which the takeoff should no longer be rejected. 
2 Vmcg – Velocity of Minimum Control on Ground is the speed at which the aircraft will remain controllable in the event of an 

engine failure on ground (occurs before V1). 
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Table 3.  

NASA-TLX subscale Pearson’s R values for normal operations. 

NASA TLX Pearson's R 
Mental Demand 0.259 
Physical Demand 0.323 
Temporal Demand 0.258 
Performance 0.393 
Effort 0.251 
Frustration 0.256 
Total Weighted 0.342 

Table 4.  

NASA-TLX subscale Pearson’s R values for abnormal operations. 

NASA TLX Pearson's R 
Mental Demand 0.256 
Physical Demand 0.333 
Temporal Demand 0.202 
Performance 0.373 
Effort 0.276 
Frustration 0.289 
Total Weighted 0.350 

 

KDE for FTE and Workload and Regression Analysis (Workload ~ FTE)  

Two histograms were constructed to identify the distributions of FTE and standardized NASA-

TLX subscale scores. Figure 2 and Figure 3 show the distribution scores for the Performance 

subscale for normal and abnormal operations, respectively. The regression coefficient for FTE 

for normal operations was 0.13 (p < 0.001). For abnormal operations, the coefficient for FTE 

was 0.05 (p < 0.001), indicating that Performance would increase 0.05 standard deviations for 

each foot increase in FTE.  

Multiple simple linear regression models enabled a better understanding of how well FTE might 

be able to predict each individual NASA-TLX subscale. FTE was the predictor variable, while 

the individual NASA-TLX subscale scores were set as a response variable in the various models. 
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The results indicated that all coefficients were statistically significant, including intercept and 

slope. Performance had the highest estimated coefficient (0.13) suggesting that increasing FTE 

by one foot would increase the Performance scores by 0.13 standard deviations. Temporal 

Demand had the lowest estimated coefficient (0.08). As shown in Table 4 for normal operations 

and Table 5 for abnormal operations, Temporal Demand would only increase with 0.08 standard 

deviations for a one-foot increase in FTE. The subscale with the largest Pearson’s R2 value was 

Performance for both the normal and abnormal operations. 

Figure 2.  

Standardized NASA-TLX Performance Subscale Scores with FTE distribution for normal 

operations: A total of 100 bins were set with equal spaced points from the range of the FTE 

scores. 
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Figure 3.  

Standardized NASA-TLX Performance Subscale Scores with TLX distribution for abnormal 

operations: A total of 100 bins were set with equal spaced points from the range of the TLX 

scores. 

     

Table 5.  

Linear regression results for each NASA-TLX subscale during normal operations. 

Subscale Parameter Estimate Stand. 
Error t-stat. p-value Adj. 

R2 

Mental 
Demand 

Intercept -0.32 0.04 -7.99 <0.01  
Coefficient 0.09 0.01 10.18 <0.01 0.07 

Physical 
Demand 

Intercept -0.40 0.04 -10.15 <0.01  
Coefficient 0.11 0.01 12.95 <0.01 0.10 

Temporal 
Demand 

Intercept -0.32 0.04 -7.93 <0.01  
Coefficient 0.08 0.01 10.11 <0.01 0.07 

Performance Intercept -0.49 0.04 -12.72 <0.01  
Coefficient 0.13 0.01 16.21 <0.01 0.15 

Effort Intercept -0.31 0.04 -7.70 <0.01  
Coefficient 0.08 0.01 9.82 <0.01 0.06 

Frustration Intercept -0.32 0.04 -7.88 <0.01  
Coefficient 0.08 0.01 10.05 <0.01 0.07 

Total 
Weighted 

Intercept -0.43 0.04 -10.84 <0.01  
Coefficient 0.11 0.01 13.82 <0.01 0.12 
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Table 6.  

Linear regression results for each NASA-TLX subscale during abnormal operations. 

Subscale Parameter Estimate Stand. 
Error 

t-stat. p-
value 

Adj. 
R2 

Mental 
Demand 

Intercept -0.19 0.04 -4.74 <0.01  
Coefficient 0.03 0.00 7.77 <0.01 0.06 

Physical 
Demand 

Intercept -0.25 0.04 6.33 <0.01  
Coefficient 0.04 0.00 10.38 <0.01 0.11 

Temporal 
Demand 

Intercept -0.15 0.04 -3.70 <0.01  
Coefficient 0.03 0.00 6.06 <0.01 0.04 

Performance Intercept -0.28 0.04 -7.19 <0.01  
Coefficient 0.05 0.00 11.72 <0.01 0.14 

Effort Intercept -0.21 0.04 -5.14 <0.01  
Coefficient 0.04 0.00 8.42 <0.01 0.08 

Frustration Intercept -0.22 0.04 -5.41 <0.01  
Coefficient 0.04 0.00 8.87 <0.01 0.08 

Total 
Weighted  

Intercept -0.26 0.04 -6.69 <0.01  
Coefficient 0.04 0.00 10.97 <0.01 0.12 

 

Multiple Regression Analysis (FTE ~ Workload) for Normal Operations  

To predict FTE as a function of individual NASA-TLX subscales, a stepwise multiple regression 

analysis was conducted. The residuals from the original model using raw FTE scores did not 

display attributes of normality and included signs of heteroscedasticity (i.e., unequal variance 

across the distribution). Therefore, a natural log transformation was applied to the raw FTE 

scores. The application of a natural log transformation corrected the positive skew and the model 

residuals met the assumptions of normality (Lilliefors normality test; p = 0.13). 

The final model included the NASA-TLX Performance and Physical Demand subscales. The 

model was significant in predicting the transformed FTE scores (F (2, 1437) = 184.05, p < 

0.0001) and explained about 20% of the observed variance, with a medium effect size (Adjusted 

R2 = 0.204) (Cohen, 2013); (4) defines the final model for normal conditions and model 

parameters are outlined in Table 6.  

𝐹𝐹𝐹𝐹𝐹𝐹 =  1.07 + .23(𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + .16 (𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆)  4 
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Table 7.  

Linear regression model to predict natural log transformed FTE scores during normal 

operations. 

Parameter Unstandardized 

Coefficients 

Standard 

Error 

t-statistics p-value 

Intercept 1.07 .02 62.51 <0.001 

Performance 0.23 .02 11.57 <0.001 

Physical Demand 0.16 .02 8.25 <0.001 

 

Multiple Regression Analysis (FTE ~ Workload) for Abnormal Operations 

For abnormal operations, Generalized Linear Model was used to predict FTE as a function of 

individual NASA-TLX subscale scores and the type of failure condition. The final model 

included Mental Demand, Physical Demand, Performance, Temporal Demand, and a 

dichotomous variable - Engine Failure - indicating the type of abnormal condition (i.e., 1 = 

engine failure or 0 = HUD or other failure). An interaction effect was present between Temporal 

Demand and Engine Failure. As the Engine Failure variable was dummy coded, the interaction 

effect (Temporal Demand x Engine Failure) had a negative coefficient only in the engine failure 

conditions, otherwise the coefficient was nulled by a zero in the model, described by (5). The 

model was significant in predicting the transformed FTE scores (F (5, 857) = 97.1, p < 0.0001) 

and had a large effect size (Cohen, 2013), explaining about 40 percent of the observed variance 

(Adjusted R2 = 0.401). Model parameters are provided in Table 7. 

𝐹𝐹𝐹𝐹𝐹𝐹 =  0.40 + 0.04 ∗ (𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆) + 0.04 ∗ (𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆) +
0.10 ∗ (𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) − 0.07 ∗  (𝐹𝐹𝑆𝑆𝑃𝑃𝑇𝑇𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 x 𝐹𝐹𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 5 
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Table 8.  

Linear regression model to predict natural log transformed FTE scores during abnormal 

operations. 

Parameter Unstandardized 
Coefficients 

Standard 
Error 

t-statistics p-value 

Intercept 0.40 0.0.02 22.73 <0.001 

Mental Demand 0.04 0.02 2.29 =0.022 
Physical Demand 0.05 0.02 2.98 =0.003 
Performance 0.10 0.01 8.46 <0.001 
Temporal Demand 
x Engine Failure -0.07 0.02 -3.19 =0.001 

Note: The ‘x’ in the model and the table indicates an interaction effect 

Discussion 

The results of this research indicated that the single best subjective predictor of FTE is the 

NASA-TLX Performance subscale in both normal and abnormal operations. The Performance 

subscale’s definition calls for the operator to answer the following questions: “How successful 

do you think you were in accomplishing the goals of the task set by the experimenter (or 

yourself)? How satisfied were you with your performance in accomplishing these goals?” (Hart, 

1986). These questions could be précised as one single question: “How well do think you did?”  

Remarkably, the pilot evaluators’ feedback during our original research (Kratchounova et al., 

2020a; Kratchounova et al., 2020b) suggested that rating their own performance and its 

contribution to the overall workload levels was the easiest NASA-TLX subscale to 

conceptualize, observe, and assess. Furthermore, the theoretical underpinnings of the NASA-

TLX Performance subscale are deeply rooted in the notion that lower subjective workload 

ratings accompanied better performance. As a whole, the results from the statistical analyses we 

conducted, exhibited that same familiar pattern between performance and workload. Namely, 

higher levels of subjective workload ratings were associated with inferior performance. 

The Physical Demand subscale was also a significant predictor of FTE in both the multiple 

regression models and had the second highest correlation, next to the Performance subscale. This 

finding suggests that one potential method of optimizing pilots’ workload profile under these 

conditions would be to conceive a way to reduce the task’s physical demand by design. 
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Yet, the most noteworthy finding from this study was that when the abnormal condition included 

an engine failure, the ratings on the NASA-TLX Temporal Demand subscale had an inverse 

relationship with FTE. That is, during abnormal or emergency situations, the increased time 

pressure actually improved pilots’ performance. 

One plausible explanation for this finding would be that during a real abnormal or emergency 

situation in an aircraft, the mind seems to “accelerate” and time seems to slow down. Hancock  

and Weaver (2005) noted that under life-threatening stress, people often experience temporal 

distortion. To a pilot experiencing a serious emergency situation, what is actually 4 seconds may 

seem like 10 seconds. Furthermore, the authors also reported that although high-stress conditions 

consume part of the attentional resources, it is common for the remaining resources to be 

directed to specific task-related activities. 

Moreover, the results of the research presented here, showed that the specific nature of the 

abnormal condition, and not merely the existence of an emergency, largely determined whether 

pilots’ performance improved or declined under increased temporal demand. Specifically, when 

pilots were presented with an emergency that they have been highly trained on, such as an engine 

failure during takeoff, it was common for them to quickly recall and almost automatically 

perform the trained procedure. Such procedures are performed multiple times in a controlled 

environment (e.g., in a simulator or another training device), sometimes over the course of many 

years of a pilot’s career. Therefore, when a trained emergency actually happens, the pilot goes 

into a methodical routine of dealing with the emergency in the calm and precise manner in which 

they were trained to respond. Similarly to the load-shedding during a partial electrical failure, a 

pilot load-sheds everything outside the specific emergency, essentially compartmentalizing 

certain tasks by priority. More, in the case of engine failure on takeoff, the trained immediate 

response was to prioritize maintaining aircraft directional control in alignment with the runway 

centerline, which happened to be the exact metric used to assess flight technical error in this 

research. 

In contrast, when pilots were presented with an abnormal condition that they have not been 

trained on, that automatic response was absent. In this study, localizer failures and HUD failures 

represented this distinct group of abnormal conditions. Therefore, when a non-trained situation 

occurred, pilots frequently tried to focus most of their attention on analyzing the situation to a 

point where no attentional resources were left to deal with basic tasks such as “flying the 
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airplane”. While such response is not a certainty, it has been observed in numerous aircraft 

accidents. The recent Boeing 737 MAX accidents may be one example of the overwhelming 

confusion occurring with a certain abnormal event that the pilots were not trained to respond to. 

Consequently, the pilots were unable to transfer their focus back to controlling the aircraft since 

the abnormal situation could not be resolved in the time leading up to the accident. Another 

example is the Air France 447 accident (Anuary et al., 2010; ECAA - Ethiopia Aircraft Accident 

Investigation Bureau, 2019).  

The primary goal of the current study was exploratory-in-nature. Specifically, the focus was on 

the relationship between the subjective NASA-TLX workload subscale ratings and FTE as an 

objective measure of performance. The correlation analysis provided evidence that each NASA-

TLX subscale had a significant relationship with FTE. This granted further support for the notion 

that the NASA-TLX is a proper workload measure in applied human factors and psychological 

research settings, regardless of the ongoing debate within the research community about the 

theoretical implication of the measure. 

Limitations and Future Research 

The first notable limitation for this study was that the simple regression models applied in the 

analyses used FTE to predict the standardized NASA-TLX subscale scores from the pilots’ 

average and the standard deviation score of each NASA-TLX subscale. As a result, if this 

method were to be used to analyze new population sample datasets; both FTE and NASA-TLX 

measures would still need to be collected.  

An additional limitation in the current research was applying a natural log transformation for the 

multiple regression models. While this transformation afforded a better fit to meet parametric 

assumptions, applying it to future datasets will produce predictions of FTE in the form of natural 

log. For meaningful results, the predicted scores will need to be transformed back to raw scores. 

In our upcoming research efforts, we will continue utilizing FTE as an objective measure of 

performance and NASA-TLX as a subjective measure of crew workload. As more data are 

collected, we will continuously refine the models outlined in this paper for improved predictive 

power. Once these models are systematically validated through continued research, it may be 

possible to collect only one of the measures and predict the other with higher confidence. 
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