40-Year Pavement Life

Machine Learning and PA40 Data

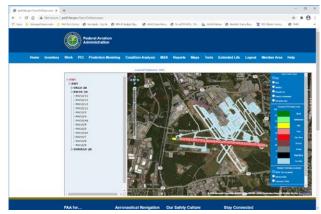
Presented to: REDAC Briefing to Sub-committee on Airports

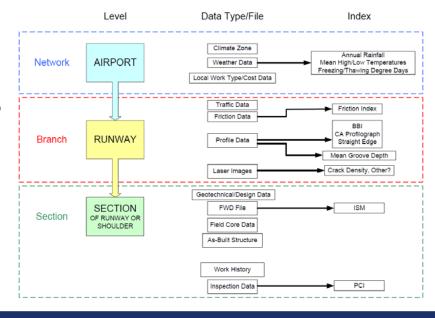
By: David R. Brill, P.E., Ph.D.

Date: March 3, 2021

Extended Airport Pavement Life Database (PA40)

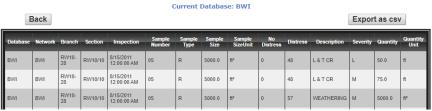
- Database of construction and performance data on 28 runways at 22 large- and medium-hub airports in the U.S.
- Built on FAA PAVEAIR 3.0 code base.
- Structured like PMS, but with additional fields for:
 - Surface friction, profile roughness, groove condition, HWD data.
 - Historical runway usage and weather data.
 - Structural design & as-built section data.
 - Field core test data.





PA40 Recent Updates

- Runway traffic data updated through October 2020.
- Added GIS map labels for pavement data.
- Added ability to search/display distress data on the sample unit level.
- Completed advanced query tool enhancements. Now displays traffic/weather totals between any two dates.
- New modeling features: PCI/SCI/Anti-SCI vs. Age/Traffic



Performance Models

- Serviceability Index (SL)
 - Combination of multiple performance indexes.
 - Structural: SCI, FWD-derived index.
 - Functional: Runway roughness (RRI), friction, "anti-SCI" (non-structural components of PCI).
 - Predictors may include: Pavement age, traffic, environmental cycles.
- Initial FAA study found that conventional regression analysis is inadequate to predict pavement performance as a function of multiple predictors.
- Decision to use machine learning (ML) methods to predict SL from multiple predictors.

Machine Learning Goals

(from BAA ARAP0004, Unsupervised Learning and Database Analysis)

- Identify the key variables that most influence pavement longevity, and eliminate variables that have little or no influence.
- Identify key performance indexes or combinations of indexes tied to pavement failure or a decision to rehabilitate/reconstruct/replace.
- Perform clustering, or find trends/correlations in the EAPL data that may not be obvious.
- Develop data-based models for predicting long-term pavement condition, employing a mix of inputs such as traffic cycles, weather cycles, age, maintenance data, and structural or material properties.

Flexible Runways Studied

Airport	Runway
Boston Logan Airport (BOS)	4L-22R
Columbus International Airport (CMH)	10L-28R; 10R-28L
Greensboro International Airport (GSO)	5L-23R
Kansas City International Airport (MCI)	9-27
LaGuardia Airport (LGA)	4-22
Miami International Airport (MIA)	12-30
San Francisco International Airport (SFO)	10R-28L
Tucson International Airport (TUS)	11L-29R; 3-21

Feature Selection

- Use ML to identify the key environmental variables that affect runway pavement performance.
- Problem is to assess a set of candidate predictors against a target value (in this case, anti-SCI).
- There are more independent variables than the number of climate conditions in the database.
- Potential issues:
 - Collinearity. Variables that are highly correlated are redundant and can affect the prediction performance negatively.
 - On the other hand, the PA40 database does not cover all geographic/climate scenarios. Models may be underspecified, or significant features could be wrongly eliminated.

Weather Variables Considered

Environmental Variables	Unit
Freezing Degree Days (FDD)	°F
Freeze Thaw Cycles (FThC)	cycles
Days Temperature Over 90°F (Temp90)	days
Days Precipitation (DPrec)	days
Total Precipitation (TPrec)	inches
Freeze Precipitation Days (FPD)	days
Hydration Days (HD)	days
Average Daily Temperature (Avg Temp)	°F
Average Daily Temperature Difference (Temp Diff)	°F
RHumidity Avg	%
Avg Wind Speed	mph
Thornthwaite Index	%
Sky Cover	oktas

- Approach 1 Weather variables are treated as <u>cumulative</u> values from date of construction/rehabilitation to date of inspection.
 - Target is measured anti-SCI.
 - Include pavement age and previous measured anti-SCI as predictors (auto-regressive approach)
- Approach 2 Weather variables are treated as <u>average</u> values.

Feature Selection using Ranking Algorithms in Approach 1

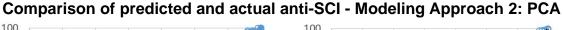
Filter Methods				Wrapper Methods				
Pearson Correlation		RRelieF			/M n Kernel)	Linear Regression		
Input Variable	R	Input Variable	Score	Input Variable	Score	Input Variable	Score	
Previous anti-SCI	0.77	Previous anti-SCI	0.040	Age	12.3	Previous anti-SCI	5.7	
Age	-0.77	Temp90	0.022	Previous anti-SCI	10.5	Age	5.6	
DPrec	-0.63	Age	0.016	Temp90	9.3	DPrec	3.5	
Temp90	-0.59	TPrec	0.010	DPrec	9.1	Temp90	2.9	
TPrec	-0.57	HD	0.009	HD	8.0	TPrec	2.8	
HD	-0.57	DPrec	0.009	TPrec	7.6	HD	2.7	
FThC	-0.54	FDD	0.006	FDD	7.1	FThC	2.4	
FDD	-0.50	FThC	0.005	FThC	6.7	FDD	2.0	

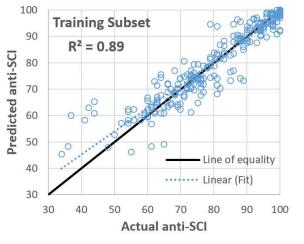
Modeling Approaches

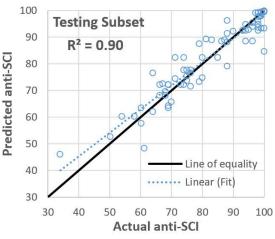
- Three modeling approaches were used for initial model development:
 - Subset of variables
 - Principal component analysis (PCA)
 - Features from k-means cluster analysis
- All approaches based on autoregressive random forest (RF) learning algorithm.
- Used "Weka" (freeware) for data analysis and model implementation.
- Used 278 data records from 10 flexible runways to train the RF model.

Principal Component Analysis (PCA)

- Unsupervised method for reducing dimensionality of feature space.
 - Map data onto a set of new uncorrelated variables (the PCs).
 - Unlike original features, PCs possess no physical meaning.
- Only 4 PCs explain more than 95% of the variance.







Performance of Trained RF Model

Performance Measure	1. Sub Varia	set of Ibles	2. PCA		3. Cluster Analysis		[No Climate]	
	Training	Testing	Training	Testing	Training	Testing	Training	Testing
R^2	0.89	0.9	0.89	0.9	0.88	0.93	0.8	0.84
RMSE	5.16	4.55	5.11	4.81	5.41	3.86	6.8	5.9
RRSE	9.5%	9.0%	9.0%	7.3%	10.2%	6.3%	13.4%	8.1%
Accuracy (5% error)	69%	68%	74%	67%	69%	68%	67%	68%
Accuracy (10% error)	90%	95%	88%	90%	90%	92%	87%	89%

- Take-away: Pavement age and previous anti-SCI remain the most significant predictors of current anti-SCI.
- Upcoming research will explore ML methods for predicting other components of *SL* (related to FOD, roughness and low friction).

Technical Products

• Technical Report (in editing):

Application of Machine Learning Techniques to Pavement Performance Modeling, Sept. 2020

Two papers accepted for presentation:

- BCRRA 2021: "Machine Learning Solutions for Development of Performance Deterioration Models of Flexible Airfield Pavements" (Conference delayed until 2022 due to COVID-19)
- ASCE T&DI Pavements 2021: "Machine Learning Approach to Identifying Key Environmental Factors for Airfield Asphalt Pavement Performance"

Thank You!

http://www.airporttech.tc.faa.gov/david.brill@faa.gov

Acknowledgments:

FAA Airport Technology R&D Branch:
Dr. Michel Hovan, Branch Manager;
Jeff Gagnon, Airport Pavement Section Manager;

FAA Airport Engineering Division: Doug Johnson (retired); Harold Honey

ARA:

Dr. Ali Z. Ashtiani; Scott Murrell; Timothy Parsons; Rich Speir