NextGen Environmental Management System

Goals and Targets Analysis Status Update

Presented to: Spring 2014 REDAC

By: Chris Dorbian, AEE-400

Date: March 25, 2014

- 1. Refresher: Approach → Initial Results
- 2. Spring Rerun
- 3. Future Analysis Improvements
- 4. Questions

Goals and Targets Background

Aviation Environmental and Energy (E&E) Goals

- U.S. Climate Action Plan, E&E Policy Statement
- Noise, air quality, climate, and energy

"Goals and Targets Analysis"

- Forecasting progress against FAA performance goals
- NextGen EMS: "Check" phase
- "System Improvements" scenario considers improvements from operations, technology, and alternative fuels

FAA Goal	FAA Performance Metric*	
Category		
Climate	Carbon neutral growth, starting in	
	2020, relative to the 2005 emissions	
	level	
Energy:	1 billion gallons of renewable jet	
Alternative	fuel used by aviation by 2018	
Fuels		
Energy:	Annual reduction of 2% (of year	
Energy-	2000 level and starting in 2010 – as	
Efficiency	expressed collectively in the FAA	
	business plan and portfolio of goals)	
Noise	Less than 300,000 people exposed	
	to "significant aircraft noise" by	
	2018	
Air Quality	50% reduction, starting in	
	2018, relative to 2005 level	

^{*} Goals are subject to revision based on Administrator's strategic priorities

Approach: Forecast

- Base year activity: Common Operations Database (COD), a radarderived record of flight activity in 2010
 - Derived from Traffic Flow Management System (TFMS) archives
- Future year activity out to 2025: research-only version of 2011
 FAA Terminal Area Forecast (TAF-M), FAA's official forecast,
 which is updated annually

Approach: Modeling

- Re-packaged version of Aviation Environmental Design Tool (AEDT Noise and Emissions Analysis Toolkit (NEAT)) used to generate baseline scenario noise and emissions inventories
- Inventories were post-processed to account for benefits from airframe and engine improvements, operational improvements, and alternative jet fuels

Alternative Fuels Operational Improvements Airframe and Engine No post-2010 **Improvements Fuel and Emissions** Noise No post-2010 technology technology; No changes to No efficiency In-production (2010) conventional jet operational improvement: technology for 100% of fuel only conditions operational fleet growth and efficiency fixed at recent (2005-2010) replacement levels Baseline Scenario

Improvement Scenarios

Airframe and Engine Improvements
In-production technology plus, when
available, future technologies for 100% of
fleet growth and replacement on major
passenger flights.

The future technologies include:

- 2012 CLEEN Program technology
- Market-driven technologies similar to those of the Boeing 787 and Airbus A350

Operational Improvements

Fuel and Emissions

Unimpeded, laterally-direct travel

Noise

Assumption of zero net effect

Alternative Fuels

Alternative fuels scenario assumptions detailed on next slide.

Example Results – Climate

Highlights

- Substantial progress in alt fuels and / or some sort of MBM measure required as a "gap filler"
- Need to refine analysis to better understand feasibility of meeting 2020 goal

Alternative Fuel Consumption (Volume in millions of gallons)

Year	Market 'Low'	Market 'High'	Billion- Gallon
2018	n/a	n/a	1,000
2020	2,854	8,032	n/a

- In 2018, quantity of fuel is held constant at 1bn gallons, while emissions content of fuel is varied
- In 2020, quantity of fuel is varied while emissions content is held constant at 66% of Jet-A LC CO₂

Analysis provides a 'first cut' at possible impacts of improvements considered

- 1. Refresher: Approach → Initial Results
- 2. Spring Rerun
- 3. Future Analysis Improvements
- 4. Questions

Rerun Improvements (1)

Transition from AEDT NEAT to AEDT 2b

- Using analysis to assist AEDT2b assessment
- Provides runtime performance improvement; BADA4
- Using Beta 7 release

Updated TAF-M

- Latest release from APO
- More granular data (further potential for calculating fuel efficiency metrics)
- International traffic (compare to CAEP Trends Assessment)

Extend analysis timeframe

- Can run baseline out to duration of TAF-M (2040)
- Considering longer timeframes

Rerun Improvements (2)

Update Technology Assumptions

- Georgia Tech updating EDS Assessment of CLEEN Technologies (PARTNER Project 36) in April
- Integrate CLEEN and non-CLEEN (e.g., NASA) technologies into future aircraft
- Accounting for performance (fuel, NOx, and noise) and Entry Into Service
- Low-to-high (e.g., realistic, optimistic) scenarios

Operations assumptions

- Leverage existing Nextgen system-wide modeling as a scenario
- Side task: bottom-up estimation of benefits of operational improvements (see next slide)

Assess air quality health impacts

Rerun Improvements (3)

Note: This on-going analysis has not yet fully accounted for the following factors:

- Completeness of set of increments (a number of Ols/Increments have not yet been included)
- Latest (most accurate) projection of implementation scheduled of NextGen systems and capabilities

Preliminary Observations / Conclusions

- NSIP Capabilities/Programs (from partial set) with highest potential system wide benefits include;
 - OPD/CDAs
 - SBS
 - DataComm
 - CATMT-WP4
 - ERAM Phase1
 - TBFM WP3

Note:

- 1. The fuel burn savings have been standardized based on 2010 ADOC
- 2. The fuel savings projections to year 2035 have been scaled proportional to 2010 TAF projection, unless otherwise specified in the BCAR
- 3. Evaluated energy savings (i.e. in gallons of jet fuel). Results can be scaled to CO2 savings w/ \square 9.8 kg CO2 / gallon jet fuel

DME - NG En-Rout

AMMS

IARD

Current Progress

- Reboot forecasting process
- End-to-end AEDT 2b testing (exercise all pieces of model we need)
- Scrutinize TAF-M update
- Execute AEDT2b run (baseline; chorded for Air Quality, normally "modal")
- Scrutinize baseline results
- Apply system improvements (first take critical look at CLEEN data)
- Scrutinize improvement scenario results (analysis, comparisons, etc.)
- Assess Air Quality impacts
- Documentation

We are here

- 1. Refresher: Approach → Initial Results
- 2. Spring Rerun
- 3. Future Analysis Improvements
- 4. Questions

Future Analysis Improvements

- Extend analysis timeframe
 - 2040 at a minimum, ideally 2050 examining TAF extension to 2050
 - Explore connection to APMT-E for AC retirements
- Expand improvement scenarios
 - New aircraft configurations out to 2050 leverage work of NASA
 - Mission specification changes (i.e., PARTNER Project 43 led by Stanford)
- Operational Improvement changes:
 - Automate derivation of efficiency factor
 - Radar-based modeling path → incorporate advanced operations research (e.g., Cruise Altitude/Speed Optimization)
- Comparison to CAEP Trends Assessment (TAF-M int'l. vs. CAEP at a "route-group" level)
- Use ANG-5 SWAC outputs to inform delay growth
- General Aviation / military noise sensitivity
- Leverage alt fuels work (e.g., Alternative Fuels Transportation Analysis Tool)
- Align with 2015 US Climate Action Plan needs (i.e., shape analysis to meet requirements, e.g., int'l. focus, 2050, etc.)

- 1. Refresher: Approach → Initial Results
- 2. Spring Rerun
- 3. Future Analysis Improvements
- 4. Questions

Backup Slides

Results – Energy-Efficiency

Highlights

- Initial analysis suggests goal requires additional measures beyond those considered here
- Savings associated with Alt Fuels and Operational Improvements too small to be visible
- □ Study suggests normalizing by available seat-miles as a better measure of productivity; results in performance 13% higher (worse) than D2025 goal, rather than 21% (as shown in figure)

Analysis provides a 'first cut' at possible impacts of considered improvements

Results - Noise

Highlights

- Initial analysis indicates that the 2018 goal is achievable
- Differences between Destination 2025
 Inventory and Baseline Scenario:
 - Use of 2010 Census
 - Operations counts
 - Improved tracks and usage rate data
- Analysis assumes constant population density based on 2010 census
- Changes in operational conditions, such as new runway infrastructure, are not considered and these could reduce exposure

- * Exposure reflects 2010 Census population densities throughout the analysis period
- ** Operational improvements were assumed to have zero net effect, and the effect of alternative fuels was assumed to be negligible

Note: The nearly constant exposure level of the Core Improvement Scenario (2018-2025) is a derived result rather than an assumption of the Study methodology

Analysis provides a 'first cut' at possible impacts of improvements considered

