Continuous Lower Energy, Emissions and Noise (CLEEN) Program

Program Update

Presented to: REDAC E&E Subcommittee By: Levent Ileri, CLEEN Program Manager Date: March 26, 2014

Outline

- Aviation Environmental Goals
- CLEEN Overview and Goals
- Completed Technology Demonstrations
- CLEEN Technologies Updates
- CLEEN II Update
- Summary

Aviation Environmental Goals and Solutions

NextGen Environmental Goals

- Absolute reduction of significant *community noise* and *air quality* emissions impacts
- Improve NAS *energy* efficiency and, supply of and access to, alternative fuel sources
- Limit or reduce the impact of aviation Greenhouse Gas (GHG) emissions on the global climate
- Reduce significant aviation impacts
 associated with *water quality*

NextGen 5 Pillar Env. Approach

- P1: Improved Scientific Knowledge and Integrated Modeling
- P2: New Aircraft Technologies
- P3: Sustainable Alternative Aviation Fuels
- P4: Air Traffic Management Modernization and Operational Improvements
- P5: Policies, Environmental Standards, and Market Based Measures

Continuous Lower Energy, Emissions and Noise (CLEEN)

- 5 yr effort to accelerate technology commercialization
- Reduces aircraft fuel burn, emissions and noise
- Renewable alt fuels, and alt fuel engine tests
- 50% cost share; total FAA budget: ~\$125M

Boeing

-Ceramic Matrix Composite (CMC) Nozzle

DE divergent trailing edge Figiet Figiet Core-to of Under side of outboard poton of wing MIST-5813

-Adaptive Trailing Edge

Rolls-Royce

-Ceramic Matrix Composite (CMC) Blade Tracks

-Dual-Walled Turbine Airfoils

Honeywell

-Increase engine efficiency, reduce engine weight, higher temp engine, improved higher turbine cooling

Pratt & Whitney

-Ultra-high Bypass Ratio Geared Turbofan

General Electric

-Twin Annular Pre-mixing Swirler (TAPS) II Low NOx Combustor

-Open Rotor

-Flight Management System / Air Traffic Integration

-Flight Management System / Engine Integration

CLEEN Program Goals

Develop and demonstrate (TRL 6-7) certifiable aircraft technology

CORNERS OF THE TRADE SPACE	CLEEN (N+1) (EIS 2015-18) Ref: B737/CFM56-7B	N+2 (2020)* Ref: B777-200/GE-90	N+3 (2025)*
Noise (cum below Stage 4)	-32 dB	-42 dB	-52 dB
LTO NO _x Emissions (Below CAEP 6)	-60%	-75%	better than -75%
Aircraft Fuel Burn	-33%	-50%	better than -70%

* Technology Readiness Level (TRL) for key technologies = 4-6

Advance use of "drop-in" renewable alternative fuels

Completed Technology Demos

CLEEN Technology Assessment Criteria

- Vetted tools compatible w/ AEDT
- Environmental perf & benefits at aircraft & fleet level
- Can identify synergistic technologies
- Can refine models with proprietary data

Role of Technology Assessment

- Develop tools for effective technology assessment
- Assess suitability, environmental benefits and impact of aircraft technologies & alternative fuels on
 - Aircraft performance
 - Fleet operations
 - Environmental and economic policy
 - Global climate change
- Evaluate production costs & timeframes for new aircraft designs
- Compare tool results with CLEEN company estimates
- Foster collaboration and consensus among academic, commercial and governmental institutions

GE CLEEN Technologies Updates

TAPS II Combustor

- Completed design, manufacture, lab rig, sector, full combustor rig, and engine core test (TRL 6)
- Demonstrated in rig and core engine test > 60% NOx margin to CAEP/6, exceeding CLEEN goal.

Open Rotor

- Completed design, fabrication, and wind tunnel testing of modern scaled blades in partnership w/ NASA
- Fuel burn & noise significantly reduced for M=0.8 flight quieter than current single aisle aircraft

Targeted fuel burn, emissions, and noise reductions

GE CLEEN Technologies Updates

FMS/ATM Integration

- Completed Dynamic Quiet Climb & Wind Input Optimization
- Completed Trajectory Sync Simulation (TRL 6)

2014 Activities:

Trajectory optimization

FMS/Engine Integration

- Adaptive engine control
- Vehicle health management
- Flight-propulsion control

2014 Activities:

 Further development, preparation for engine testing

Targeted fuel burn and noise reductions

Boeing CLEEN Technologies Updates

Accomplishments:

- Adaptive trailing edge project complete (TRL 7), including flight demo
- CMC nozzle ground test complete (TRL 6)
- Alternative fuel material compatibility testing complete

Photo: Bob Ferguson

2014 Activities:

- CMC exhaust nozzle flight test (TRL 7)
- CMC exhaust nozzle second design cycle and fabrication trials

Targeted fuel burn and noise reductions

P&W CLEEN Technologies Updates

Ultra High Bypass Geared

Turbofan with Advanced Fan

<u>System</u>

 Completed technology and demonstrator engine detailed design

2014 Activities:

- Hardware fabrication, test planning for demonstrator engine
- Fan rig test preparation

Alternative Jet Fuels

• Engine and combustor testing of alternative jet fuels from multiple production pathways

Ultra High Bypass Geared Turbofan (GTF)

Wind Tunnel Tests

Ground Test

Targeted fuel burn and noise reductions

Honeywell CLEEN Technologies Updates

Fuel Burn Reduction Technologies

 Achieved TRL 6 for alloy 10 turbine disk material

2014 Activities:

- Core and engine tests to bring other technologies to TRL 6
- Alt fuel testing

Alternative Jet Fuels

- Completed study on impact of aromatics on materials
- Completed biofuel Life Cycle Analyses (LCA) with MIT

High T3• Low leakage air-air sealsImpeller• Advanced materials

Targeted fuel burn reduction

Rolls-Royce CLEEN Technologies Updates

Dual Wall Turbine Airfoils

- Completed casting trials
- Completed preliminary design

2014 Activities:

- Detailed design
- Initial hardware delivery

CMC Blade Tracks

• First ground engine test complete

2014 Activities:

• Further testing

Novel Alternative Fuels Project

• Lab, rig, and APU testing complete

Blade tracks/shrouds and dual wall turbine airfoils

- Increased temp
- Reduced weight
- Improved SFC

CLEEN and Next Steps

- CLEEN has already successfully accelerated environmentally beneficial technology development
 - TRL 5 wind tunnel tests demonstrated open rotor significantly reduces fuel burn and noise without reducing cruise speed
 - TRL 6 engine demo shows TAPS II combustor meets NOx reduction goal and is expected to enter service in 2016 (LEAP-X)
 - TRL 6 engine demo of CMC exhaust nozzle showed good structural performance (i.e., RR blade tracks)
 - TRL 6 simulation of flight management system / air traffic system trajectory synchronization was a success
 - TRL 7 flight test shows ATE improved aero performance & drag
- Based on success FAA plans to pursue CLEEN II
- CLEEN II could provide additional interagency collaboration opportunities

CLEEN vs CLEEN II Program Goals

Develop and demonstrate (TRL 6-7) certifiable aircraft technology

CORNERS OF THE TRADE SPACE	CLEEN 2010-2015	CLEEN II 2015-2020
Noise (cum below Stage 4)	-32 dB	-32 dB
LTO NO _x Emissions (Below CAEP 6)	-60%	-75%
Aircraft Fuel Burn	-33%	-40%

* Technology Readiness Level (TRL) for key technologies = 4-6

Advance use of "drop-in" renewable alternative fuels

CLEEN II

- Program model based on successful CLEEN I
 - Requires cost share and tech maturation from TRL 3-5 to demonstration at TRL 6-7
 - Program work conducted 2015-2020
 - Requires industry to show path to commercial product so tech realizes benefits in the fleet with EIS 2020-2025
- Milestones:
 - Market survey conducted May-July 2013
 - ✓ Draft solicitation released publicly November 2013
 - Industry day held in Washington D.C. December 2013
 - Obtaining internal approvals for planned release of solicitation early summer 2014
 - Contract award and work planned to begin May 2015

Questions

