Aviation R&D Landscapes

REDAC

Maureen Molz and Team

April 11, 2019

What is a Landscape?

A Landscape is a collection of research drivers that provides information about their potential impacts to the industry.

- Research Drivers
 - A force or motivation that stimulates R&D investment
- Impacts
 - Industry Objectives
 - Emerging Technologies
 - Envisioned Operations

Developing the R&D Landscapes

- Research drivers and their impacts will be described within the context of each of the 6 research domain areas.
- A document will be produced to effectively communicate Aviation Industry Landscape.

R&D Landscape Process

- Team composed of FAA research domain leads, MITRE, ANG-E4 and senior management
 - R&D Landscape team formed and initiated on October 31, 2018.
 - Bi-weekly team meetings, with additional research domain specific meetings as needed.

Tasks involved:

- Develop structure for data collection
- Ensure traceability of research drivers to source documentation

Research Landscapes and Planning

R&D Landscape Schedule

- ✓ Develop plan for Landscape development
- ✓ Deliver Landscape to REDAC for input
- Produce Landscape Document

Completed November 2018 Completed Spring 2019 June 2019

Subcommittee Scope

- Help FAA understand the aviation industry's strategic focus
 - Review the driver list and identify any missing items.
 - Identify the characteristics or individual components of each driver and the timeframe to maturity.
 - Identify if the driver presents challenges that the FAA should pay attention to.
 - Identify entities (academia, government, or industry) that are currently conducting work related to this driver.
- Separate from F&Rs, provide subcommittee Workbook input to the DFO's prior to the full REDAC meeting on 4/11.
- Be prepared to summarize during the full REDAC meeting on 4/11.

1	Supersonic Flight	
ldentify th maturity.	e characteristics or individual components of each driver and	the timeframe to
	Characteristics or Individual Components	Time Perio
ldentify if	the driver presents challenges that the FAA should pay attenti	ion to.
ldentify er to this driv	ritites (academia, government or industry) that are currently c er.	conducting work relat
ldentify er	itities (academia, government or industry) that are currently c 	conducting work relat
ldentify er to this driv	tities (academia, government or industry) that are currently c er.	conducting work relat
ldentify er to this driv	titities (academia, government or industry) that are currently c ter.	conducting work relat
ldentify er to this driv	itities (academia, government or industry) that are currently c rer.	conducting work relat
ldentify er	ntitles (academia, government or industry) that are currently c	conducting work relat

Research Driver List

- Supersonic Flight
- Urban Air Mobility
- Growth of Mixed Operations (Piloted, Autonomous, Unmanned
- New Mission Types
- Non-Traditional NAS Access Points
- Space Operations
- Enable Routine Small UAS Operations Beyond Visual Line of Sight (BVLOS)
- Autonomous ground service equipment at airports
- Aircraft Command and Control Using Automation and Remote Sensing Technology
- New Vehicles or their Components Which Make Use of New Technologies, Software, or Materials
- Certification using New Technologies, Standards, or Processes
- Remote/Virtual Technologies
- Advances in Electric or Hybrid Electric Propulsion

- Future Fuel Technologies
- New Technologies to Airport Pavement Infrastructure
 and Design
- Information Assurance and Security for All Operations (cyber-security)
- Big Data Analytics and Techniques
- Human-Machine Teaming and New Technology
 Interfaces
- Artificial Intelligence
- Increased Connectivity by Cyber-Physical Systems (Internet of Things Technologies)
- Crowd Sourcing Weather Data
- Advancement in Position, Navigation, & Timing Technology
- Risk-Based Decision-Making techniques and analytics
- Infrastructure Resiliency and Continuity of Operations
- New Medical Technologies and New Substances
 (Medications, Drugs, Etc.)

Subcommittee Roundtable Discussion

- Impressions
- Approach
- Summary of comments

Backups

Subcommittee Approaches

Airports

- •Evaluated each driver based on importance (1-5)
- Identified any links between drivers
- •Discussed concerns/issues at a high level
- Identified subcommittee members to develop workbook response for each of the drivers

Aircraft Safety

- •Went through full list of drivers as a group
- •Identified major issues concerning each driver
- •Identified some additional source documentation
- •Captured notes and planned for additional coordination among members.

Human Factors

- Struggled with the overall intent of the exercise and how FAA planned to utilize inputs
- Reviewed the drivers and had discussion as to definitions of each to ensure full understanding
- Discussion about how their present emerging issues document mapped to these drivers.

Environment and Energy

- •Struggled with the overall intent of the exercise and how FAA planned to utilize inputs
- Identified top five drivers related to E&E
- •Identified subcommittee members to develop workbook response for each of these 5.

NAS Operations

- •Reviewed full list of drivers, identifying ones that pertained to their subcommittee and grouped them as:
- Emergent Operations
- Infrastructure
- Data
- •Assigned all subcommittee members task of filling out workbook and providing back to the chair for consolidation

Subcommittee Driver Changes/Additions – Initial Feedback

Airports

- Added Drivers:
 - Aviation System Sustainability
 - Aviation System Capacity
 - Future Security Technologies

Aircraft Safety

- <u>Changed Drivers:</u>
 - Enable Routine Small UAS
 Operations BVLOS
- Added Drivers:
- In-Time System-Wide Safety assurance (e.g. Digital Twinning)
- Runway Friction & Braking

Human Factors

- •Changed Drivers:
- •Human-machine Teaming & New Technology Interfaces – Split into two separate drivers
- •Artificial Intelligence Category needs to be broadened or reframed
- •Added Drivers:
- Training
- Pilot Demographics
- Larger UAS Integration

Environment and Energy

- <u>Changed Drivers:</u>
 - New Vehicles or their Components Which Make Use of New Tech, Software or Matls → Sustainable Growth of Subsonic Transports Through Novel Vehicle Configurations, Operational Concepts and New Technologies

NAS Operations

- <u>Changed Drivers</u>
- Increased Connectivity by Cyber-Physical Systems (Internet of Things Technologies) & Spectrum (4G/5G)