Human Factors Engineering (HFE) in Gulfstream Flight Deck Development and Certification

Susan Taylor September 17, 2014

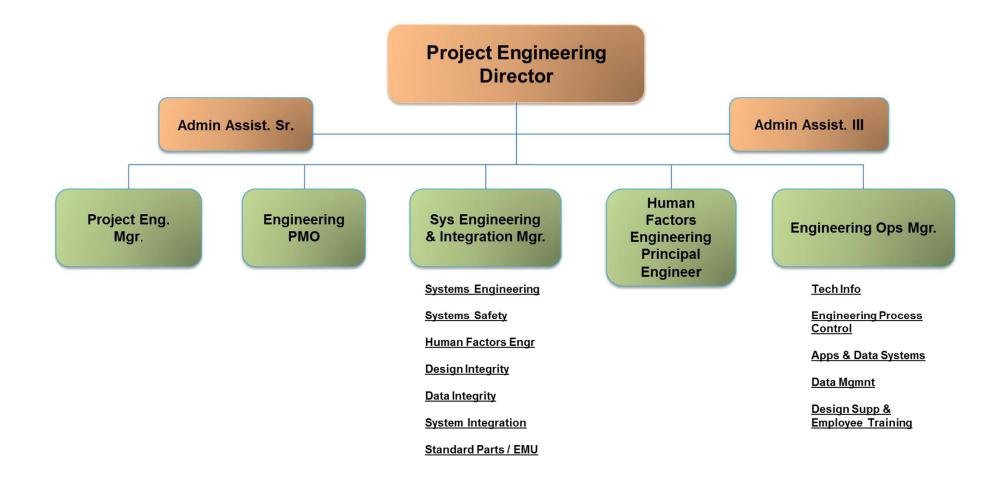
1

Gulfstream Current Product Line

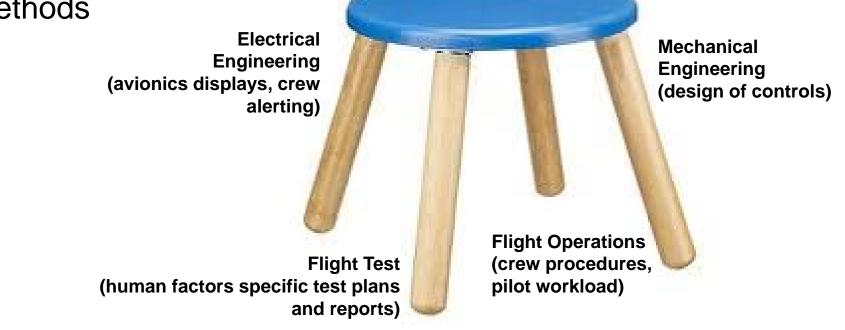
Gulfstream - The Need for Speed

"It Saves Time – The Most Valuable Resource"

Technology Driven by Safety, Customers

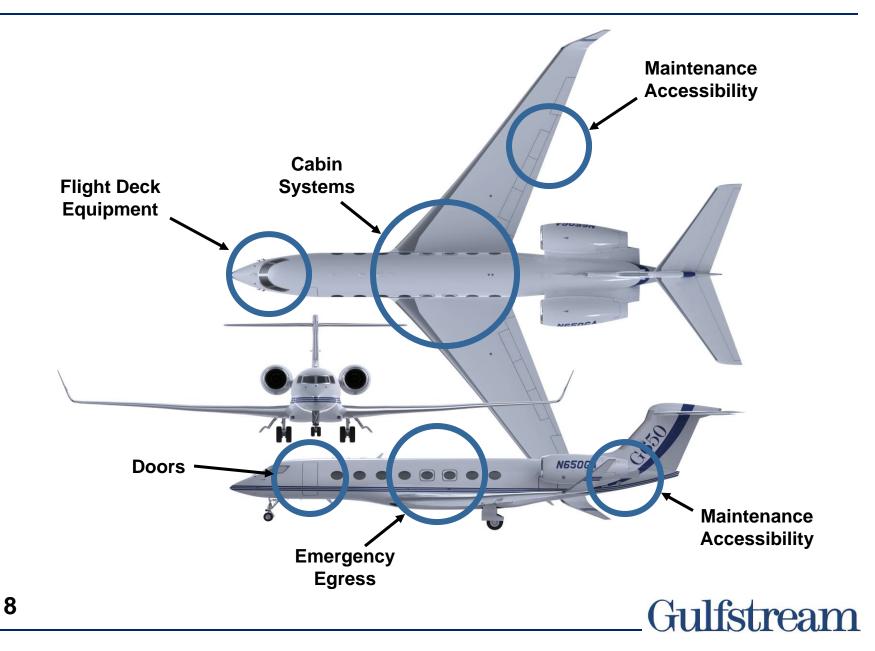

- Accident / incident data is continuously reviewed to assess new flight deck designs
 - Pilot input solicited at each stage of design
- Performance changes affect flight deck technology
 - Example: supersonic nose and fuselage size
- Ongoing investment in Flight Deck technology
 - Ability to go anywhere, anytime
 - More displays, simplification where needed
 - Synthetic Vision, Enhanced Vision, External Vision

HFE Integral Part of Flight Deck Design Process at Gulfstream

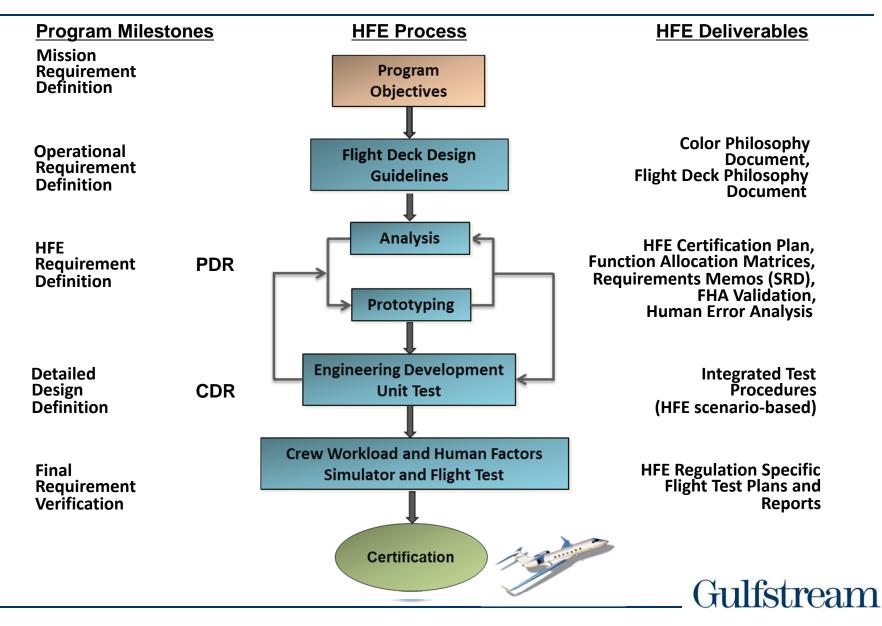

HFE Resides in Systems Engineering

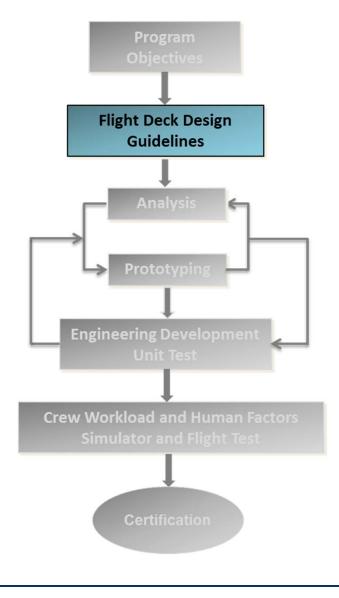
HFE Role in Gulfstream Engineering

- Generate Data Driven Requirements
- Develop and Apply Structured Test Methods



Human Factors


Engineering


Where Does HFE Get Applied?

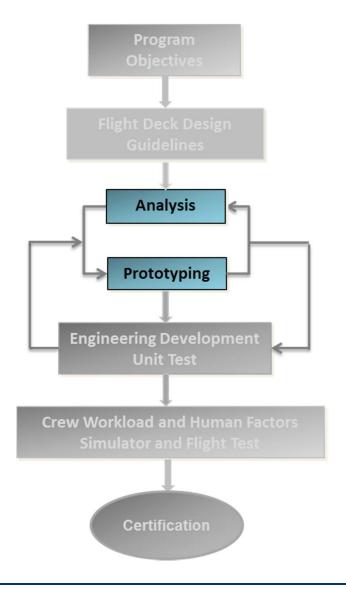
HFE Process Applied to All New Programs

Flight Deck Philosophy

- Referenced from top level requirements, ARP4754 compliant
- Philosophy Elements
 - Pilot Characteristics / CRM Roles
 - Certification Requirements
 - Alerting Guidelines
 - Control Interface Guidelines
 - Crew Error Mitigation
 - New and Novel Criteria
 - Automation Guidelines
- Created in DOORS to Assign Top Level HFE Requirements for Traceability
 Gulfstream

New and Novel Classification Criteria

- New and Novel Defined as Not Previously Certified
 Implementation
- All New and Novel Identified in HFE Certification Plan
- Classifications per AC/AMC 25.1302 plus the following:
 - Complexity
 - Number of information elements used by the crew, display or control
 - Integration
 - Interactions or dependencies among systems (<2=low, 2-4=moderate, >4=high)
- New and Novel Intended Functions Clearly Described, Specifically Tested

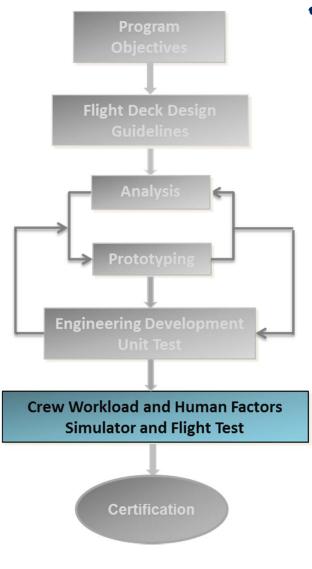


New and Novel Development Testing

- New and Novel Continuously Scrutinized Throughout Process
 - New and Novel Items Area of Focus for Human Error Analyses
- Crew Error Emphasis in Developmental Testing (ITPs, FSI Simulator Test if required)
- Test Points Specifically Developed to Target Intended Function
 - Addressed in early scenario-based testing as part of ITPs, including failure cases
 - Tested during Crew Workload and Human Factors Certification Simulator and Flight Test

Analysis / Prototyping

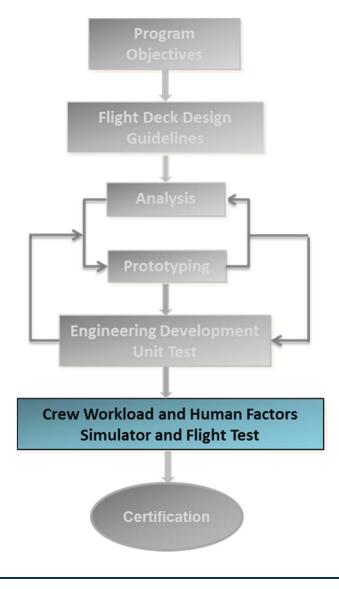
- Simulation Models Used to Derive HFE Requirements
 - CATIA V5 Human Builder
 - 3DSSPP Strength Model
 - OPTIS SPEOS
 - Lumicam
 - Process Simulation
 - Display Animation (iDATA tool)
- Physical Prototypes Used to Validate Early HFE Requirements
 - Operational Prototyping and Evaluation Lab (OPEL)
- System SRDs in DOORS
 Gulfstream


Engineering Development Unit Test

- Two Types of HFE Testing Performed During this Stage
 - System-Specific
 - Flight Controls Aspects (e.g., Shaker Evaluation)
 - Displays (e.g, Standby Instrument, 3D AMM, etc.)
 - Integrated Test Procedures (5)
 - Scenario-Based
 - Phase of Flight Specific
 - Requirements Based
- Problem Reports (PRs) Generated from Both Types of Testing

Gulfstream

Certification Simulator Test

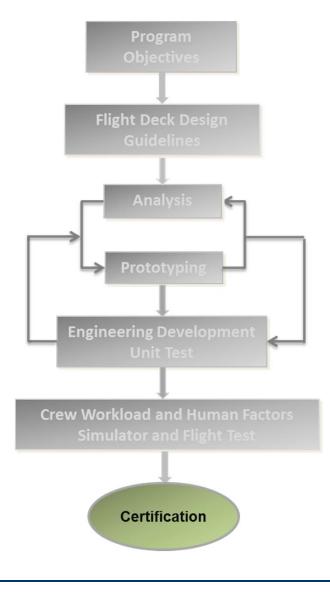


Simulator Test

- Flight profiles (Day VMC, Night VMC, Day IMC, Night IMC)
- Multiple crews
 - 5'2" to 6'3" pilot stature
 - Low time pilot, demo (line) pilots included
 - FAA/EASA test pilot participants
- Failures assessed
- New and novel intended function test points included
- Real ATC simulated
- FSI familiarization training week before
- Simulator test familiarization session

Gulfstream

Certification Flight Test



Flight Test

- Minimum four FAA/EASA pilots; with GAC safety pilot
- Left/right seat combinations
- Multiple approach types
- Lighting Characteristics
- Vibration effects
- Validates simulator test results
- Verifies any items that could not be tested during simulator test
- Addresses PRs identified during simulator test
- Includes high density airport

Certification

- All Deliverables per HFE
 Certification Plan submitted
 - Analyses
 - Test Plans and Reports
 - Supporting Analyses (e.g., Fan Blade Out, High/Low Temp Analysis, Emergency Egress, etc.)
 - Summary Compliance Report Completed
- All PRs Disposed Of (e.g., AFM revisions, future software revisions, etc.)

Implementing An HFE Function in Engineering

Benefits of Standardizing HFE Methods

- Well Accepted Good Engineering Design Practices
 Address HFE As Early As Possible
- HFE Documentation Provides Rationale for Design Decisions (Natural Fit for ARP4754 Process)
- Early Simulation Modeling to Generate Requirements Reduces Problems with Physical Prototypes
- Multidiscipline Design Team Sensitizes Other Engineering Disciplines to HFE, Usability
- HFE Contributes Structured Approach to Interface Design vs. Ad Hoc or "Shoot From the Hip" Design
 - Considers full range of pilot sizes, types, experience

- 1. Industry Acceptance of HFE Role as Integral to Aircraft Development
 - Clearly Defined HFE Role in Certification Helps Reduce Confusion (e.g., AR role)
 - Ambiguity Between Groups (e.g., Flight Test; STC vs. Amended vs. TC – how much HFE support is required?)
 - Documented Methods Standardize Role

Recommendation: Establish HF AR in Flight Test; Support HFE Methods Standardization

- 2. 25.1302 Compliance, Human Error Analysis Difficult to Standardize
 - Ambiguous language (HFE-ese)
 - Differences between authorities on how to operationalize, level of authority involvement required
 - Gulfstream uses combination of analysis, simulator, and flight test; typically situation-specific
 - Human Error Analysis complements safety analysis, but safety looks for quantitative approach
 - HFE research data needed to provide hard numbers; difficult to justify cost for OEM

Recommendation: Provide Specific Methods for 25.1302, Including Human Error Analysis Methods

Gulfstream

- 3. Simulation Methods Reduce Prototyping and Flight Test Time
 - Human Modeling Easy Benefit Because of Industry Transition to Electronic Design Tools
 - Strength Modeling Easy Benefit Because Quantitative Output
 - Interface Prototyping Tools Typically Require Dedicated Experts (and More Resources)
 - More simulation tools (lighting simulation, process, etc.) needed

Recommendation: Provide List of Approved Simulation Methods To Use for Certification

- 4. Crew workload testing
 - Situation-specific (e.g., display symbology vs. global)
 - Subjective instruments still best method for certification
 - Easy to administer in flight; easy for pilots to understand
 - Video recording supports pilot ratings / comments
 - Flight Technical Error, if applicable
 - Quantitative Methods very useful, situation specific
 - Airspeed, ATC communication lapses, etc.

Recommendation: Support Research on Secondary Task Measures for Crew Workload to Validate Subjective Data

- 5. Staffing Qualified HFEs
 - Hard to Fill Positions; Gulfstream Engineering Has Identified HFE as a Critical Need
 - Skill set unique combination of engineering/science and psychology: OJT required and breadth of system knowledge creates steep, and lengthy learning curve
 - BCPE attempted to standardize, but probably needs revision in light of recent FAA changes
 - 25.1302
 - More emphasis on HFE, HF AR qualifications

Recommendation: Partner with Universities to Develop Curricula that Ensures Qualified Human Factors Engineers

Future Directions

- Gulfstream continues research and evaluation of potential solutions or new technologies that:
 - Directly enhance operator safety and performance
 - Sustain (and improve) a very high dispatch reliability
 - Provide efficiencies to meet future performance requirements
 - Target flight deck solutions that support supersonic travel

