

Federal Aviation Administration

Dry Ice - CO₂ Fact Sheet for Pilots and Flight Crew

WHAT IS DRY ICE AND IS IT HAZARDOUS?

Dry ice is:

- Solid, frozen carbon dioxide (CO₂) pressed into dry blocks or pellets
- Used as a refrigerant to package items that must remain cold or frozen during transport such as biological samples, vaccines, or foodstuffs
- When dry ice melts, it does not pool on the ground or form a puddle, it sublimates or changes directly from a solid to a gas
- Dry ice can be hazardous in enclosed spaces that are not well-ventilated due to CO₂ gas inhalation/ overexposure; skin contact with dry ice can result in frostbite

WHAT IS CO₂ GAS AND IS IT HAZARDOUS?

- CO₂ gas is:
 - Naturally occurring component (0.04%) of the atmosphere
 - A physiological respiratory gas
 - Colorless, odorless, and nonflammable
 - 1.5 times heavier than air; tends to accumulate near the ground
- Increased levels of CO₂ cause drowsiness; higher concentrations increase the rate and depth of breathing, increase heart rate, and can cause irregular heartbeats (arrhythmias)
- CO₂ causes suffocation by displacing and diluting the amount of oxygen (O₂) in the air, leading to hypoxia (lack of oxygen)

SYMPTOMS OF CO₂ OVEREXPOSURE AND HEALTH EFFECTS

0.04% CO₂ (400 ppm*): typical outside air CO₂ levels; no physiological symptoms

0.5% CO₂ (5,000 ppm): OSHA occupational exposure limit; subtle to no physiological symptoms

 CO_2 detector/alarm set at 0.5% (5,000 ppm); don O_2 mask and breathe 100% emergency O_2

1% CO₂ (10,000 ppm): drowsiness

- 2% CO₂ (20,000 ppm): headache and difficulty breathing during exertion
- 3% CO₂ (30,000 ppm): mild sleepiness, reduced hearing, sweating, increased heart rate, difficulty breathing at rest;

Hazardous, should already be wearing 02 mask

5% CO₂ (50,000 ppm): lethargy, dizziness, confusion, rapid breathing/shortness of breath (noticeable inability to breathe fast and deep enough)

- 8% CO₂ (80,000 ppm): dimmed vision, muscle tremor/ twitching, unconsciousness
- > 10% CO₂ (100,000 ppm): immediate unconsciousness, seizures and death

* parts per million

Symptoms of CO₂ overexposure are different from hypoxia symptoms. Pilots and flight crew should not rely on their "typical hypoxia symptoms" to detect CO₂ overexposure. Standard hypoxia awareness training IS NOT training for overexposure to CO₂ gas

CO2 GAS DETECTORS/SENSORS

- CO₂ detectors/sensors should be worn as low on the body as possible (e.g., attached to a belt or suspended on a neck lanyard)
- Non-dispersive infrared (NDIR) CO₂ detectors/ sensors are the most common type of detectors/sensors; however, they are affected by pressure. NDIR CO₂ detectors/sensors used in-flight must have a self-calibrating algorithm or allow manual input concerning pressure
- Pulse oximeters are <u>not</u> recommended; pulse oximeters are ineffective for detecting CO₂ gas (by the time a pulse oximeter detects a decreased blood oxygen saturation level, CO₂ gas build-up is already at a hazardous level)

FIRST AID/MEDICAL TREATMENT

- Exit the space immediately (if able)
- Seek medical attention

OTHER MITIGATION STRATEGIES TO CONSIDER

- Airplane must remain well-ventilated during cargo loading/unloading and during flight when transporting dry ice (e.g., leave cargo doors open as much as possible, both air packs and APU should remain running, increase ventilation as needed in-flight)
- Consider having emergency oxygen readily available

ACTIONS IF YOU DEVELOP SYMPTOMS* OR CO₂ GAS DETECTOR/SENSOR ALARMS

- 1. Don oxygen mask, ensure 100% oxygen is selected on the regulator
- 2. If CO₂ levels do not decrease, consider diversion to nearest suitable airport

Drowsiness, reduced hearing, sweating, increased heart rate, lethargy, dizziness, confusion, difficulty breathing, rapid breathing/shortness of breath

Provided by

Federal Aviation Administration Aviation Safety Civil Aerospace Medical Institute Oklahoma City, Oklahoma