

Contents

- Global Challenges
- Focus Topics
 - Low Boom Flight Demonstration Mission
 - Subsonic Technology Development and Demonstration Strategy
 - Urban Air Mobility Mission
 - Future Airspace
 - Energizing the U.S. Aeronautics Innovation Pipeline
 - Hypersonic Technology
 - Aerosciences Evaluation and Test Capabilities
- Summary

NASA Aeronautics Priorities FY20/21

FY20 / FY21 Priorities

- Successfully complete the ATM Technology Demonstration Project,
 Advanced Composites Project, UAS Traffic Management Project, and the
 UAS Integration into the NAS Project and communicate the benefits to our
 stakeholders and the American public.
- Successfully transition from traditional air traffic management to a UTMinspired, increasingly autonomous and collaborative air traffic management future.
- Drive U.S. leadership in Advanced Air Mobility through establishment of a community vision, development of the AAM National Campaign series and investment in priority research areas.
- Execute the LBFD Mission with rigor and discipline, including X-59 aircraft production and preparation for community response testing and flight operations.
- Establish and promote a vision for U.S. leadership in the next generation of
 commercial aircraft, working closely with the community to identify the
 highest priority technologies including appropriate applications of
 electrified aircraft propulsion, and fostering partnerships with industry to
 drive technology investment and advancement.

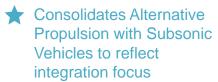
- Continue to integrate transdisciplinary research and fresh ideas into the ARMD portfolio through reimagining of CAS, better integrating fundamental research, and enhancing university engagements.
- Evolve NASA Aeronautics capabilities and our management policies to better integrate requirements and capability assessments into our management processes.
- Foster open communication among staff and management and enhanced engagement in ARMD day-to-day operations with an emphasis on building trust and encouraging all to assume positive intent from others.
- Evolve ARMD management structures (programmatic and mission support) to support ARMD transformation and agility.

NASA Aeronautics Strategies for Research

Safe, Efficient Growth in Global Operations

 Achieve safe, scalable, routine, high-tempo airspace access for all users

Innovation in Commercial Supersonic Aircraft


 Achieve practical, affordable commercial supersonic air transport

Ultra-Efficient Subsonic Transports

 Realize revolutionary improvements in economics and environmental performance for subsonic transports with opportunities to transition to alternative propulsion and energy.

Safe, Quiet, and Affordable Vertical Lift Air Vehicles

 Realize extensive use of vertical lift vehicles for transportation and services including new missions and markets

In-Time System-Wide Safety Assurance

 Predict, detect and mitigate emerging safety risks throughout aviation systems and operations

Assured Autonomy for Aviation Transformation

Safely implement autonomy in aviation applications

Global Challenges

A New Era of Innovation Emerging for Long-Haul Aviation

NASA Aeronautics' vision and leadership underpin U.S. industry's ability to win the future

NASA is on track to enable a new era of supersonic air travel that will further connect the world and establish a new market segment for U.S. industry

- Low Boom Flight Demonstration Mission on schedule
- Industry innovation has begun -Boeing/Aerion, Lockheed, Boom, GE

NASA has established the concepts and key technologies required to enable 2030s transports

- Next step is ground and flight validation of integrated technologies by the mid-2020s
- Industry ready to cost-share partnerships Boeing, GE, P&W, etc.

Global travel is predicted to more than double from 4 billion passengers annually today to over 8 billion annually in 20 years. This growth would support a nearly \$6.8 T commercial transport market over that same timeframe.

Europe is aggressively investing to capture the technology lead from the U.S. and adding taxes/regulation to drive emissions reductions. China is seeking to capture the fastest growing market in Asia-Pacific through government funded R&D. American technology leadership at risk.

A New Era of Urban and Thin Haul Flight is Emerging

NASA Aeronautics' vision and leadership have stimulated aviation and non-aviation communities to pursue transformative aviation capabilities

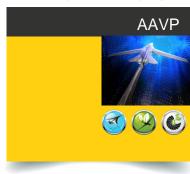
NASA led the U.S. community with the UAS Traffic Management (UTM) and UAS in the NAS projects

- Integration of commercial systems is now beginning to emerge
- UTM is now the accepted concept all over the world

Advanced Air Mobility (AAM) is fast on the heels of UAS integration

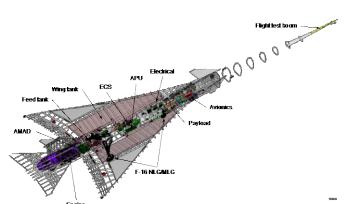
- U.S. industry looking for NASA leadership now to help overcome key barriers
- Aggressive industry timeline for scalable operations creates challenging requirements

Significant Private Sector Investment – Aircraft Designs Maturing Rapidly – Competitive International Landscape – Advancing Regulatory Environment – Local/Regional Community Awareness and Interest


Low Boom Flight Demonstration Mission

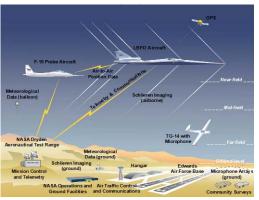
Enabling Commercial Supersonic Flight

ADVANCED AIR VEHICLES



- Requires proof of new design approaches, test procedures and response metrics

 - No relevant data exists to define limits
 - Community data from large, diverse population is a requirement
 - Standard must be accepted internationally


Low Boom Flight Demonstration Mission Phases

Phase 1 – X-59 Aircraft Development (FY18 - 22)

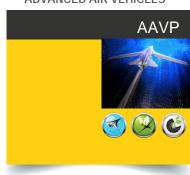
- Detailed Design
- Fabrication, Integration, Ground Test
- Checkout Flights
- Subsonic and Supersonic Envelope Expansion

Phase 2 – Acoustic Validation (FY22 - 23)

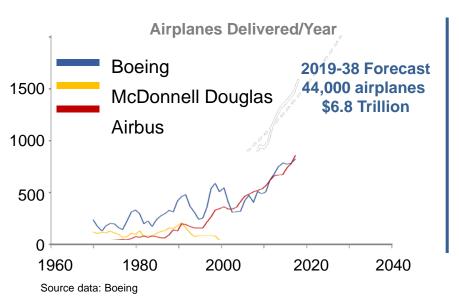
- Aircraft Operations / Facilities
- Research Measurements & Capabilities

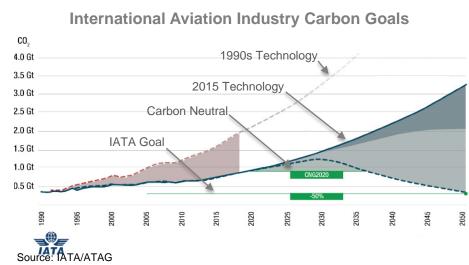
Phase 3 – Community Response (FY24 - 26)

- Initial community response overflight study
- Multiple campaigns (4 to 6) over representative communities and weather across the U.S.


Subsonic Technology Development and Demonstration Strategy

NASA – U.S. Industry Partnership to Enable Transformational 2030's Commercial Vehicles


ADVANCED AIR VEHICLES



Subsonic Transport Airplane Market

Global competition and environmental pressure expanding

- European manufacturers reaching parity
- New competitors in key Asia-Pacific growth market
- U.S. leadership at risk

- Market-based measures in place
- New ICAO CO₂ and nvPM standards starting in 2020
- Social pressure growing, e.g., flight shaming
- U.S. industry must meet global standards

Ultra-efficient subsonic transport technologies address both needs and offer operating cost benefits to airlines

Four Key Subsonic Transport Technologies

Create new "S" curve for the next 50 years of subsonic transports

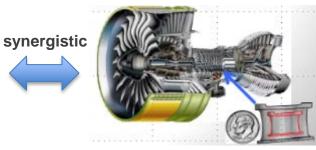
Electrified Aircraft Propulsion

- Improved efficiency/emissions
- Mild hybrid systems promising for early 2030s

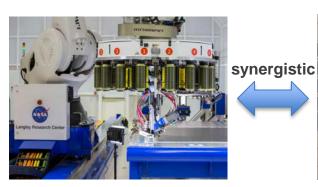
Small Core Gas Turbine

- Increased gas turbine efficiency
- Facilitates airframe integration conventional or FAP

Transonic Truss-Braced Wing


- Increased aerodynamic and structural efficiency
- Propulsion system integration and high rate production

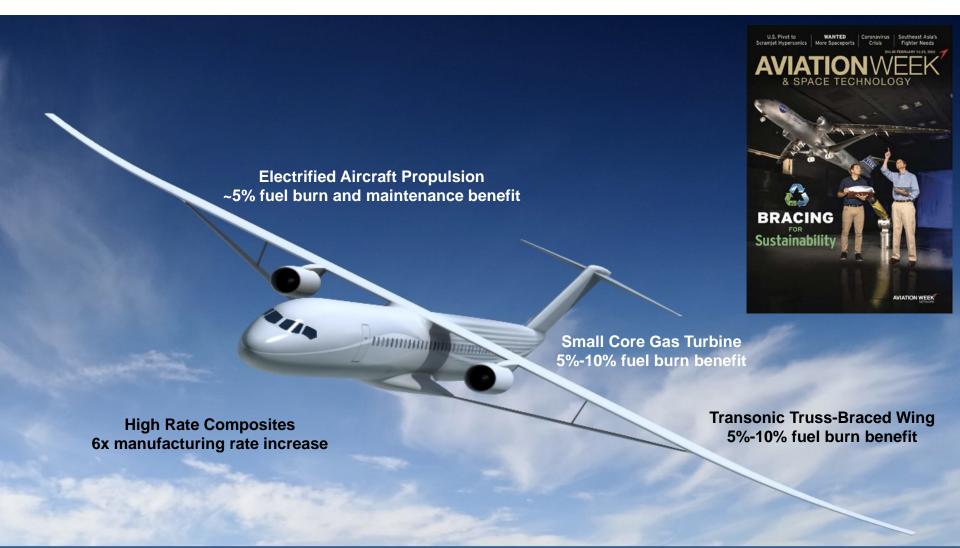
High Rate Composites


- Critical to U.S. competitiveness via reduced delivery time
- Reduced time/cost to market with increased performance

Electrified Aircraft Propulsion

Small Core Gas Turbine

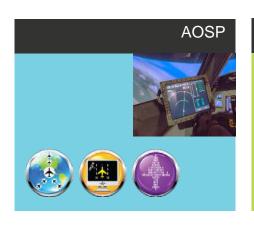
High Rate Composites

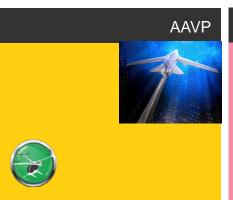


Transonic Truss-Braced Wing

Advance key technologies to TRL 6 by 2025-28 to create early 2030s market opportunities for U.S. industry

Transonic Truss-Braced Wing Unifying Construct



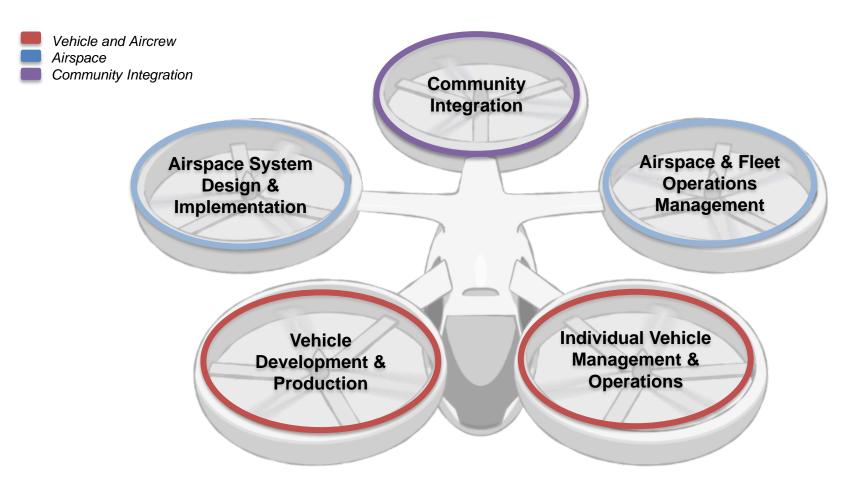

Ensure U.S. industry is the first to establish the new "S Curve" for the next 50 years of transports

Urban Air Mobility Mission

Advanced Air Mobility Community Outcome

AAM Community Outcome

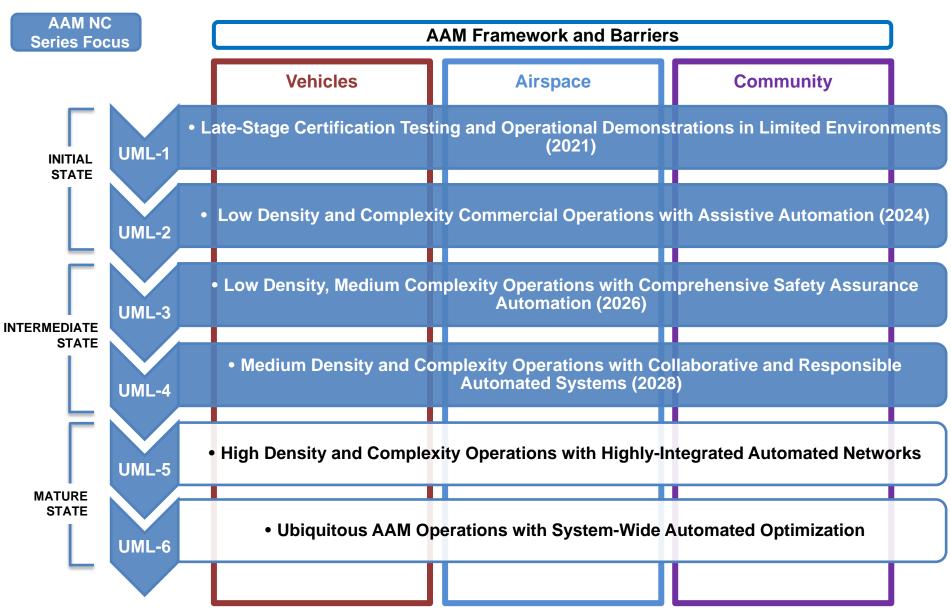
Deliver a validated


- 1) system concept and
- 2) corresponding set of requirements

for a safe and scalable UAM transportation system.

Achieving a "system of requirements" will require enabling activities such as 1) the UAM Grand Challenge Series, 2) a robust Partnership Strategy, and 3) NASA ARMD Portfolio Execution

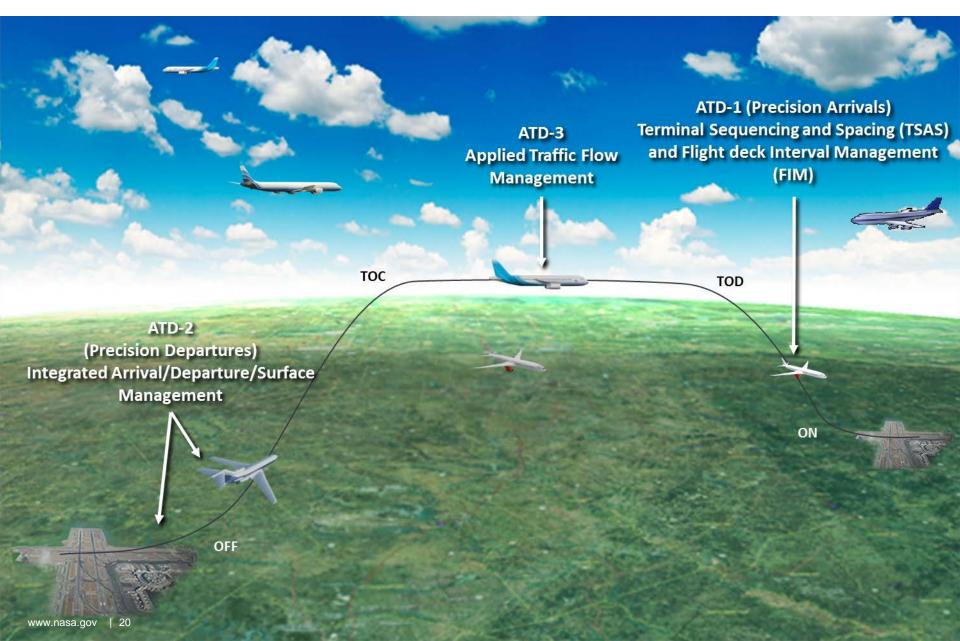
UAM Vision and Framework



Urban Air Mobility (UAM) Vision

Revolutionize mobility in and around metropolitan areas by enabling a safe, efficient, convenient, affordable, and accessible air transportation system for passengers and cargo


AAM Maturity Levels (UML) with Industry Timeline



Future Air Traffic Management

NASA's Contribution to the FAA NextGen Transformation

UTM Technical Capability Levels (TCL) Progression

Beginning with a UAS Traffic Management (UTM) convention in 2015, NASA has completed a series of UTM technical capability demonstrations highlighted by flight tests in Reno, NV and Corpus Christi, TX.

TCL1

Remote Population

Low Traffic Density

Multiple VLOS

Operations Validation of cloud-

based service oriented architecture

Completed 2015

TCL 2

Sparse Population

Low-Mod Traffic Density

Multiple BVLOS

Operations

Operators, and established federated 3rd party service model information sharing

Completed 2017

TCL 3

Moderate Population

Suburban Applications

Mixed Operations

Vehicle to Vehicle Communication

UAS Service Supplier (USS) data exchange

Completed 2018

TCL 4

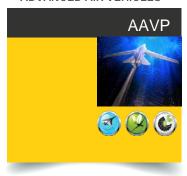
Dense Population

Urban Applications

Operational concept, technologies, and data exchanges for operations near large structures and in highly populated areas

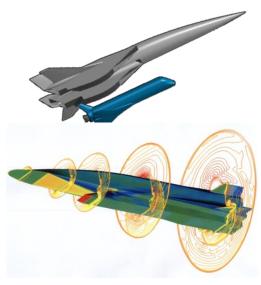
Completed 2019

Next Challenge: A More Highly Complex and Dynamic Airspace



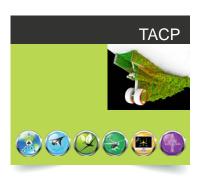
Hypersonic Technology

ADVANCED AIR VEHICLES


NASA Hypersonic Research

NASA's Hypersonic Technology Project supports the Nation by addressing key fundamental challenges for hypersonics

- Historically, NASA provided some of the key knowledge and technologies that paved the way for recent hypersonic programs
- In order to enable civilian applications and expanded defense missions we need reusability
- Experience with recent flight projects has helped illuminate where shortfalls in design capabilities exist



There is significant international competition to develop hypersonic capabilities and NASA plays a key role in laying the groundwork for taking the next steps.

Energizing the U.S. Aeronautics Innovation Pipeline

ULI is Already Having a Broad Impact

- University teams proposing innovative ideas to solve complex, multi-disciplinary, aeronautics problems
- Integrating diverse participants from the broader community
- Educating students by engaging them in aeronautics research

Universities 33 *75* Faculty 150+ Students Majors represented

Aerosciences Evaluation and Test Capabilities

Aerosciences Evaluation and Test Capabilities Portfolio

 In FY 2020, Aeronautics began to manage Aerosciences Evaluation and Test Capabilities (AETC) Portfolio to support ground testing across all Agency mission directorates.

Portfolio Objectives

- Strategically manage a critical portion of aerosciences ground test capabilities in support of Agency testing requirements
- Ensure the availability and ease of access of a minimum critical suite of aeroscience ground test assets that are necessary to meet the long-term needs of the Agency

NASA Ames Research Center (ARC) Moffett Field, CA

- Aerosciences ground test facilities deemed critical to Agency (i.e. the Portfolio)
- Operations, maintenance, new capability, test technology and CFD-experimental integration advancements investments

NASA Glenn Research Center (GRC) Cleveland, OH

NASA Langley Research Center (LaRC) Hampton, VA

www.nasa.gov | 28

Summary

Supporting a New Era in the U.S. Aviation Industry

- U.S. industry needs to develop significantly more efficient aircraft by the mid 2030s to remain competitive in the global marketplace - these new aircraft will use advanced technologies and systems pioneered by NASA.
- U.S. industry will develop new AAM vehicles to move people and packages through urban environments by the late 2020s - NASA will provide critical leadership to enable safe, scalable and low-impact deployment in the national airspace.
- With the FY 2021 Budget Request, NASA Aeronautics:
 - Will develop and demonstrate key enabling technologies in close partnership with the U.S. aviation industry to transform subsonic airliners market
 - Demonstrates electrified aircraft propulsion via flight testing, first flight in FY 2023
 - Will develop and demonstrate key enabling technologies in full partnership with the Advanced Air Mobility community to ensure the U.S. leadership in opening a scalable, safe, efficient, and environmentally acceptable market - This new capability will reduce groundbased traffic congestion, improve local air quality, and transform urban areas
 - Will deliver scientifically acquired data of community response to low sonic boom to the international and U.S. standards and rule making organizations (e.g., ICAO, FAA) to usher in renewed supersonic flight for the flying public
 - Will take the next steps beyond NextGen with the aviation community to advance research for a more flexible and dynamic airspace management system that supports traditional and new users with high levels of safety and efficiency