Research Landscape for the National Airspace System

Presented to: Research, Engineering and Development Advisory Committee (REDAC)

By: Steve Summer, Research Portfolio Branch

Date: October 7, 2020

Federal Aviation Administration

Aviation Innovation and Continued Advancements

Landscape Purpose

• Provide an effective tool to <u>communicate</u> the need for FAA research to ensure support of industry objectives and direction

 Provide an effective tool for <u>research planning</u> to ensure research investments are in the right areas & identify gaps requiring new or additional research

The Landscape

Categorized Research Drivers:

- 1. Advances in New Vehicles and New Missions New vehicle types, or existing vehicles operating in non-traditional ways.
- 2. Advances in Technology and Materials Cutting edge materials, manufacturing techniques, communications, airframe and propulsion systems, fuels, airport safety technologies and emerging airport pavement technologies.
- **3.** Advances in Data and Processing Power Advances to data and information management, and its impact on aircraft development, flight control, and ATM.
- **4. System Wide Advancements and Improvements** FAA priorities/objectives and continued improvements to the NAS.

Challenges for each driver listed in 3 areas*

- Airport and Ground Operation
- Operational and Safety
- Environmental

Research Landscape
for the
National Airspace System
2020-2030
Draft
Diait

Marked Drivers by expected maturity

- Near-Term (0-3 years)
- Mid-Term (3-5 years)
- Far-Term (5-10 years)

Driver Example: Supersonic Flight

Historically, supersonic aircraft were retired due to the costs of maintaining operations that met environmental noise restrictions as well as inefficient fuel consumption. However, more recently, a number of companies are actively working to develop quieter and more efficient Supersonic Transports (SSTs) for commercial use, which could become operational within the next several years. [6]

Mid-Term

Airport and Ground Operation Challenges

- Noise impacts (particularly during takeoff and landing)
- Airspace and airfield capacity due to special procedures or in-trail separations
- Compatibility with existing airfield facilities
 - Runway and taxiway dimensional requirements
 - Ground handling characteristics
 - Gate and parking position dimensional requirements
 - Compatibility with passenger loading bridges
 - Fueling requirements

Operational and Safety Challenges

- Wake vortices and interactions with subsonic aircraft
- Performance characteristics of the proposed delta wing design
- New or modified certification standards for new technologies utilized on SSTs or with their operations
- Safety and medical issues related to:
 - Maintaining cabin pressurization at high altitudes
 - Potential impact of radiation on passengers and crew
 - Use of enhanced or synthetic vision for some phases of flight
- Human factors issues of how pilots will manage new control systems

Environmental Challenges

- Emissions impact during take-off and landing, but particularly at cruise at altitudes where emissions impact may be magnified
- Noise concerns in the airport, terminal, and en route environments
 - Design for quiet airport operations is contrary to the propulsion needs of supersonic aircraft
 - Sonic boom and flight noise mitigation, particularly in the transition between subsonic and supersonic flight and supersonic climb/cruise

٠

٠

Research & Development Drivers

Advances in New Vehicles/New Missions

- Non-Traditional NAS Access Points
- Routine Small Unmanned Aircraft Systems (UAS) Operations Beyond Visual Line of Sight (BVLOS)
- Space Operations
- Autonomous Ground Service Equipment at Airports
- Growth of Mixed Operations (Piloted, Autonomous, Unmanned)
- New Mission Types
- Supersonic Flight
- Urban Air Mobility

Advances in Technology and Materials

- Aircraft Command and Control Using Automation and Remote Sensing Technologies
- Certification using New Technologies, Standards, or Processes
- Future Fuel Technologies
- Infrastructure Resiliency and Continuity of Operations
- New Medical Technologies and New Medications
- New Vehicles or Components Which Make Use of New Technologies, Software, or Materials
- Position, Navigation, & Timing (PNT) Technologies
- Remote and Virtual Technologies
- New Technologies for Airport Pavement Infrastructure and Design
- Advances in Electric or Hybrid Electric Propulsion

Advances in Data and Processing Power

- Big Data Analytics and Techniques
- Crowd Sourcing Data
- Increased Connectivity by Cyber-Physical Systems (Internet of Things [IoT])
- Information Assurance and Cybersecurity for All Operations
- Risk-Based Decision-Making Techniques and Analytics
- Artificial Intelligence (AI)
- Human-Machine Teaming and New Technology Interfaces

System Wide Advancements/Improvements

- New Methods and Technologies (Air Traffic Safety, Efficiency, Noise, Emissions, Fuel Use, and Airport Surface Movements)
- Methods for Increased Flexibility of Operators
- Performance-Based Capabilities
- Advancement of Global Standards or Requirements
- Human Response to Traffic and Congestion Management
- Development of the Workforce of the Future
- Advances in Aeromedical Certification
- Changing Public Demographics and Requirements

Driver-Project Mapping

- As part of FY22 prioritization effort, researchers identified the research drivers for each project
 - Objective: Evaluating our R&D portfolio against the Landscape provides a tool to evaluate resource alignment and possible opportunities for research

Lessons Learned:

- Need better socialization with researchers regarding landscape drivers definition, utilization, etc.
- Tool for input should allow for multiple drivers to be selected, allow for easier identification of drivers

Driver-Project Mapping, Grouped by Category

Advances in New Vehicles/New Missions			
		#	
Driver	Timeframe	Projects	
Non-Traditional NAS Access Points	Near	3	
Routine Small Unmanned Aircraft Systems (UAS) Operations Beyond Visual Line of Sight (BVLOS)	Near	4	
Space Operations	Near	0	
Autonomous Ground Service Equipment at Airports	Mid	0	
Growth of Mixed Operations (Piloted, Autonomous, Unmanned)	Mid	18	
New Mission Types	Mid	1	
Supersonic Flight	Mid	7	
Urban Air Mobility	Mid	7	

Advances in Data and Processing Power

Driver	Timeframe	Projects
Big Data Analytics and Techniques	Near	5
Crowd Sourcing Data	Near	1
Increased Connectivity by Cyber-Physical Systems (Internet of		
Things [IoT])	Near	0
Information Assurance and Cybersecurity for All Operations	Near	1
Risk-Based Decision-Making Techniques and Analytics	Near	7
Artificial Intelligence (AI)	Mid	1
Human-Machine Teaming and New Technology Interfaces	Far	10

Advances in Technology and Materials

		#
Driver	Timeframe	Projects
Aircraft Command and Control Using Automation and Remote Sensing Technologies	Near	6
Certification using New Technologies, Standards, or Processes	Near	15
Future Fuel Technologies	Near	4
Infrastructure Resiliency and Continuity of Operations	Near	1
New Medical Technologies and New Medications	Near	3
New Vehicles or Components Which Make Use of New Technologies, Software, or Materials	Near	16
Position, Navigation, & Timing (PNT) Technologies	Near	2
Remote and Virtual Technologies	Near	2
New Technologies for Airport Pavement Infrastructure and Design	Mid	9
Advances in Electric or Hybrid Electric Propulsion	Far	0

System Wide Advancements/Improvements


		#
Driver	Timeframe	Projects
New Methods and Technologies (Air Traffic Safety, Efficiency,		
Noise, Emissions, Fuel Use, and Airport Surface Movements)	NA	32
Methods for Increased Flexibility of Operators	NA	3
Performance-Based Capabilities	NA	6
Advancement of Global Standards or Requirements	NA	8
Human Response to Traffic and Congestion Management	NA	5
Development of the Workforce of the Future	NA	17
Advances in Aeromedical Certification	NA	7
Changing Public Demographics and Requirements	NA	12

Driver-Project Mapping, Grouped by Timeframe

Driver	Timeframe	# Projects	Driver	Timeframe	# Projects
Non-Traditional NAS Access Points	Near	3	Autonomous Ground Service Equipment at Airports	Mid	0
Routine Small Unmanned Aircraft Systems (UAS) Operations Beyond Visual Line of Sight (BVLOS)	Near	4	Growth of Mixed Operations (Piloted, Autonomous, Unmanned)	Mid	18
Space Operations	Near	0	New Mission Types	Mid	1
Aircraft Command and Control Using Automation and Remote Sensing Technologies	Near	6	Supersonic Flight	Mid	7
Certification using New Technologies, Standards, or Processes	Near	15	Urban Air Mobility	Mid	7
Future Fuel Technologies	Near	4	New Technologies for Airport Pavement Infrastructure and Design		9
Infrastructure Resiliency and Continuity of Operations	Near	1	Artificial Intelligence (AI)	Mid	1
New Medical Technologies and New Medications	Near	3	Advances in Electric or Hybrid Electric Propulsion	Far	0
New Vehicles or Components Which Make Use of New Technologies, Software, or Materials	Near	16	Human-Machine Teaming and New Technology Interfaces	Far	10
Position, Navigation, & Timing (PNT) Technologies	Near	2	New Methods and Technologies (Air Traffic Safety, Efficiency, Noise, Emissions, Fuel Use, and Airport Surface Movements)	NA	32
Remote and Virtual Technologies	Near	2	Methods for Increased Flexibility of Operators	NA	3
Big Data Analytics and Techniques	Near	5	Performance-Based Capabilities	NA	6
Crowd Sourcing Data	Near	1	Advancement of Global Standards or Requirements	NA	8
Increased Connectivity by Cyber-Physical Systems (Internet of Things [IoT])	Near	0	Human Response to Traffic and Congestion Management	NA	5
Information Assurance and Cybersecurity for All Operations	Near	1	Development of the Workforce of the Future	NA	17
Risk-Based Decision-Making Techniques and Analytics	Near	7	Advances in Aeromedical Certification	NA	7
			Changing Public Demographics and Requirements	NA	12

Next Steps/Discussion

