FEDERAL INTERAGENCY COMMITTEE ON AVIATION NOISE

Alan Zusman, Chairman

Dept. of Navy

FICAN's Origins

- FICUN -- Guidelines for Considering Noise in Land Use Planning and Control (1980)
- FICON -- Federal Agency Review of Selected Airport Noise Analysis Issues (1992)
- FICAN (1993 to present)

FICAN's Scope

- Develop recommendations and priorities on needed research
- Serve as a focal point for public/private/government research recommendations
- Conduct periodic public conferences
- Establish a technical information network
- Encourage new aviation noise research efforts

FICAN Members

- Department of Defense (USA, USN, & USAF)
- Department of Interior (NPS)
- Department of Transportation (HQ & FAA)
- Environmental Protection Agency
- National Aeronautics and Space Administration
- Department of Housing and Urban Development

FICAN Activities

- Meetings
- Publicity / Dissemination of Information www.fican.org

Public Forums / Symposia on:

- Preservation of natural quiet (ASA mtg., '99)
- Effects of noise on children's learning (UC Berkeley conf., '00)
- Summary of FICAN's findings (FAMA conf., '01)
- Supplemental noise metrics (UC Berkeley conf., '01 and '03)
- Relation between aircraft noise reduction in schools and standardized test scores (UC Berkeley conf., '04)

FEDERAL INTERAGENCY COMMITTEE ON AVIATION NOISE

Relation Between Aircraft Noise Reduction in Schools and Standardized Test Scores

Mary Ellen Eagan, Grant Anderson, Bradley Nicholas, Richard Horonjeff, Terry Tivnan

Overview

Background

Study overview:

- Research questions
- Standardized test scores
- Airports and schools

Analysis method

- Time period for computed noise exposure
- Some computation details, plus resulting noise metrics
- Demographic "control"
- Some regression mathematics
- Preliminary results

Recommendations for any follow-up studies Fican.org Federal Interage

Background

Past research:

- Aircraft noise can interfere with classroom learning.
- Strongest effect is upon "reading," say majority of studies.
- Feb 2000: FICAN forum
- Sep 2000: FICAN statement of position:
 - Need a FICAN-funded study (*this current study*), based on existing publicly-available data.

Study Overview: Research Questions

- Is aircraft noise reduction within classrooms related to test-score improvement, after controlling for demographics?
- Does this relationship vary by:
 - Age group (high, middle and elementary school)
 - Student group (IEP and non-IEP)
 - Test type (verbal and math/science)

Study Overview: Standardized Test Scores

- Test scores for state-standardized tests
- These test scores are increasingly important in the U.S., because they help determine:
 - Student class credit
 - Student grade advancement
 - Student graduation
 - School funding
 - School accreditation

Study Overview: Airports and Schools

Identified 3 airports:

- In states with publicly available test scores (electronic format only the last 10 years)
- Reduction in aircraft noise, due to:
 - Facility closure, or
 - School sound-insulation programs

Picked 32 nearby public schools:

- Excluded non-public schools, because they are not required to give state-standardized test to all their students.
- No guarantee that these airports/schools are representative
 - Results should not be used nationally without subsequent studies of many additional airports and schools.

Analysis Method: Time Period for Computed Noise Exposure

 Rather than use pre-computed annual noise contours, the FICAN study:

- Used school months (generally Sept. through May),
- Used school hours (generally 7 a.m. to 4 p.m.), rather than full 24 hours
- Converted outdoor noise levels to indoors, to account for school/window structure
- In addition, this study:
 - Used full school year to determine noise exposure, rather than just sampled measurement periods.

Analysis Method: Some Computation Details

Year-by-year air traffic

 Combination of Part 150 studies, Official Airline Guide (OAG), aircraft inventories by air carrier, engine types from J.P. Fleets

Outdoor noise

- Computed levels at each school using INM 6.1
- SEL and L_{Amax} for each aircraft flyover

Conversion to indoor noise

- INM aircraft spectra
- Construction details—main school and portable classrooms

Analysis Method: Resulting Noise Metrics

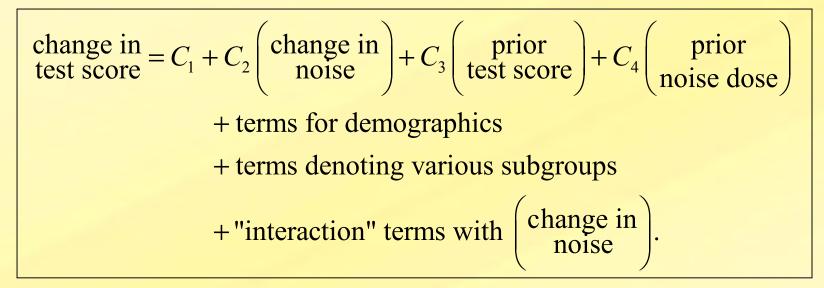
For school year, school hours, inside classrooms:

- School-day Laeq
- Percent of time L_A > 40 dB
 - Chosen for consistency with new ANSI standard S12.60-2002
- Number of events with L_{Amax} > 40 dB
- Number of events disrupting speech:
 - Selected Speech Intelligibility Index (SII) < 0.98, implying that 1% to 2% of words are missed by a typical listener

Analysis Method: Demographic "Control"

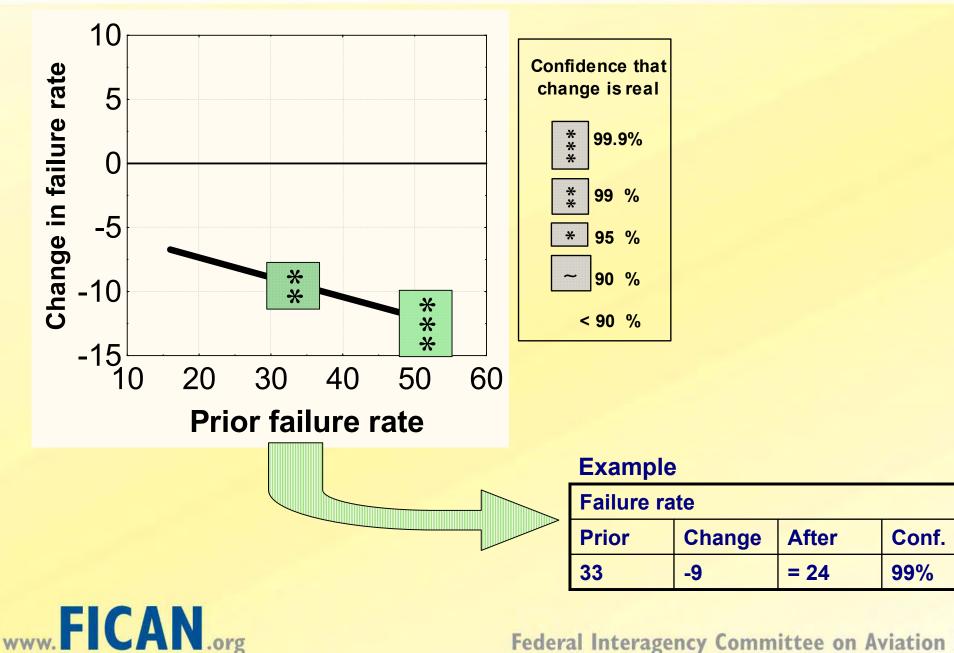
Primary method:

- "Noise-reduction" group
 - Each school, before-to-after the year of noise reduction
- "Control" group
 - Same schools, but for all the years prior to noise reduction
- Same schools means same demographics.


Secondary method:

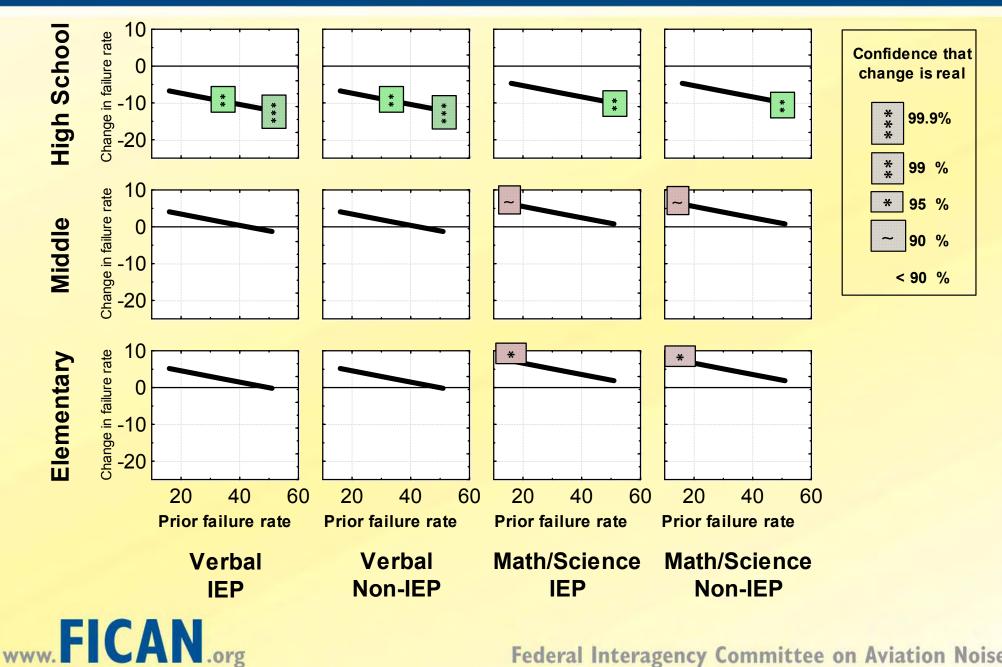
- Also controlled for demographics in the regression analysis.
 - Avoids associating test-score improvement with noise reduction, if test-score improvement is more strongly associated with demographics.

Analysis Method: Some Regression Mathematics


- Multi-level regression: Needed because data are "nested" schools sampled first, then test years, then tests scores.
- Single-year change in test scores, related to change in noise:

 If net effect of all "change-in-noise" coefficients is significant, then a relation exists between change in test score and change in noise.

Representative Results for High School Students (Graphical Representation)


Partial Results in Table Format

 Change in failure rate associated with noise reduction: Verbal tests


Age group	Change in failure rate associated with noise reduction	Confidence that change is real
High School Students	High before: 60% before –12% = 48% after	99.9%
	Med. before: 40% before –10% = 30% after	99 %
	Low before: 15% before – 7% = 8% after	< 90 %
Middle School Students	High before: 60% before – 1% = 59% after	< 50 %
	Med. before: 40% before + 1% = 41% after	< 50 %
	Low before: 15% before + 4% = 19% after	< 90 %
Elem. School Students	High before: 60% before – 0% = 60% after	< 50 %
	Med. before: 40% before + 2% = 42% after	< 50 %
	Low before: 15% before + 5% = 20% after	90 %

Change in Failure Rate Associated with Noise Reduction

Change in Failure Rate When %Tm > 40dBA drops by 5 (like 7% to 2%)

Summary of All Results

- Found substantial association between noise reduction and decrease in failure rates, only for high-school students
- Found some weaker association between noise reduction and increase in failure rates, for middle and elementary schools
- Found little distinction between IEP and non-IEP students, and between verbal and math/science tests
- Found little association between noise reduction and changes in "A" rate or average scores
- Caveats:
 - Analysis not yet fully validated and reviewed
 - Results should not be used nationally without subsequent studies of many additional airports and schools

Recommendations for Any Follow-up Studies

Airports/schools:

Include larger number of airports and schools.

Students:

 Follow individual students from year to year, rather than using only class-average results.

Testing location

Identify tests taken in quieter environments.

Portable classrooms

Identify classes taught in portable classrooms.

Precision of noise computations:

- Obtain airport data directly from airports.
- Incorporate outdoor-to-indoor measurements.

