

UAS Research – Who's Doing What to Support Integration

UAS Research – Who's Doing What

Sabrina Saunders-Hodge, FAA

Nick Lento, FAA

Mark Blanks, Mid-Atlantic Aviation Partnership

Steve Luxion, ASSURE

Davis Hackenberg, NASA

ASSURE Research

Collision Studies' Results & Path Forward

ASSURE Completed Projects

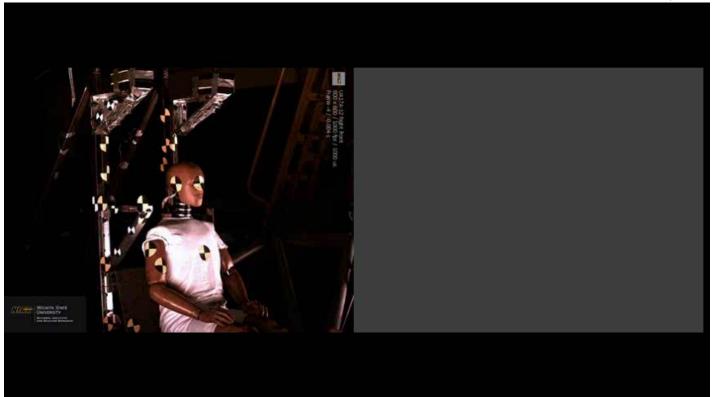
- → A1 Certification Test Case to Validate sUAS Industry Consensus Standards
- → A2 Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations
- → A3 UAS Airborne Collision Severity Evaluation (Peer Reviewed)
- → A4 UAS Ground Collision Severity Evaluation (Peer Reviewed)
- → A5 UAS Maintenance, Modification, Repair, Inspection, Training, and Certification Considerations*
- → A6 Surveillance Criticality for Sense and Avoid (SAA)
- → A7 Human Factors Control Station Design Standards
- → A8 Unmanned Aircraft Systems (UAS) Noise Certification
- → A10 Human Factors Considerations of UAS Procedures, & Control Stations *
- → A11 Part 107 Waiver Request Case Study

ASSURE Active Projects

- → A9 Secure Command and Control Link with Interference Mitigation
- → A12 Performance Analysis of UAS Detection Technologies Operating in Airport Environments
- → A13 UAS Ground Collision Research Plan (Peer Review)
- A14 UAS Ground Collision Severity Studies
- → A15 STEM II
- → TBD Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations
- TBD Airborne Collision Engine Impacts
- → TBD Airborne Collision Structural Impacts
- → TBD e-commerce, Emerging UAS Network and Implications on NAS Integrations
- → TBD Safety Research Facility

A4: sUAS Air-to-Ground Collision Severity Study

Lead Principal Investigator:


Dave Arterburn, Univ. Alabama at Huntsville

Collision Dynamics (UAS v. Wood/Steel)

Comparison of Steel & Wood with Phantom 3

Test Weight: 2.69 lbs. Impact Velocity: 49-50 fps Impact Energy: 100-103 ft-lbs.

Wood

Test Weight: 2.69 lbs. Impact Velocity: 52-54 fps Impact Energy: 116-120 ft-lbs.

Test Weight: 2.7 lbs. Impact Velocity: 52-53 fps Impact Energy: 114-121 ft-lbs.

Motor Vehicle Standards

Prob. of neck injury: 11-13%Prob. of head injury: 0.01-0.03%

Range Commanders Council Standards

Probability of fatality from...

Head impact: 98-99%

- Chest impact: 98-99%

- Body/limb impact: 54-57%

Motor Vehicle Standards

Prob. of neck injury: 63-69%

Prob. of head injury: 99-100%

Range Commanders Council Standards

Probability of fatality from...

Head impact: 99-100%

Chest impact: 99-100%

- Body/limb impact: 67-70%

Motor Vehicle Standards

• Prob. of neck injury: 61-72%

Prob. of head injury: 99-100%

Range Commanders Council Standards

• Probability of fatality from...

- Head impact: 99-100%

Chest impact: 99-100%

- Body/limb impact: 65-71%

FAA UAS

Key Findings: Ground Collision Severity Report

- Collision Dynamics of sUAS is not the same as being hit by a rock
 - Multi-rotor UAS fall slower than metal debris of the same mass due to higher drag on the drone
 - <u>sUAS are flexible</u> during collision and <u>retain significant energy during impact</u>
 - Wood and metal debris do not deform and transfer most of their energy
- Three dominant injury metrics applicable to sUAS
 - Blunt force trauma injury Most significant contributor to fatalities
 - Lacerations Blade guards required for flight over people
 - Penetration injury Hard to apply consistently as a standard
- Payloads can be more hazardous due to reduced drag and stiffer materials
- Lithium Polymer Batteries need a unique standard suitable for sUAS to ensure safety

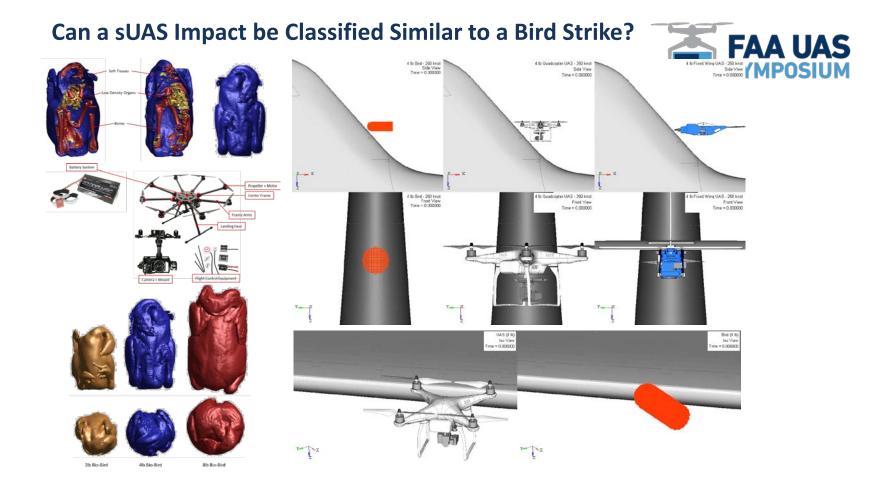
Ground Collision Severity Follow-on

- Research results and plan peer reviewed & work has begun
- Expand the number of UAS evaluated
- Validate previous results (head, neck, thorax)
 - Models
 - Test Dummies
 - Post Mortem Human Subjects
- Develop a simplified test to categorize UA and its risk-level
 - Informed/Validated with all the above
 - For UAS manufactures
 - Potential use in regulation for operations over people

A3: sUAS Air-to-Air Collision Severity Study

Lead Principal Investigator:

Gerardo Olivares, Ph.D., Wichita State Univ.

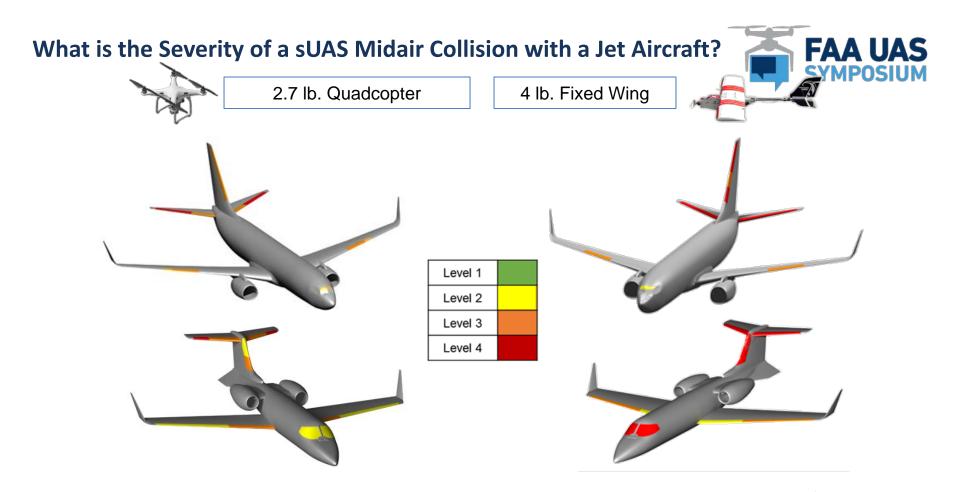


Air-to-Air Collision Severity Study: Scope

- Study of Severity of perfect strike (Physical Damage & Fire Risk)
 - Targets:
 - Narrow-body commercial transport (B737 / A320 Class)
 - Business Jet (Learjet 31A Class)
 - Projectile (UAs)
 - Quadcopter (DJI Phantom III)
 - Fixed-Wing (Precision Hawk Lancaster)

Severity Level and Risk of Post Impact Battery Fire Classification

Severity Level	Description	Example
Level 1	Undamaged. Small deformation.	
Level 2	Extensive permanent deformation on external surfaces. Some internal structure deformed. No failure of skin.	6
Level 3	Skin fracture. Penetration of at least one component.	
Level 4	Penetration of UAS into airframe. Failure of primary structure.	• 0.



Fire Risk	Description	Example (UAS Visible)	Example (UAS Hidden)
Yes	UAS (including the battery) penetrates the airframe. Battery deforms but stays undamaged. Validation tests showed that partly damaged batteries created heat and sparks.		
No	The UAS does not penetrate the airframe.		A THE
No	UAS (including the battery) penetrates the airframe. The battery sustains great damage, destroying its cells. Validation tests showed that completely damaged batteries did not create heat or sparks.		The state of the s

Conclusions Airframe – sUAS Impact R&D

Comparison to Bird Strikes

sUAS collisions caused greater structural damage than bird strikes for equivalent impact energy levels

Velocity and Mass (kinetic energy)

- Physical damage noted for velocities above landing speeds for masses equal to or above 2.6lbs (1.2 kg)
- Damage severity increases with increased mass and velocity

Stiffness of Components

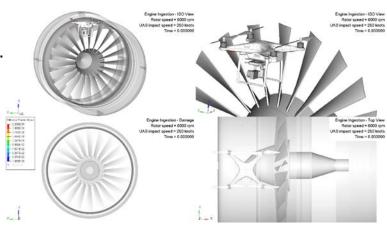
- Component level testing demonstrated that stiff components such as motors can produce severe damage.
- Full-scale sUAS simulations confirm: most damage produced by stiffer components (battery, motor, payload)

Distribution and Connection of Masses

- Distribution of mass and stiffness in the design of the sUAS is critical to the energy transfer
- With concentrated or aligned masses the probability of critical damage increases.

Energy Absorption Capability

 sUAS designs which incorporate energy absorbing components (materials and/or structural features) could reduce the damage to the target aircraft



Engine Ingestion – Summary Results

- Quick look study using FAA Fan-Blade-Out Model
- Simulations focus on damage to fan, nacelle, and nosecone only
- Similar findings as structural research
- Fixed wing introduced more damage than the quadcopter.

- Stiffer components such as motors, cameras and batteries do the most damage to the fan.
- Location of impact along fan is a key parameter--More damage as the impact occurs closer to the blade tip.
- Takeoff scenario is the worst case because of high fan speeds.

Air-to-Air Collision Study Follow-on

- Other research to keep aircraft apart (Detect-and-Avoid)
- Rotorcraft and General Aviation Aircraft
- Boundary-layer influences to probabilities of direct impact
- Engine
 - Engine OEMs working with ASSURE to develop a generic high-bypass turbofan
 - Used to analyze threat to modern engines
 - Study UA designs to mitigate damage/risk to engines

Thank You

ASSUREuas

ASSUREuas

ASSURE UAS

www.ASSUREuas.org

SLuxion@ASSURE.msstate.edu

