

Draft Environmental Assessment for Wing Aviation, LLC Proposed Drone Package Delivery Operations in Central Florida

December 2024

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

Washington, D.C.

Notice of Availability, Notice of Public Comment Period, and Request for Comment on the Draft Environmental Assessment for Wing Aviation, LLC, Proposed Package Delivery Operations in Central Florida

The Federal Aviation Administration (FAA) provides notice that a Draft Environmental Assessment (EA), prepared pursuant to the National Environmental Policy Act (NEPA) (42 United States Code [U.S.C.] §§ 4321–4355), to assess Wing Aviation, LLC (Wing), proposed commercial drone delivery service in Central Florida is available for review and comment.

Wing is seeking to amend its air carrier Operations Specifications (OpSpecs) and other FAA approvals necessary to expand commercial drone package delivery operations in Florida. The FAA's approval of the amended OpSpecs is considered a major federal action under NEPA and Council on Environmental Quality (CEQ) NEPA–implementing regulations (40 Code of Federal Regulations Parts 1500–1508) and requires a NEPA review. This Draft EA is submitted for review pursuant to NEPA, CEQ NEPA Implementing Regulations, FAA Order 1050.1F, Environmental Impacts: Policies and Procedures, Section 4(f) of the Department of Transportation Act (49 U.S.C. § 303), and Section 106 of the National Historic Preservation Act (16 U.S.C. § 470). The Draft EA will be available for a 30-day public review beginning on Friday, December 20, 2024, and ending on Monday, January 20, 2025.

The Draft EA is available for online review at <u>https://www.faa.gov/uas/advanced_operations/nepa_and_drones</u>

Comments on the Draft EA may be submitted electronically to <u>9-FAA-Drone-</u> <u>Environmental@faa.gov</u>. Written comments may be submitted via U.S. mail to the address below. Please ensure adequate time for receipt. All comments must be received by 5:00 p.m. Central Time on Monday, January 20, 2025.

Federal Aviation Administration, Suite 802W C/O AVS Environmental 800 Independence Ave SW Washington, DC 20591

All substantive comments received will be responded to in the Final EA.

Privacy Notice: Before including your address, phone number, email address, or other personal identifying information in your comment, be advised that your entire comment—including your personal identifying information—may be made publicly available at any time. While you can ask us in your comment to withhold from public review your personal identifying information, we cannot guarantee that we will be able to do so.

This Draft EA becomes a federal document when evaluated, signed, and dated by the Responsible FAA Official.

Responsible FAA Official:

Date: _____

Derek Hufty

Manager, General Aviation and Commercial Operations Branch

Emerging Technologies Division

Office of Safety Standards, Flight Standards Service

Table of Contents

Chapte	er 1 Purp	ose and Need	1-1
1.1		Introduction	1-1
1.2		FAA Role for Proposed Action	1-2
1.3		Purpose and Need	1-3
1.4		Public Involvement	1-3
Chapte	er 2 Prop	oosed Action and Alternatives	2-1
2.1		No Action Alternative	2-1
2.2		Proposed Action	2-1
	2.2.1	Unmanned Aircraft Specifications	2-6
	2.2.2	Flight Operations	2-8
Chapte	er 3 Affe	cted Environment and Environmental Consequences	
3.1		Introduction	3-1
3.2		Environmental Impact Categories Not Analyzed in Detail	3-2
3.3		Biological Resources (Including Fish, Wildlife, and Plants)	3-4
	3.3.1	Definition of Resource and Regulatory Setting	3-4
	3.3.2	Affected Environment	3-5
	3.3.3	Environmental Consequences	3-12
3.4		Department of Transportation Act, Section 4(f) Resources	3-16
	3.4.1	Definition of Resource and Regulatory Setting	3-16
	3.4.2	Affected Environment	3-17
	3.4.3	Environmental Consequences	3-18
3.5		Historical, Architectural, Archaeological, and Cultural Resources	3-18
	3.5.1	Definition of Resource and Regulatory Setting	3-18
	3.5.2	Affected Environment	3-19
	3.5.3	Environmental Consequences	3-19
3.6	i	Noise and Noise-Compatible Land Use	3-21
	3.6.1	Definition of Resource and Regulatory Setting	
	3.6.2	Affected Environment	
	3.6.3	Environmental Consequences	3-22
3.7	,	Environmental Justice	3-25
	3.7.1	Definition of Resource and Regulatory Setting	3-25
	3.7.2	Affected Environment	3-26
	3.7.3	Environmental Consequences	
3.8		Visual Effects (Visual Resources and Visual Character)	
	3.8.1	Definition of Resource and Regulatory Setting	
	3.8.2	Affected Environment	
	3.8.3	Environmental Consequences	3-32
Chapte	er 4 Cum	ulative Effects	

Appendices

Α	References and Citations
В	Section 4(f)
С	List of Agencies Consulted, Preparers, and Reviewers
D	Noise
E	Biological Resources
F	Government-to-Government Consultation with Federally Recognized
	Tribes
G	SHPO Consultation
н	Central Florida Metro and Surrounding Areas Airports
I	Community Engagement Plan
J	Coastal Zone Management Act

Tables and Figures

Table

Page

Table 2.2-1. Proposed Initial Site Locations	2-3
Table 3.3-1. IPaC Results of Federally Threatened and Endangered Species	3-7
Table 3.3-2. Central Florida Metro Bird Species with Mobbing and Territorial Behaviors	3-11
Table 3.6-1. Estimated Extent of Noise Exposure from Nest	3-23
Table 3.6-2. DNL Noise Exposure Contour Distances at an Offsite Package Autoloading Location	3-23
Table 3.6-3. DNL for Delivery Locations Based on Maximum Deliveries per Location	3-24
Table 3.7-1. Selected Demographic Characteristics (Race) by County	3-28
Table 3.7-2. Selected Demographic Characteristic (Poverty) by County	3-29
Table 3.7-3. Communities of Environmental Justice Concern	3-30

Figure

Page

Figure 2.2-1. Wing's Proposed Central Florida Metro and Surrounding Area Operating Area	2-4
Figure 2.2-2. Wing's Proposed Central Florida Metro and Surrounding Area Initial Site Locations	2-5
Figure 2.2-3. Wing Hummingbird 7000W-B UA	2-7
Figure 2.2-4. Wing Hummingbird 8000-A UA	2-7
Figure 2.2-5. Wing Hummingbird UA Nest Landing	2-9
Figure 2.2-6. Wing Hummingbird Remote Pickup Flight Profile	2-10
Figure 2.2-7. Wing Hummingbird and Autoloader	2-11
Figure 3.6-1. Controlled Surface Area of Class B, Class C, and Class D Airspace	3-22

Acronyms and Abbreviations

AAD	Average Annual Day
ACS	American Community Survey
AGL	above ground level
APE	Area of Potential Effects
BVLOS	beyond visual line of sight
CEQ	Council on Environmental Quality
CFR	Code of Federal Regulations
dB	decibel
dBA	A-weighted decibel
DNL	Day-Night Average Sound Level
EA	Environmental Assessment
EJ	Environmental Justice
EO	Executive Order
ESA	Endangered Species Act
FAA	Federal Aviation Administration
FHWA	Federal Highway Administration
FONSI	Finding of No Significant Impact
HHS	Department of Health and Human Services
IPaC	Information for Planning and Consultation
MBTA	Migratory Bird Treaty Act
metro	metropolitan
mph	miles per hour
NWR	National Wildlife Refuge
NEPA	National Environmental Policy Act
NHPA	National Historic Preservation Act
NMFS	National Marine Fisheries Service

NOA	Notice of Availability
NRHP	National Register of Historic Places
OpSpec	Operations Specifications
SGCN	Species of Greatest Conservation Need
SHPO	State Historic Preservation Officer
THPOs	Tribal Historic Preservation Officers
U.S.C.	United States Code
UA	unmanned aircraft
UAS	Unmanned Aircraft System
USFWS	U.S. Fish and Wildlife Service
Wing	Wing Aviation, LLC
WR	Written Re-evaluation

v

1.1 Introduction

Wing Aviation, LLC (Wing), a subsidiary of Alphabet Inc., holds a Federal Aviation Administration (FAA) standard air carrier certificate under 14 Code of Federal Regulations (CFR) Part 135 (Part 135),¹ which allows holders to conduct on-demand or scheduled (commuter) operations, and a 49 United States Code (U.S.C.) Section 44807 exemption,² which allows Wing to carry the property of another for compensation or hire beyond visual line of sight (BVLOS) using its Hummingbird Unmanned Aircraft System (UAS). Wing's Part 135 certificate contains a stipulation that operations must be conducted in accordance with the provisions and limitations specified in its Operations Specifications (OpSpecs).^{3,4} Wing is seeking to amend its OpSpecs and other FAA approvals necessary to conduct unmanned aircraft (UA; also referred to as a drone) commercial package delivery operations in the Central Florida metropolitan (metro) and surrounding areas (see Figure 2.2-1).

Wing is proposing to conduct UA retail package delivery operations from up to 150 "nests"⁵ in the Central Florida metros and surrounding areas using Wing's Hummingbird 7000W-B and 8000-A. Wing's intent is to offer service throughout the Central Florida metro and surrounding areas from a network of nests, where each would serve a specific area, thereby avoiding an over-concentration of flights surrounding any given nest. Each nest houses up to 24 aircraft and each has a delivery range of approximately 6 miles. Wing proposes a maximum of 150 nest locations within the Central Florida metro and surrounding areas. Site locations of seven initial nests are provided in Table 1. Wing's nests would be located in commercially zoned areas, such as shopping centers, large individual retailers, and shopping malls. Wing projects operating a maximum of 400 delivery flights per operating day from each nest, with operations initially occurring between 7:00 a.m. and 7:00 p.m. and then extending to 7:00 a.m. to 10:00 p.m. In addition, operations would include low altitude (<8ft) in-nest hover checks (referred to as FitBITs) between 6:00 a.m. and 7:00 a.m. in preparation for the normal operational day which would begin no earlier than 7:00 a.m. Additional, higher hover flights (approximately 60 feet) may be performed up to 7 times per nest, per week, where the UA makes a separate hover flight to update the reference map of the nest; these flights are termed

¹ <u>https://www.faa.gov/uas/advanced_operations/package_delivery_drone.</u>

² 49 United States Code (U.S.C.) § 44807 provides the Secretary of Transportation with authority to determine whether a certificate of waiver, certificate of authorization, or a certificate under 49 U.S.C. §§ 44703 or 44704 is required for the operation of certain unmanned aircraft system (UAS).

³ An Operations Specifications is a document that defines the scope of aircraft operations that the Federal Aviation Administration (FAA) has authorized.

⁴ This is different than a concept of operations, or ConOps, which is generally a description of how a set of capabilities may be employed to achieve desired objectives.

⁵ A ground-based service area where unmanned aircraft (UA) are assigned and where flights originate and return.

geography built in tests (GeoBITs) because of their similarity to the FitBIT stationary hover flight over the nest.

The FAA's approval of the amended OpSpec is considered a major federal action under the National Environmental Policy Act (NEPA)⁶ and Council on Environmental Quality (CEQ) NEPA–implementing regulations⁷ and requires NEPA review. Wing prepared this Draft EA under the supervision of the FAA⁸ to evaluate the potential environmental impacts that might result from the FAA's proposed action. Under NEPA, federal agencies are required to consider the environmental effects of proposed federal actions and to disclose to decision-makers and the interested public a clear and accurate description of the potential environmental impacts of proposed major federal actions. Additionally, under NEPA, federal agencies are required to consider the environmental effects of a proposed action, the reasonable alternatives to the proposed action, and a no action alternative (assessing the potential environmental effects of not implementing the proposed action). The FAA has established a process to ensure compliance with the provisions of NEPA through FAA Order 1050.1F, *Environmental Impacts: Policies and Procedures* (FAA 2015).

The FAA is aware of the November 12, 2024, decision in Marin Audubon Society v. Federal Aviation Administration, No. 23-1067 (D.C. Cir. Nov. 12, 2024). To the extent that a court may conclude that the Council on Environmental Quality (CEQ) regulations implementing NEPA are not judicially enforceable or binding on this agency action, the FAA has nonetheless elected to follow those regulations at 40 C.F.R. Parts 1500– 1508, in addition to the FAA's procedures implementing NEPA in FAA Order 1050.1F, to meet the agency's obligations under NEPA, 42 U.S.C. §§ 4321 et seq.

1.2 FAA Role for Proposed Action

In general, Congress has charged the FAA with the safety of air commerce in the United States. The FAA provides multiple approvals associated with package delivery proposals, such as a waiver of 14 CFR Section 91.113(b) to enable BVLOS operations, and a Certificate of Waiver or Authorization; however, the FAA's issuance of an OpSpec (or an amended OpSpec) to include package delivery flights in a specified operating area is the approval that ultimately enables UA operations. In addition, the FAA has specific statutory and regulatory obligations related to its issuance of a Part 135 certificate and the related OpSpec. The FAA is required to issue an operating certificate⁹ to an air carrier when it "finds, after investigation, that the person properly and adequately is equipped and able to operate safely under this part and regulations and standards prescribed under this part."¹⁰ An operating certificate also specifies "terms necessary to ensure safety in air transportation; and … the places to and from which, and the airways of the United States over

⁹ An operating certificate is issues to an applicant with will conduct intrastate transportation, which is transportation that is conducted wholly within the same state of the United States.
¹⁰ 49 U.S.C. § 44705.

⁶ 42 U.S.C. § 4321 et seq.

⁷ 40 Code of Federal Regulations (CFR) Parts 1500–1508.

⁸ See 40 CFR § 1506.5(a).

^{45 0.5.0. 3 44705.}

which, a person may operate as an air carrier."¹¹ Also included in air carrier certificates is a stipulation that the air carrier's operations must be conducted in accordance with the provisions and limitations specified in the OpSpec.¹² In addition, the regulations specify that a Part 135 certificate holder may not operate in a geographical area unless its OpSpec specifically authorizes the certificate holder to operate in that area.¹³ The regulations implementing 49 U.S.C. Section 44705 specify that an air carrier's approved OpSpec must include, among other things, "authorization and limitations for routes and areas of operations."¹⁴ An air carrier's OpSpec may be amended at the request of an operator if the FAA "determines that safety in air commerce and the public interest allows the amendment."¹⁵ After making this determination, the FAA must take an action on the OpSpec amendment.¹⁶

1.3 Purpose and Need

Wing is proposing to establish UA commercial delivery service throughout the Central Florida area, which Wing, in its business judgment, has determined is appropriate given market demand (see Section 2.2. *Proposed Action*). Wing's current operations in the Dallas-Fort Worth metro area have provided Wing with an opportunity to assess community response to commercial delivery operations. Wing's findings from these operations were used as a basis for the business case to increase operations further throughout Central Florida. The purpose of the proposed action is related to the FAA's role and responsibility to review applications for safe flight and certification under Part 135. The proposed action is needed to meet consumer demand for package deliveries in Central Florida as identified by Wing and to implement BVLOS for those drone package delivery operations.

1.4 Public Involvement

The FAA created a Notice of Availability (NOA) with information about the Draft EA and provided it to local, state, and federal officials, interest groups, and federally recognized tribes. The NOA was provided in English and Spanish. The FAA also announced availability of the draft EA for public review via the FAA's social media and an advertisement in the *Orlando Sentinel* and the *Tampa Bay Times* newspapers. The NOA provided information about the proposed action and requested public review and comments on the Draft EA, which was published on the FAA's website¹⁷ for a 30 -day comment period from December 20, 2024, to January 20, 2025. Interested parties were invited to submit comments on any environmental concerns related to the proposed action.

¹¹ Id.

¹² 14 CFR § 119.5 (g), (l).

¹³ 14 CFR § 119.5(j).

¹⁴ 14 CFR § 119.49(a)(6).

¹⁵ 14 CFR § 119.51(a); see also 49 U.S.C. § 44709.

¹⁶ 14 CFR § 119.51(c).

¹⁷ See: <u>https://www.faa.gov/uas/advanced_operations/nepa_and_drones.</u>

FAA Order 1050.1F, Paragraph 6-2.1(d) states that, "[a]n EA may limit the range of alternatives to the proposed action and no action alternative when there are no unresolved conflicts concerning alternative uses of available resources." The FAA has not identified any unresolved conflicts concerning alternative uses of available resources associated with Wing's proposal. Therefore, this EA only considers the proposed action and the no action alternative.

2.1 No Action Alternative

The CEQ *NEPA Implementing* Regulations, require agencies to consider a no action alternative in their NEPA reviews to compare the environmental effects of not taking action with the effects of the action alternative(s).¹⁸ Thus, the no action alternative serves as a baseline to compare the impacts of the proposed action. Under the no action alternative, the FAA would not approve an OpSpec under Part 135 to implement Wing package delivery operations in the Central Florida metro area. Wing would continue to conduct UA package delivery operations under Part 135 in locations currently authorized by its OpSpecs and at other locations under 14 CFR Part 107,¹⁹ which limits operations to UA weighing less than 55 pounds and within visual line of sight. Consumers in the areas not served by UAs would be expected to continue to use personal ground transportation to retrieve small goods using their automobiles or in some cases with public transportation, if available. This alternative does not support the stated purpose and need.

2.2 Proposed Action

The proposed action is the introduction of Wing's UA commercial delivery service to the Central Florida metro and surrounding areas. Under the proposed action, Wing would establish up to 150 nests within the operating area. Operating hours would occur from 6:00 a.m. to 10:00 p.m. with flights only leaving the nest area between 7:00 a.m. and 10:00 p.m. while maintaining the current operational limit of 400 deliveries per nest per operating day. The exact timing and pace of nest installation is dependent on market conditions. If, in the future, Wing wanted to exceed 150 nests in the operating area, additional NEPA reviews would be required. Operations, including nest placement and all UA delivery flights, would be confined to the operating areas depicted in Figure 2.2-1 and Figure 2.2-2.²⁰ Operations would not occur within the boundaries of any National Wildlife Refuge (NWR) or controlled air space such as the Kennedy Space Center or Cape Canaveral Space Force Station within the larger operating area.

¹⁸ 40 CFR § 1502.14.

¹⁹ The *Operation of Small Unmanned Aircraft Systems Over People* rule (codified in 14 CFR Part 107) permits routine operation of small UAS (UAs weighing less than 55 pounds) within visual line of sight at night and over people without a waiver or exemption under certain conditions.

²⁰ Modification of Wing's operations plan requires approval in accordance with 14 CFR Part 135.

Nests would be distributed throughout the Central Florida metro and surrounding areas following a measured rollout plan to be developed with Wing's partners and continuing best practices from Wing's established community outreach program, and in compliance with state and local statutory and regulatory requirements. Wing's nests would be located in established parking lots of commercially zoned areas whose use is consistent with local zoning and land use requirements, such as shopping centers, large individual retailers, and shopping malls. Installation activities are brief and would only involve the placement of fencing around the nest and the delivery of a shipping container for UA storage. Remote pickup infrastructure consisting of an autoloader (Figure 2.2.7) would be installed within proposed nests or at offsite locations, utilized during limited remote pickup and delivery operations, and would also be located within commercially zoned areas. Individual autoloader locations (either within a nest or offsite) would typically include up to three autoloaders within or in the vicinity of most nest sites, with a handful more distributed locations having up to 10 autoloaders, depending on market demand, for a total installation of 200-600 autoloaders distributed throughout the operating area. The autoloaders would consist of "Y"shaped passive stands designed for automated pick up of packages without landing. Autoloaders would not require ground disturbance for installation and would be anchored through existing pavement, to existing poles, or ballasted for temporary use. The autoloaders would be controlled and operated by Wing and its partners, would be approximately 10 feet tall, 7 feet wide at the mouth, and 6 feet long, and would include a clear zone of approximately 2 parking spaces. Remote pickups are described further in Section 2.2.2.6, *Remote Pickup Operations*.

To avoid the potential for significant noise impacts, Wing would site its nests and autoloaders at least 120 feet away from a noise-sensitive area²¹ when the nest is located within the controlled surface area of Class B, Class C, and Class D airspace²² (refer to Figure 3.6-1) and at least 65 feet away from a noise-sensitive area in all other areas within the study area, which is defined as Wing's proposed nest locations and service area (see Figure 2.2-1 and Figure 2.2-2). Offsite package autoload and pickup flight paths would not occur within 80 feet of noise-sensitive areas when the autoloader is located within the controlled surface area of Class B, Class C, and Class D airspace and 45 feet away from noise-sensitive areas in all other areas within the study area.

Each nest would serve an area within a 6-mile radius for package delivery. Offsite Package Autoloads would serve an area within a 1-mile radius of the Offsite Package Autoload location due to flight energy constraints. Initially, Wing expects to fly considerably less than 400 deliveries per day from each nest and then gradually increase to 400 deliveries per day as consumer demand rises. Even in

²¹ A *noise-sensitive area* is an area where noise interferes with normal activities associated with its use. Normally, noise-sensitive areas include residential, educational, health, and religious structures and sites, and parks, recreational areas, areas with wilderness characteristics, wildlife and waterfowl refuges, and cultural and historical sites. (FAA Order 105.1F, Paragraph 11-5.b(10).)

²² Class B airspace is generally airspace from the surface to 10,000 feet mean sea level (MSL) surrounding the nation's busiest airports in terms of airport operations or passenger enplanements. Class C airspace is generally airspace from the surface to 4,000 feet above the MSL surrounding those airports that have an operational control tower, are serviced by a radar approach control, and have a certain number of operations or passenger enplanements. Class D airspace is generally airspace from the surface to 2,500 feet above the airport elevation (charted in MSL) surrounding those airports that have an operational control tower. For more information. See: https://www.faa.gov/regulationspolicies/handbooksmanuals/aviation/phak/chapter-15-airspace.

the locations where the service areas of nests overlap, Wing would not exceed 400 deliveries or overflights in a given location. Proposed delivery and GeoBit operations would occur from approximately 7:00 a.m. to 10:00 p.m., 7 days of the week, including holidays. Operating hours would also include FitBITs between 6:00 a.m. and 7:00 a.m.

Area Served	Site	Address	Latitude	Longitude
	Walmart Supercenter	990 Missouri Ave N Largo, FL 33770	27.92596	-82.78583
Tampa	Walmart Supercenter	11110 Causeway Blvd Brandon, FL 33511	27.92546	-82.32554
	Walmart Supercenter	2601 James L Redman Pkwy Plant City, FL 33566	27.98672	-82.12193
	Walmart Supercenter	8990 Turkey Lake Rd Orlando, FL 32819	28.44028	-81.47652
Orlando	Walmart Supercenter	1450 Johns Lake Rd Clermont, FL 34711	28.52943	-81.73150
Onanuo	Walmart Supercenter	11250 E Colonial Dr Orlando, FL 32817	28.56584	-81.21781
	Walmart Supercenter	2855 N Old Lake Wilson Rd Kissimmee, FL 34747	28.33001	-81.58799

Table 2.2-1. Proposed Initial Site Locations

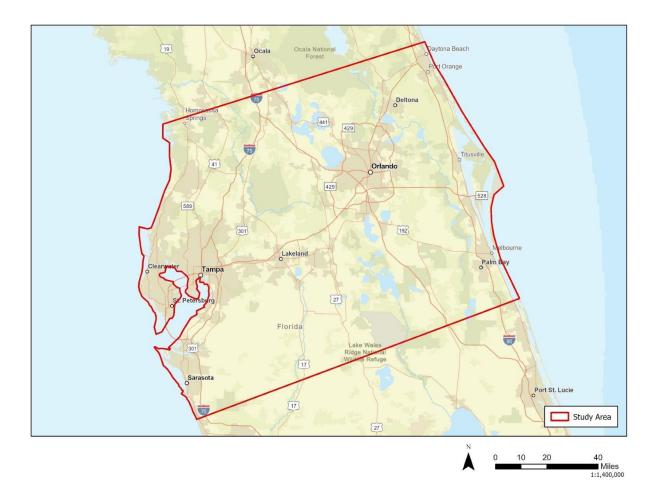
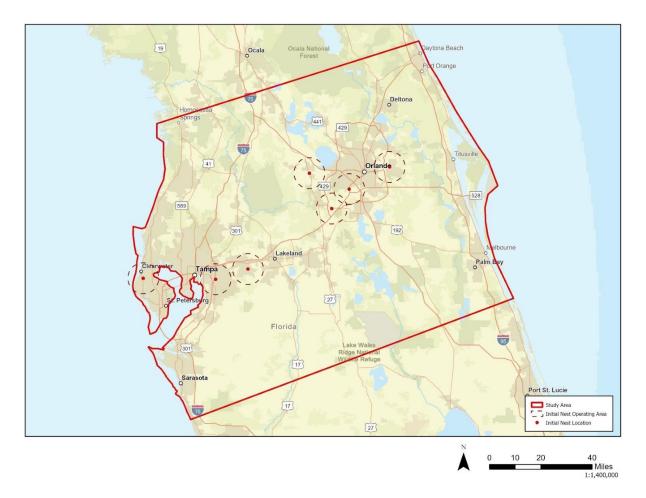



Figure 2.2-1. Wing's Proposed Central Florida Metro and Surrounding Area Operating Area

Figure 2.2-2. Wing's Proposed Central Florida Metro and Surrounding Area Initial Site Locations

Each nest would contain up to two dozen (24) aircraft on launch pads, and one or more merchants may be partnering with Wing at each nest for drone deliveries. The estimated total distance flown for deliveries would vary depending upon the pickup and drop-off locations in the operating area. The majority of delivery flights would consist of transport of a package from the nest to a customer delivery address before returning to the nest. There would be variability in the number of flights per day based on customer demand and weather conditions.

Wing would also conduct offsite operations of limited remote pickup and delivery flights in which the drone would transit from the nest to an offsite location, pick up a package, then deliver the package to the customer before returning back to the nest. Autoloaders would be installed at remote pickup locations, typically within 1,000 feet of a nest and within the same commercial area and would enable drone package delivery for Wing's commercial partners that are not located in the immediate vicinity of a nest. Remote pickup is expected to be complementary to typical package delivery operations and is anticipated to make up less than 50 percent of total operations. However, based on demand, some dedicated remote pickup nests would also be established in the vicinity of four (4) to 10 partner sites located in areas adequately isolated from sensitive noise receptors.

The UA would be transporting consumer goods in partnership with merchants in the communities they already serve and would provide an alternative to in-store pickup. Deliveries would be

conducted at the time of the customer's choosing and directly to the customer's home in the operating area.

Wing's flight planning software can automatically avoid identified schools (elementary, middle, and high school), preschools, or daycares with outdoor facilities based on the type of resource, time of day, and other factors.²³ Wing has confirmed to the FAA that it will generally not conduct operations over these *"fly less"*²⁴ areas during the scope of operations covered by this proposed action, including remote pickups, unless there is a specific purpose for Wing to enter one of these areas in coordination with the respective resource authority. Remote pickups would be further limited to continuous commercially zoned areas and corridors without sensitive noise receptors. In addition, Wing's flight planning software is designed to increase variability in flight paths to minimize overflights of any given location; with the diversification of flight paths, the frequency of overflights would inversely scale as the distance from a nest increases.

2.2.1 Unmanned Aircraft Specifications

Two UAs would be primarily used for deliveries: Wing's Hummingbird 7000W-B and 8000-A.

- Hummingbird 7000W-B
 - Multi-rotor design with 16 propellers (Figure 2.2-3).
 - Weight under 15 pounds when combined with its maximum payload weight of 2.7 pounds.
 - Has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of 4 feet.
- 8000-A
 - Multi-rotor design with 12 propellers (Figure 2.2-4).
 - Weight under 25 pounds when combined with its maximum payload weight of 5 pounds.
 - Has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet.

All Wing aircraft use electric power from rechargeable lithium-ion batteries.

Wing anticipates the Central Florida metro and surrounding areas fleet makeup would be comprised of 70 to 80 percent 7000W-B aircraft and 20 to 30 percent 8000-A aircraft. The fleet mix of individual nests would be variable based on payload, route, and demand characteristics; nests with a wider range of offerings are anticipated to carry higher proportions of 7000W-B Aircraft.

²³ Wing's flight planning software is updated monthly. Wing distributes flight routes to avoid concentrating flights over any one location.

²⁴ Fly less areas are properties that Wing identifies in its flight planning system, which can be automatically avoided based on the type of resource, time of day, and other factors. Wing has committed in its operational proposal to the FAA that it will generally avoid overflights of these fly less resources in the Central Florida operating area.

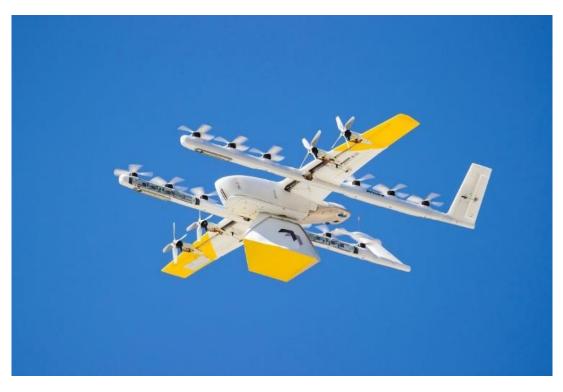


Figure 2.2-3. Wing Hummingbird 7000W-B UA

Figure 2.2-4. Wing Hummingbird 8000-A UA

2.2.2 Flight Operations

The UA²⁵ would generally be operated at an altitude of 150–300 feet above ground level (AGL) and always below an altitude of 400 feet AGL while en route to and from delivery locations. At a delivery location, the UA would descend vertically to a stationary hover at 23 feet AGL and lower a package to the ground by a retractable line for delivery. Once a package has been lowered to the ground, the UA would then retract the line, ascend vertically to a cruise altitude, and depart the delivery area en route back to a nest.

The UA would fly a predefined flight path that is set prior to takeoff. Flight missions are automatically planned by Wing's flight planning software. A mission originates from a nest location, and Wing's software automatically assigns, deconflicts, and routes each flight to the delivery location and back to a nest. Each nest site would include a controlled area wherein UA flights are launched and recovered.

A typical flight profile can be broken into the following general flight phases: takeoff, en route outbound, delivery, en route inbound, and landing (Figure 2.2-6). Remote pickup procedures are described in Section 2.2.2.6, *Remote Pickup Operations*.

Note: Each aircraft must complete a daily set of preflight checks before being assigned a delivery mission. These include a brief low height hover flight where the UA exercises various systems. These are termed FitBIT or Fitness Built In Test and are at a height of approximately 6 feet for approximately 1 minute. Additional, higher hover flights (approximately 60 feet) may be occasionally performed, up to 7 times per nest, per week, where the UA makes a separate hover flight to update the reference map of the nest; these flights are termed GeoBITs because of their similarity to the FitBIT stationary hover flight over the nest.

2.2.2.1 Takeoff

Once the UA²⁶ receives a mission and is cleared for takeoff from a launch pad, the UA takes off from the ground vertically to an altitude of 23 feet AGL and hovers for 30 seconds while the package is loaded. The UA then climbs to the en route altitude (150–300 feet AGL).

2.2.2.2 En Route Outbound

The en route outbound phase is the part of flight in which the fully loaded UA transits from the nest to a delivery point on a predefined flight path. During this flight phase, the UA would typically operate at an altitude of 150–300 feet AGL and a typical airspeed of 59 miles per hour (mph). The UA has a single set cruise airspeed, which would not be exceeded.

²⁵ The flight profiles of the 7000W-B and the 8000W-A would be the same.

²⁶ The flight profiles of the 7000W-B and the 8000-A would be the same.

2.2.2.3 Delivery

The delivery phase consists of descent from the en route altitude to a delivery point, such as a residential yard, driveway, parking lot, or common area. The UA descends vertically to 23 feet AGL while maintaining position over the delivery point. The UA hovers at 23 feet AGL for approximately 30 seconds while lowering its package and then proceeds to climb vertically back to en route altitude. The minimum distance a human should be from the UA during delivery is a 6-foot radius from underneath the center of the UA.

2.2.2.4 En Route Inbound

The UA continues to fly at an altitude of 150–300 feet AGL and a speed of 59 mph towards the nest.

2.2.2.5 Landing

Upon reaching the nest, the UA slowly descends over its assigned landing pad and lands on the pad (Figure 2.2-5).

Figure 2.2-5. Wing Hummingbird UA Nest Landing

2.2.2.6 Remote Pickup Operations

Remote pickup operations from each nest would be supported at up to 12 partner establishments depending upon demand and nest capacity. Pickup operations would follow general flight phases and parameters identical to typical delivery operations and would include the addition of a pickup

phase. The pickup phase is similar to the delivery phase. The UA descends from its close transit altitude (safe altitude above local terrain and obstacles) to 22 feet AGL and lowers the package hook. The UA then passes approximately 10 feet laterally over the autoloader. The autoloader's Yshaped poles passively guide the package hook to a narrow slot that ensures secure attachment of the package. The package is then retracted to the UA before it proceeds to climb to the en route altitude. Remote pickup operations from descent to finish are expected to take no longer than 1 minute and 30 seconds (90 seconds). Delivery, en route return, and landing operations would then occur as described in Sections 2.2.2.3 through 2.2.2.5. The flight profile of remote pickup operations is illustrated in Figure 2.2-6 and the autoloader is illustrated in Figure 2.2-7.

Note: Manual remote pickups loading may also be performed by a person and without a physical autoloader. The profile would be similar to the Autoloader pickup profile outlined above but would omit the lateral transition for autoloader engagement.

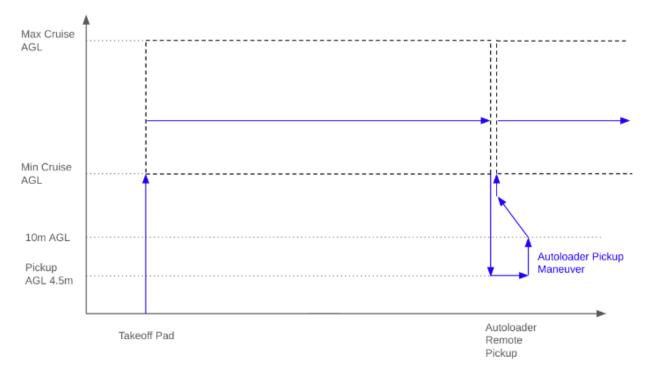


Figure 2.2-6. Wing Hummingbird Remote Pickup Flight Profile

Figure 2.2-7. Wing Hummingbird and Autoloader

Chapter 3 Affected Environment and Environmental Consequences

3.1 Introduction

This chapter provides a description of the affected environment and potential environmental consequences for the environmental impact categories that have the potential to be affected by the no action alternative and proposed action, as required by CEQ's NEPA–implementing regulations and FAA Order 1050.1F. As required by FAA Order 1050.1F, this EA presents an evaluation of impacts for the environmental impact categories listed below.

- Air quality
- Biological resources (including fish, wildlife, and plants)
- Climate
- Coastal resources
- Department of Transportation Act, Section 4(f)
- Farmlands
- Hazardous materials, solid waste, and pollution prevention
- Historical, architectural, archaeological, and cultural resources
- Land use
- Noise and noise-compatible land use
- Socioeconomics and children's environmental health and safety risks
- Visual effects (visual resources and visual character)
- Water resources (including wetlands, floodplains, surface waters, groundwater, and wild and scenic rivers)

The study area evaluated for potential impacts is defined as Wing's proposed operating area shown in Figure 2.2-1. The level of detail provided in this chapter is commensurate with the importance of the potential impacts (40 CFR § 1502.15). EAs are intended to be concise documents that focus on aspects of the human environment that may be affected by the proposed action.

3.2 Environmental Impact Categories Not Analyzed in Detail

This EA did not analyze potential impacts on the following environmental impact categories in detail because the proposed action would not affect the resources included in the category (see FAA Order 1050.1F, Paragraph 4-2.c).

- Air Quality and Climate: The UA is battery powered and does not generate emissions that could result in air quality impacts or climate impacts. Electricity consumed for battery charging at the nests would be minimal. Electricity consumed for the proposed action would come from the power grid with backup generators on site in the event of an emergency. These emissions would be minimal and are not expected to contribute to any exceedance of National Ambient Air Quality Standards. Based on a 2020 study of drone delivery operations, by year 5 of operations drones were projected to replace between 11.2 percent and 18.7 percent of total delivery miles previously made by automobiles, or between 11.3 million miles and 96 million miles, within a given operating area (Lyon-Hill et al. 2020). The proposed action is expected to decrease emissions from delivery services that contribute to greenhouse gases (GHG) emissions. The decreased emissions would have positive effects on climate change as the proposed action would replace vehicle miles traveled by GHG emitting vehicles. UA operations are not expected to be impacted by climate change impacts (e.g., rising sea levels, increasing temperatures). Therefore, the proposed action would not affect nor be affected by the impacts of climate change, and it is consistent with the January 9, 2023, CEQ NEPA Guidance on Consideration of Greenhouse Gas Emissions and Climate Change.²⁷
- **Coastal Resources:** The Florida Coastal Management Program (FCMP) was approved by National Oceanic and Atmospheric Administration (NOAA) in 1981 and is codified at Chapter 380, Part II, F.S. The state of Florida's coastal zone includes the area encompassed by the state's 67 counties and its territorial seas. The FCMP consists of a network of 24 Florida Statutes administered by eight state agencies and five water management districts. Federal consistency reviews are integrated into other review processes conducted by the state. Written notice of the submission of an application for an FAA license was sent to the Florida State Clearinghouse on December 17, 2024. Wing's proposed action is considered an unlisted activity in the FCMP and the Clearinghouse review for consistency with the FCMP is pending.
- **Farmlands:** The proposed action would not involve the development or disturbance of any land regardless of use, nor would it have the potential to convert any farmland to non-agricultural uses. The proposed action would not affect designated prime or unique farmlands.
- Hazardous Materials, Solid Waste, and Pollution Prevention: The proposed action would not
 result in any construction or development or any physical disturbances of the ground.
 Therefore, the potential for impact in relation to hazardous materials, pollution prevention, and
 solid waste is not anticipated. Additionally, each Wing UA is primarily made from recyclable
 materials and the only hazardous materials used in its manufacture and operation are lithium-

²⁷ 88 Federal Register 1196.

ion batteries. Each Wing UA will be properly managed at the end of its operating life in accordance with 14 CFR Part 43. Any hazardous materials would be disposed of in accordance with all federal, tribal, state, and local laws, including 40 CFR Part 273, *Standards for Universal Waste Management*.

- Land Use: The proposed action does not involve any changes to existing, planned, or future land uses within the area of operations. Wing would use current infrastructure, such as parking lots, to conduct its operations. Land use and zoning are typically governed by local and state laws. Wing is responsible for complying with any such applicable laws relevant to establishing its operations (e.g., siting drone nests and related infrastructure), and partners are responsible for complying with any applicable laws for remote pick-up nests and related infrastructure. All nest locations would be sited in accordance with all local land use ordinances and zoning requirements. Local jurisdictions in the Central Florida metropolitan and surrounding areas may vary in the scope of their review and approval of commercial operations. Further, Section 2.2, *Proposed Action*, identifies the stand-off distances from noise-sensitive areas.
- Natural Resources and Energy Supply: The proposed action would not require the need for unusual natural resources and materials, or those in scarce supply. Wing's aircraft would be battery powered and would not consume fossil fuel (e.g., gasoline or aviation fuel) resources. Wing would use a charging pad (approximately 1 square meter in size) to charge the batteries of the UA. In addition, Wing's electrically powered aircraft is most often used to replace individual personal automobile trips to retrieve small goods and would therefore be expected to reduce consumption of fuel resources; a 2020 study found that by year 5 of drone operations in a single U.S. metro area, drone delivery could avoid up to 294 million miles per year in road use (Lyon-Hill et al. 2020).
- Socioeconomics and Children's Environmental Health and Safety Risks: The proposed action would not involve acquisition of real estate, relocation of residents or community businesses, disruption of local traffic patterns, loss in community tax base, or changes to the fabric of the community. Executive Order (EO) 13045, *Protection of Children from Environmental Health Risks and Safety Risks*, requires federal agencies to ensure that children do not suffer disproportionately from environmental or safety risks. The proposed action would not affect products or substances a child would be likely to come into contact with, ingest, use, or be exposed to, and would not result in environmental health and safety risks that could disproportionately affect children. It is not anticipated that the proposed action would pose a greater health and safety risk to children than package delivery by other means (truck, mail, personal automobile trips, etc.). Additionally, Wing's proposal includes avoiding fly less areas during operational hours, which could help avoid or reduce any potential environmental health or safety impacts on children. Wing's electrically powered aircraft is most often used to replace individual personal automobile trips to retrieve small goods and would therefore reduce noxious emissions and improve road safety, which are both appreciable concerns for children.
- Visual Effects (Light Emissions Only): The proposed action would not result in significant light emission impacts because the majority of flights are expected to be conducted during the daytime. Light emissions would not noticeably affect the visual character or ambient light conditions of the study area. The small proportion of flights that do occur at night would likely

be infrequent and of short duration, although flight cadence would vary depending on the location and partners served by an individual nest. Because of the overall small number of operations likely to be conducted between twilight and 10:00 p.m., the proposed action would not result in significant light emission impacts due to nighttime operations. Night is defined by 14 CFR Section 1.1 as the time between the end of evening civil twilight²⁸ and the beginning of morning civil twilight, as published in the *Air Almanac*, converted to local time (U.S. Department of the Navy 2022).

Water Resources (Wetlands, Floodplains, Surface Water, Groundwater, and Wild and Scenic **Rivers):** The proposed action would not result in the construction of facilities and would therefore not encroach upon areas designated as navigable waters, wetlands, or floodplains. Delivery and return flights would not occur over any water bodies. The proposed action would not affect any waters of the U.S. The proposed action would not result in any changes to existing discharges to water bodies, create a new discharge that would result in impacts on surface waters, or modify a water body. The proposed action would not degrade water quality or contaminate public drinking water supplies. The proposed action does not involve activities that would withdraw groundwater from underground aquifers or reduce infiltration or recharge to groundwater resources through the introduction of new impervious surfaces. The Wekiva River and Black Water Creek are the sole designated wild and scenic river segments within the project area (NPS 2024). These segments are respectively located in Rock Springs Rung State Preserve and Seminole State Forest, just north of Apopka Forest. Wing would not directly overfly water bodies and would avoid all designated wild and scenic river segments other than at existing roadway crossings. Furthermore, limited to no deliveries are expected to occur in this area and nests would be established sufficiently far from these resources to ensure that their wild and scenic character was not affected by nest noise or light emissions. Therefore, nest establishment and operations would not affect a wild and scenic river or river on the Nationwide Rivers Inventory. The proposed action does not have the potential to disrupt the free-flowing character of any designated wild and scenic river. Therefore, the proposed action would not affect wetlands, floodplains, surface water, groundwater, or wild and scenic rivers.

3.3 Biological Resources (Including Fish, Wildlife, and Plants)

3.3.1 Definition of Resource and Regulatory Setting

Biological resources include plant and animal species and their habitats, including special-status species (federally listed or state-listed threatened or endangered species, species proposed for listing, species that are candidates for federal listing, marine mammals, and migratory birds) and

²⁸ According to the National Oceanic and Atmospheric Administration (NOAA) National Weather Service, civil twilight begins in the morning, or ends in the evening, when the geometric center of the sun is 6 degrees below the horizon. Therefore, morning civil twilight begins when the geometric center of the sun is 6 degrees below the horizon, and ends at sunrise. Evening civil twilight begins at sunset, and ends when the geometric center of the sun is 6 degrees of the sun is 6 degrees below the sun is 6 degrees below the horizon. Therefore, morning civil twilight begins at sunset, and ends when the geometric center of the sun is 6 degrees below the horizon.

environmentally sensitive or critical habitat. Biological resources provide aesthetic, recreational, and economic benefits to society.

3.3.1.1 Threatened and Endangered Species

The Endangered Species Act (ESA) of 1973 (16 U.S.C. § 1531 et seq.) requires all federal agencies to seek to conserve threatened and endangered species. Section 7(a)(2) of the ESA requires that each federal agency—in consultation with the U.S. Fish and Wildlife Service (USFWS) or National Oceanic and Atmospheric Administration National Marine Fisheries Service (NMFS)—ensures that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of designated critical habitat. The FAA is required to consult the USFWS or NMFS if an action may affect a federally listed species or critical habitat. If the FAA determines the action would have *no effect* on listed species or critical habitat, consultation is not required.

3.3.1.2 Migratory Birds

The Migratory Bird Treaty Act (MBTA; 16 U.S.C. §§ 703–712) protects migratory birds by prohibiting the taking, killing, or possessing of migratory birds (including their eggs, nests, and feathers). The MBTA applies to migratory birds identified in 50 CFR § 10.13 (defined hereafter as "migratory birds"). The USFWS is the federal agency responsible for the management of migratory birds when they occupy habitat in the United States. Wing is responsible for compliance with the MBTA. The MBTA applies to migratory birds identified in 50 CFR § 10.13 (defined hereafter as "migratory birds").

The Bald and Golden Eagle Protection Act prohibits anyone from "*taking*" a bald or golden eagle, including their parts, nests, or eggs, without a permit issued by the USFWS. Implementing regulations (50 CFR Part 22), and USFWS guidelines as published in the *National Bald Eagle Management Guidelines*, provide for additional protections against "*disturbances*." Similar to take, "*disturb*" means to agitate or bother a bald or golden eagle to a degree that causes, or is likely to cause, injury to an eagle or causes either a decrease in its productivity or nest abandonment due to a substantial interference with breeding, feeding, or sheltering. A permitting process provides limited exceptions to the Bald and Golden Eagle Protection Act's prohibitions. Permits are only needed when avoidance of incidental take is not possible. According to the National Bald Eagle Management Guidelines, if conservation measures can be implemented such that no aircraft are flown within 1,000 feet of an eagle nest, incidental take of Bald Eagles is unlikely to occur, and no permit is needed. Wing is responsible for compliance with the Bald and Golden Eagle Protection Act.

3.3.2 Affected Environment

According to the U.S. Environmental Protection Agency and Florida Department of Environmental Protection Agency, the action area is entirely within the Southern Coastal Plain level III ecoregion and overlaps four level IV ecoregions: Gulf Coast Flatwoods (northwestern portion of the action area), Southwestern Florida Flatwoods (western portion of the action area), Central Florida Ridges and Uplands (central portion of the action area), and Eastern Florida Flatwoods (eastern portion of the action of the action area). The following is a general description of each of these

ecoregions in Texas; however, note that much of the land surface in the action area is developed or disturbed, as it contains the cities of Clearwater, St. Petersburg, Sarasota, Tampa, Spring Hill, Kissimmee, Orlando, Sanford, Daytona Beach, and Melbourne. Outside these cities, much of the land has been converted to suburban development and agricultural fields. There are forest patches interspersed throughout the action area, particularly along drainages and near waterbodies.

- The Gulf Coast Flatwoods region in Florida is a low, predominantly flat, forested region just inland from the coast. Soils are primarily acidic and low in nutrients and are underlain by a mix of sand, shell fragments, silt and clay, and peat. The climate of the region is subtropical, with high rainfall and humidity year-round. Vegetation of the region originally consisted of woodland and open savanna. Common native vegetation includes slash pine (*Pinus elliottii*), long leaf pine (*Pinus palustris*), saw palmetto (*Serenoa repens*) canopies with wiregrass (Aristida stricta) herbaceous layers (Griffith et al. 1999).
- The Southwestern Florida Flatwoods are amongst the most extensive terrestrial ecoregions in Florida. Soils are acidic, sandy, and low in organic and clay content. Flooding is common during summer months due to relatively poor drainage. Vegetation of the region originally consisted of woodland and open savanna. Common native vegetation includes slash pine (*Pinus elliottii*), long leaf pine (*Pinus palustris*), saw palmetto (*Serenoa repens*) canopies with wiregrass (Aristida stricta) herbaceous layers (Griffith et al. 1999).
- The Central Florida Ridges and Uplands extends 275 miles from east to west and from the northern edge of the panhandle into the central area of the peninsula. The area is characterized by low rolling sandhills and separates the coastal plains on either edge. Most of the typical native vegetation communities consist of sandhill, scrub, and xeric hammock communities which ware dependent on frequent fire (Winter 2008).
- The Eastern Florida Flatwoods is a low, predominantly flat, forested region inland from the Atlantic coast. It contains similar soil composition, climate, and vegetation communities as the Gulf Coast and Southwestern Flatwoods.

The majority of the land surface within the study area is urban, suburban, and agricultural. Therefore, wildlife habitats within the study area predominantly include parks and open spaces, lakes and waterways, and vacant lands. Additionally, urban flora and fauna thrive in such environments and typically are well established and populated.

The Central Florida and Interstate 4 corridor are rapidly developing from increasing migration into the area (Berdychowski 2022). Existing vacant lands in and near the area are being developed from this expansion at a fast rate. The habitat in the study area includes agricultural areas; commercial areas (i.e., business parks, airports, landfills); communities; downtown areas; recreational areas (i.e., public parks, golf courses); residential areas; thoroughfare (i.e., highways, railroads, public roads); undeveloped areas (i.e., open fields, vacant lots, wooded areas); and waterbodies, wetlands, and floodplains. These areas provide habitat for the smaller and more common bird and mammal species of the southern United States, including mammals such as white-tailed deer, raccoons, opossums, and squirrels.

3.3.2.1 Special-Status Species

Federally Listed Species

The potential for impacts on federally listed species was assessed using the USFWS Information for Planning and Consultation (IPaC) online system (August 15, 2024). The IPaC report for the study area is included within Appendix E. Table 3.3-1 lists the federally threatened and endangered species that could be present in the study area. The study area contains designated critical habitat for the aboriginal prickly-apple (*Harrisia aboriginum*), Florida bonneted bat (*Eumops floridanus*), Florida bristle fern (*Trichomanes punctatum ssp. Floridanum*), green sea turtle (*Chelonia mydas*), loggerhead sea turtle (*Caretta caretta*), piping plover (*Charadrius melodus*), red knot (*Calidris melodus*), and West Indian manatee (*Trichechus manatus*).

Common Name	Scientific Name	ESA Status
Mammals		
Florida bonneted bat	Eumops floridanus	Endangered
Tricolored bat	Perimyotis subflavus	Proposed Endangered
Florida Panther	Puma concolor coryi	Endangered
Puma	Puma concolor	Similarity of Appearance (Threatened)
Southeastern beach mouse	Peromyscus polionotus niveventris	Threatened
West Indian manatee	Trichechus manatus	Threatened
Birds		
Crested caracara	Caracara plancus audubonii	Threatened
Eastern black rail	Laterallus jamaicensis ssp. jamaicensis	Threatened
Everglade snail kite	Rostrhamus sociabilis plumbeus	Endangered
Florida scub-jay	Aphelocoma coerulecens	Threatened
Piping plover	Charadrius melodus	Threatened
Red-cockaded woodpecker	Picoides borealis	Endangered
Red knot	Calidris canutus rufa	Threatened
Whooping crane	Grus americana	Endangered
Wood stork	Mycteria americana	Threatened
Reptiles		
American alligator	Alligator mississippiensis	Similarity of Appearance (Threatened)
American crocodile	Crocodylus acutus	Threatened
Atlantic salt marsh snake	Nerodia clarkia taeniata	Threatened
Blue-tailed mole skink	Eumeces egregious lividus	Threatened
Eastern indigo snake	Drymarchon couperi	Threatened
Green sea turtle	Chelonia mydas	Threatened
Hawksbill sea turtle	Eretmochelys imbricata	Endangered

Table 3.3-1. IPaC Results of Federally Threatened and Endangered Species

Common Name	Scientific Name	ESA Status
Leatherback sea turtle	Dermochelys coriacea	Endangered
Loggerhead sea turtle	Caretta caretta	Threatened
Sand skink	Neoseps reynoldsi	Threatened
Fishes		
Gulf sturgeon	Acipenser oxyrinchus	Threatened
Insects		
Miami blue butterfly	Cyclargus thomasi bethunebakeri	Endangered
Monarch butterfly	Danaus plexippus	Candidate
Flowering Plants		
Aboriginal prickly-apple	Harrisia aboriginum	Endangered
Avon park harebells	Crolatalria avonensis	Endangered
Beautiful pawpaw	Deeringothamnus pulchellus	Endangered
Britton's beargrass	Nolina brittoniana	Endangered
Brooksville bellflower	Campanula robinsiae	Endangered
Carter's mustard	Warea carteri	Endangered
Cooley's water-willow	Justicia cooleyi	Endangered
Florida Bonamia	Bonamia grandiflora	Threatened
Florida ziziphus	Zizipush celata	Endangered
Fragrant prickly-apple	Cereus eriophorus var. fragrans	Endangered
Garrett's mint	Dicerandra christmanii	Endangered
Highlands scrub hypericum	Hypericum cumulicola	Endangered
Lakela's mint	Dicerandra immaculata	Endangered
Lewton's polygala	Polygala lewtonii	Endangered
Longspurred mint	Dicerandra conutissima	Endangered
Okeechobee gourd	Cucurbita okeechobeensis ssp. okeechobeensis	Endangered
Papery whitlow-wort	Paronchia chartacea	Threatened
Pigeon wings	Clitoria fragrans	Threatened
Pygmy fringe-tree	Chionthus pygmaeus	Endangered
Rugel's pawpaw	Deeringothamnus rugelii	Endangered
Sandlace	Polygonella myriophylla	Endangered
Scrub blazingstar	Liatris ohlingerae	Endangered
Scrub buckwheat	Eriogonum lonifolium var. gnaphalifolium	Threatened
Scrub lupine	Lupinus aridorum	Endangered
Scrub mint	Dicerandra frutescens	Endangered
Scrub plum	Prunus geniculata	Endangered
Short-leaved rosemary	Conradina brevifolia	Endangered
Snakeroot	Eryngium cuneifolium	Endangered
Wide-leaf warea	Awarea amplexifolia	Endangered

Common Name	Scientific Name	ESA Status	
Wireweed	Polygonella basiramia	Endangered	
Ferns and Allies			
Florida bristle fern	Trichomanes punctatum ssp. floridanum	Endangered	
Lichens			
Florida perforate cladonia	Cladonia perforata	Endangered	

Given that the action does not include any ground construction or habitat modification and the UA would not touch the ground except at the nests, there are no possible mechanism of effect to ESA-listed fishes, flowering plants, ferns and allies, and lichens. Therefore, these species are not discussed further in this document. Similarly, this analysis summarizes effects to those species most likely to be affected by the proposed action; see Appendix J for analysis of potential effects to all species potentially present within the action area.

Based on the IPaC report, there are nine ESA-listed bird species, one ESA-listed bat species, and one proposed bat species that could be present in the study area: crested caracara (*Caracara plancus audobonii*), a threatened species; Eastern black rail (*Laterallus jamicensis ssp. jamaicensis*), a threatened species; Everglade snail kite (*Rostrhamus sociabilis plumbeus*), an endangered species; Florida scrub-jay (*Aphelocoma coerulecens*), a threatened species; piping plover (*Charadrius melodus*), a threatened species; red-cockaded woodpecker (*Plcoides borealis*), an endangered species; red knot (*Calidris canutus rufa*), a threatened species; whooping crane (*Grus americana*), an endangered species; wood stork (*Mycteria americana*), a threatened species; Florida bonneted bat (*Eumops floridanus*), and endangered species; and tricolored bat (*Perimyotis subflavus*), a proposed endangered species.

Please refer to Appendix J for a detailed description of all ESA-listed species which could potentially affected by the proposed action.

State Species of Greatest Conservation Need

In Florida, native animals or plants designated as a Species of Greatest Conservation Need (SGCN) are generally those that are declining or rare and in need of attention to recover, or to prevent the need to list under federal regulation (FWC 2019). The counties identified in the study area that have been evaluated for SGCN include: Brevard, Citrus, DeSoto, Hardee, Hernando, Highlands, Hillsborough, Indian River, Lake, Manatee, Marion, Okeechobee, Orange, Osceola, Pasco, Pinellas, Polk, Sarasota, Seminole, Sumter and Volusia. NatureServe's database of Rare, Threatened, and Endangered Species lists 364 species of amphibians, birds, fish, mammals, reptiles, insects, crustaceans, mollusks, and plants in these counties considered as SGCN as defined in the 2019 Florida Wildlife Action Plan (NatureServe 2023). Table E-1 in Appendix E provides information on the SGCN in these counties.

Migratory Birds

Migratory bird species found within the study area vary throughout the year. The study area is a part of the Atlantic Migratory Flyway where millions of birds, including songbirds, grassland birds,

waterfowl, shorebirds, and raptors migrate north and south during spring and fall migration (USFWS n.d.).

Drones fly at lower speeds and elevations and are smaller than conventional aircraft. Furthermore, the Wing UA would be hovering in fixed positions at both the nest and delivery locations leaving them temporarily exposed to a mobbing and attacking bird defending its breeding territory.

Bird behavior, in particular mobbing and territorial defense behaviors, on flying and hovering UA is the most important risk consideration for analysis, as these behaviors are the most pertinent to the proposed action. Mobbing behavior includes birds emitting alarm calls, flying at the predator, diverting its attention, and harassing it. Mobbing and aerial attack behaviors typically occur when a raptor, crow, or other aerial predator enters the airspace of a breeding habitat bird or territorial male (The Royal Society for the Protection of Birds 2023). Certain species of birds are known to harass, mob, and attack aerial predators that fly into or near their territory, especially during the breeding season when birds are actively nesting. The defending birds will chase, dive bomb, attack the backside, and vocalize to harass the aerial predator until the offender is far enough from the territory that the defending birds cease attacking and return to their nests and foraging activities (Kalb and Randler 2019). Not all bird species exhibit mobbing and territorial defensive behaviors. Some bird species are more aggressive, defensive, and cued on aerial predators, while other species may show no aggression or interest towards an overflying hawk in its territory. Species of birds that exhibit mobbing and territorial defense behaviors that are known to occur in the Central Florida area are shown in Table 3.3-2.

According to the IPaC report, the Bald Eagle (*Haliaeetus leucocephalus*) is not a Bird of Conservation Concern in the study area but warrants attention under the Eagle Act. Bald Eagles may be yearround throughout Florida as spring and fall migrants, breeders, or winter residents (Cornell Lab n.d.). Bald Eagles typically nest in forested areas adjacent to large bodies of water (Cornell Lab n.d.) and nests have been previously documented throughout the study area area (iNaturalist 2024). Bald Eagles and other raptors may exhibit territorial behavior when nesting (USFWS n.d.-c).

Common Name (Scientific Name)	Habitat Preferences	Notes
Northern Mockingbird (<i>Mimus</i> polyglottos)	Habitat generalist occurring in nearly all types of urban development settings.	The most aggressive territorial bird species in North America, the Mockingbird is a potential mobbing species during hovering at the nest and delivery location. Mockingbirds are known to nest in parking lot landscaping and areas with high density development. Birds will attack any moving object in territory, including humans and pets.
Red-winged Blackbird (<i>Agelaius</i> <i>phoeniceus</i>) and Common Grackle (<i>Cyanocitta</i> <i>cristata</i>)	Both species have a strong affinity for wetland habitats and lake shorelines for breeding and nesting.	Relatively aggressive territorial defender known to mob a wide variety of animals who fly over or perch within a male Blackbird or Grackle's harem territory. Both males and females exhibit mob behaviors during the breeding season but do not mob during the non-breeding season during the fall and winter months when Blackbirds and Grackles tend to form in flocks.
American Crow (Corvus brachyrhynchos)	The American Crow is less of a nest defending bird and is more prone to territorial defense and inquisitive behaviors as the bird species with the highest intelligence in the Central Florida metro area.	Little to no concern over mobbing UA vehicles; greater concern over territorial defense and curiosity behaviors. Crows can also attack larger prey items cooperatively.
Blue Jay (Cyanocitta cristata)	Known for nest defensive mobbing but can also discern predator from non-predator more easily than other species.	Hovering will be the greatest risk point for Blue Jay mobbing attack. Blue Jays require mature tree cover and some degree of pervious surfaces in urban areas, making them a less likely risk than Mockingbirds.
Least tern (<i>Sternula</i> antillarum)	Typically present in shoreline areas. Nests in colonies on sandy, shelly beaches. Exhibits nest defensive mobbing and attack behaviors.	Both males and females exhibit nest defensive behaviors. However, nesting typically occurs away from recreation and development and limited to no deliveries are expected to occur in least tern nesting habitat.
American Oystercatcher	Occurs in intertidal areas and adjacent beaches. Typically nests on sandy, shelly beaches but also in salt march areas. Exhibits nest defensive mobbing and attack behaviors	Both males and females exhibit nest defensive behaviors. However, nesting typically occurs away from recreation and development and no deliveries are expected to occur in American Oystercatcher nesting habitat.

Table 3.3-2. Central Florida Metro Bird Species with Mobbing and Territorial Behaviors

Source: Cornell lab n.d.

Multiple factors result in the Northern Mockingbird being considered the most aggressive bird in North America (Mass Audubon 2023). During the breeding season, Mockingbirds are known to attack any moving object that enters their territory, including pedestrians, bicycles, and the occasional passing vehicle. Mockingbirds occupy a wide range of urban habitats, including industrial and highly commercialized areas such as parking lots with landscaping trees. Mockingbirds are abundant throughout Florida (Cornell lab n.d.). While also abundant, the Red-winged Blackbird and Common Grackle show strong affinity to open herbaceous wetland habitats during the breeding season. The probability of a mobbing attack by these two species is likely lower than the Northern Mockingbird.

3.3.3 Environmental Consequences

Potential impacts on biological resources associated with the proposed action were considered in the area where drones may operate (launch, fly, and drop packages). Wing's nests would be located in retail store parking lots; therefore, there would be no ground disturbance or habitat modification associated with the proposed action. Wing's deliveries would initiate from the nest, approach at an en route altitude less than 400 feet AGL and would generally occur between 150 and 300 feet AGL. The UA would descend to around 23 feet AGL and hover for a brief time to make a delivery. Then, the UA would ascend and transition back to en route flight mode for a return to the nest. At a potential maximum of 60,000 flights per day across the entire study area, the distribution and altitude of the flights are not expected to significantly affect wildlife in the study area.

A significant impact on federally listed threatened and endangered species would occur when the USFWS or NMFS determines the proposed action would be likely to jeopardize the continued existence of a federally listed threatened or endangered species or would be likely to result in the destruction or adverse modification of federally designated critical habitat. An action need not involve a threat of extinction to federally listed species to meet the NEPA standard of significance. Lesser impacts, including impacts on non-listed or special-status species, could also constitute a significant impact.

3.3.3.1 No Action Alternative

Under the no action alternative, Wing would not implement commercial UA package delivery operations in the Central Florida metropolitan and surrounding areas and would continue to conduct UA package delivery operations under Part 135 in locations currently authorized by its OpSpecs and at other locations under 14 CFR Part 107,²⁹ which limits operations to UA weighing less than 55 pounds and within visual line of sight. The no action alternative is not expected to result in significant impacts on biological resources.

3.3.3.2 Proposed Action

There would be no ground construction or habitat modification associated with the proposed action, as the nests would be located in lots that are already developed with commercial uses. Wing's aircraft would not touch the ground in any other place than the nest (except during emergency landings) because it remains aerial while conducting deliveries. Wing's deliveries would initiate from the nest, approach an en route altitude less than 400 feet AGL, and would generally occur between 150 and 250 feet AGL. The UA would lower to around 23 feet AGL and hover for

²⁹ The *Operation of Small Unmanned Aircraft Systems Over People* rule (codified in 14 CFR Part 107) permits routine operation of small UAS (UAs weighing less than 55 pounds) within visual line of sight at night and over people without a waiver or exemption under certain conditions.

a brief time to make a delivery. Then, the UA would transition back to an en route flight mode for a return to the nest.

Because operations would occur mostly in an urban environment, typically well above the tree line and away from sensitive habitats and given the short duration of increased ambient sound levels, flights are not expected to significantly influence wildlife in the area. Wing has also established a direct line of communication with the Florida Wildlife Commission to discuss any potential concerns regarding impacts on wildlife or high-quality habitat in the project area. Wing will also specifically coordinate with the managing entities of state parks and natural areas within the study area on the thoughtful placement and use of delivery sites within these areas as necessary.

Special-Status Species

Federally Listed, Proposed, and Candidate Species

The proposed action could affect ESA-listed species through the emission of light, noise, and risk of collision. This analysis broadly summarizes potential affects to taxa groups most affected by these factors. Refer to Appendix J for species-specific effect analysis.

ESA-listed bird species could potentially be affected by noise, light, and collision risk associated with the proposed action. However, the action does not involve ground disturbance or vegetation removal and therefore would not physically impact any suitable habitat for ESA-listed birds. If present in the action area, ESA-listed birds could experience UA noise during the en route and delivery flight phases. Birds resting or foraging at or near the tree line at the time a UA flies by would experience the greatest sound levels. Birds near the ground at the time a UA flies by would experience lower sound levels. Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, the low probability of encountering an individual warbler in the action area based on the counties they nest in, and the short period of time the UA would be in any particular location, UA noise is not expected to adversely affect ESA-listed birds. Further, the chances of any one individual experiencing multiple overflights of a UA are low given the mobility of the birds. One study found that, in most instances, drones within 4 meters of birds did not cause a behavioral response (Vas et al. 2015). In another study, drones barely elicited behavioral responses in terrestrial mammals (Mulero-Pázmány et al. 2017).

Suitable habitat for both ESA-listed bat species roosting and feeding in the action area includes wooded areas, open water habitat, and manmade structures. Based on current data from the North American Bat Monitoring Program (USGS 2023), there is a low probability of either species occurring in the action area, particularly in the predominantly urban and suburban environment where nests would be located, and deliveries would occur. Nests would be located in commercial areas and therefore not within high-quality roosting or foraging habitats. Bats at roost or in flight could experience UA noise during the en route and delivery flight phases. Bats foraging at or near the tree line at the time a UA flies by would experience the greatest sound levels. Roosting bats or bats foraging near the ground at the time a UA flies by would experience lower sound levels. Bats may exhibit disturbance behaviors and change their flight paths to avoid drones in the event that flights overlap with bat activity areas (Ednie et al. 2021). Research suggests that drones have "minimal impact on bat behavior" (Fu et al. 2018) primarily from noise emissions. However, drone

disturbance is temporary, and bats are expected to return to normal foraging and flight activities shortly after the exposure to drone noise ends (Kuhlmann et al. 2022, Ednie et al. 2021). Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, the short period of time the UA would be in any particular location, and the low probability of encountering an individual tricolored bat in the action area, UA noise is not expected to adversely affect ESA-listed bats. Any increase in ambient sound levels caused by the UA's flight would only last a few seconds during the en route phase and approximately 30 seconds during a delivery.

ESA-listed sea turtles could potentially be affected by noise and light emissions from delivery operations. Turtles are particularly sensitive to disturbance during the nesting period and could potentially experience noise and light emissions from drones. However, drone disturbance has not been previously documented to substantially disrupt nesting behavior (Bevan et al. 2018). Similarly, limited to no deliveries are expected to occur in sea turtle nesting habitat and sea turtles would likely only be exposed to extremely brief periods of noise by transiting UAs. Sea turtle hatchlings are also susceptible to disorientation from artificial light sources during emergence from nests (FWC 2024). However, light emissions from drones are not expected to substantially contribute to the artificial light environment. Furthermore, given that limited deliveries are expected in the vicinity of nesting beaches, it is highly unlikely that effects to hatchlings attributable to drone lighting would raise beyond the level of discountable.

ESA-listed and candidate insects are not expected to be adversely affected by the proposed action. The primary threats to these species are habitat loss and degradation from ongoing urban, suburban, and agricultural development. The proposed action would not physically affect any insect habitat or host plants. Although these species could be struck by drones en route to and from delivery; however, strikes are not likely given the species' mobility. Information regarding drone impacts on insects is limited, there have been no widespread negative impacts identified in the scientific literature, and it is highly unlikely that any effects attributable to drone activity would raise beyond the level of discountable.

On December 17, 2024, the FAA submitted a biological evaluation to the USFWS in accordance with Section 7 of the ESA and requested concurrence with the FAA's effect determination for the proposed project.

Species of Greatest Conservation Need

As with ESA-listed species, the proposed action poses the largest potential to affect flying SGCN species at risk for collision during delivery operations. While other species would also be affected by noise and light emissions, these temporary disturbances are not expected to measurably effect the reproduction or survival of any given individuals and would not result in population level changes to any particular species. SGCN most at risk in include birds, bats, and insects. However, the risk of collision is very low and species most likely would be able to avoid UAs due to the same disturbance factors listed previously. As such, the proposed action is not expected to significantly adversely affect any SGCN species within the study area.

SGCN Insects, such as the bumblebee, could be struck by drones en route to or during delivery. Information regarding drone impacts on insects is limited and there have been no widespread

negative impacts identified in the scientific literature. Therefore, based on the information available, the action is not expected to have significant impacts on insect populations.

Migratory Birds

While there is a well-established repository of literature on bird mobbing and attack behaviors, and on bird strikes with large aircraft, information on drone interactions with birds is not as well documented. Without a baseline of data or pre-existing research on drone interactions with birds, creation of an effective and sensible predictive model is not possible. Therefore, this analysis focused on bird behavior and identified the northern Mockingbird, red-winged blackbird, common grackle, least tern, and American oystercatcher as potential species that could mob or attack a drone while defending territory, especially during the early spring to mid-summer breeding period.

With larger scale operations in Australia since 2017, Wing has incurred relatively few conflicts with birds, which involved a handful of mobbing and brief attack behaviors in Canberra, Australia (2021) from Australian Ravens in delivery flight. In each instance, the Raven attacked the drone from behind causing damage to foam on the vertical tail and then disengaged from the attack. Additionally, two other instances of birds making contact with drones were recorded in the United States by hobbyists (Connecticut Audubon Society n.d.). These were similar to the Australian instance where Ravens made a brief touch to the backside of the drone in flight as a curiosity behavior before flying away from the moving object.

To avoid impacts on nesting Bald Eagles, Wing will implement a monitoring plan for Bald Eagle nests that integrates multiple strategies and resources. This includes periodically checking online tools such as iNaturalist³⁰ to identify eagle nests that may occur in the operating area, as well as communication with the bird watching community to identify nests. Wing personnel will also be educated in the visual identification of Bald Eagle nests, which are typically very conspicuous. If Wing identifies a Bald Eagle nest or is notified of the presence of a nest, Wing will establish an avoidance area such that there is a 1,000 feet vertical and horizontal separation distance between the vehicle's flight path and the nest. Wing will maintain this avoidance area until the end of the breeding season or until a qualified biologist indicates the nest has been vacated. Wing will regularly report monitoring and avoidance measures to FWC and the USFWS Regional Migratory Bird Permit Office.

Based on the information available regarding the interaction between drones and birds, the FAA concludes that mobbing and attacking behaviors would be the most relevant interaction to occur. As detailed in Table 3.3-2, some bird species are more likely to exhibit this type of behavior, and these are the species that would be expected to interact with the drones, if any. The proposed action would not be expected to result in significant impacts on migratory birds because it would not result in long-term or permanent loss of wildlife species, would not result in substantial loss, reduction, degradation, disturbance, or fragmentation of native species' habitats or populations, and would not have adverse impacts on reproductive success rates, natural mortality rates, non-natural mortality, or ability to sustain the minimum population levels.

³⁰ <u>https://www.inaturalist.org/</u>.

3.4 Department of Transportation Act, Section 4(f) Resources

3.4.1 Definition of Resource and Regulatory Setting

Section 4(f) of the U.S. Department of Transportation (DOT) Act (codified at 49 U.S.C. § 30I)) protects significant publicly owned parks, recreational areas, wildlife and waterfowl refuges, and public and private historic sites. Section 4(f) states that, subject to exceptions for de minimis impacts³¹ "[t]he Secretary may approve a transportation program or project requiring the use of [4(f) resources]...only if—(1) there is no prudent and feasible alternative to using that land; and (2) the program or project includes all possible planning to minimize harm to the park, recreation area, wildlife and waterfowl refuge, or historic site resulting from the use."

The term "use" includes both direct or physical and indirect or "constructive" impacts on Section 4(f) resources. *Direct use* is the physical occupation or alteration of a Section 4(f) property or any portion of a Section 4(f) property. *Constructive use* does not require direct physical impacts or occupation of a Section 4(f) resource. A constructive use would occur when a proposed action would result in substantial impairment of a resource to the degree that the protected activities, features, or attributes of the resource that contribute to its significance or enjoyment are substantially diminished.³²

Another type of physical use, known as *temporary occupancy*, results when a transportation project results in activities that require a temporary easement, right-of-entry, project construction, or another short-term arrangement involving a Section 4(f) property. A temporary occupancy is considered a Section 4(f) use unless all the conditions listed in Appendix B, Paragraph 2.2.1 of FAA Order 1050.1F and the Section 4(f) regulations at 23 CFR 773.13(d) are satisfied.

A physical *use* may be considered de minimis if, after considering avoidance, minimization, mitigation, and enhancement measures, the result is either (1) a determination that the project would not adversely affect the activities, features, or attributes qualifying a park, recreation area, or wildlife or waterfowl refuge for protection under Section 4(f); or (2) a Section 106 *finding of no adverse effect* or *no historic properties affected*. Before the FAA may finalize a determination that a physical use is de minimis, the official(s) with jurisdiction must concur in writing that the project will not adversely affect the activities, features, or attributes that make the property eligible for Section 4(f) protection.

The concept of *constructive use* is that a project that involves no actual physical use of a Section 4(f) property via permanent incorporation or *temporary occupancy*, but may still, by means of noise, air pollution, water pollution, or other proximity-related impacts, substantially impair important

³¹ The FAA may make a de minimis impact determination with respect to a physical use of Section 4(f) property if, after taking into account any measures to minimize harm, the result is either: (1) a determination that the project would not adversely affect the activities, features, or attributes qualifying a park, recreation area, or wildlife or waterfowl refuge for protection under Section 4(f); or (2) a Section 106 finding of no adverse effect or no historic properties affected. See 1050.1F Desk Reference, Paragraph 5.3.3.

³² Federal Highway Administration (FHWA) Section 4(f) Policy Paper. (Note: FHWA regulations are not binding on the FAA; however, the FAA may use them as guidance to the extent relevant to aviation projects.) Available: https://www.environment.fhwa.dot.gov/legislation/section4f/4fpolicy.pdf.

features, activities, or attributes associated with the Section 4(f) property. Substantial impairment occurs only when the protected activities, features, or attributes of the Section 4(f) property that contribute to its purpose and significance are substantially diminished. This means that the value of the Section 4(f) property, in terms of its prior purpose and significance, is substantially reduced or lost.

Procedural requirements for complying with Section 4(f) are set forth in DOT Order 5610.1C, *Procedures for Considering Environmental Impacts*. The FAA also uses Federal Highway Administration (FHWA) regulations (23 CFR Part 774) and FHWA guidance (e.g., Section 4(f) Policy Paper) when assessing potential impacts on Section 4(f) properties. These requirements are not binding on the FAA; however, the FAA may use them as guidance to the extent relevant to FAA projects. More information about DOT Act, Section 4(f) can be found in Chapter 5 of the FAA Order 1050.1F Desk Reference (FAA 2023).

3.4.2 Affected Environment

The FAA used data from federal, state, and other public-access sources to identify potential Section 4(f) resources within the study area (Appendix B). The FAA identified many properties that meet the definition of a Section 4(f) resource, including public parks administered by state, city, and county authorities, and historic properties identified on the Florida State Historic Preservation Officer (SHPO) website. By count, most of the Section 4(f) resources are local public parks, trails, and ballfields. Appendix B provides an inventory list of local parks in the study area (FWC 2024). There are 10 wildlife refuges within the study area, however Wing has committed to avoid overflights and deliveries within National Wildlife Refuges (NWRs) (see Section 2.2). The majority of Section 4(f) resources are not currently included in Wing's fly less restrictions, which include schools (elementary, middle, high school), preschools and daycares with outdoor facilities, and churches.

There may be instances where the delivery would be to a customer located within a Section 4(f) resource. Wing validation activities with the FAA often include deliveries to sites in parks. For example, public delivery zones have been set up for events and community engagement in collaboration with the city parks and recreation department in Frisco, Texas, and Christiansburg, Virginia. Wing was also invited to provide deliveries to a historic site in Christiansburg, Virginia, as part of their youth programs.³³

As discussed in Section 3.5, *Historical, Architectural, Archaeological, and Cultural Resources*, there are numerous historic properties within the study area as listed on the Florida SHPO website, although most of these are considered for architectural or other purposes that would not typically be affected by UA operations. The FAA will also be consulting with the Florida SHPO in to determine whether historic and traditional cultural properties would be affected by the proposed action (see Section 3.5.2, *Affected Environment*).

³³ <u>https://www.christiansburginstitute.com/</u>.

3.4.3 Environmental Consequences

3.4.3.1 No Action Alternative

Under the no action alternative, Wing would not implement commercial UA package delivery operations in the Central Florida metropolitan and surrounding areas and would continue to conduct UA package delivery operations under Part 135 in locations currently authorized by its OpSpecs and at other locations under 14 CFR Part 107,³⁴ which limits operations to UA weighing less than 55 pounds and within visual line of sight. Market demand would not be met, and consumers would continue to use personal ground transportation to retrieve small goods. This alternative does not support the stated purpose and need.

3.4.3.2 Proposed Action

Under the proposed action, there would be no physical use of Section 4(f) resources because occasional flyovers in the study area would not result in substantial impairment of Section 4(f) properties. As discussed in Section 3.6, Noise and Noise-Compatible Land Use, and Appendix D, the proposed action would not result in significant noise levels at any location within the study area. As further described in Section 3.8, Visual Effects, the short duration of en route flights (approximately 15 seconds) would minimize any potential for significant visual impacts. In addition, Wing's flight planning software is designed to increase variability in flight paths to minimize overflights of any given location; with the diversification of flight paths, the frequency of overflights would inversely scale as the distance from a nest increases. As discussed in Table J-1, Wing has established a direct line of communication with FWC to discuss any concerns regarding parkland noise and will carefully coordinate any parkland delivery operations with managing entities as necessary. Furthermore, Wing will not conduct operations in NWR areas and would not noticeably contribute to increased noise levels or disrupt quiet settings. Therefore, the FAA has determined that UA overflights as described in the proposed action would not cause substantial impairment to any of the Section 4(f) resources in the study area and are therefore not considered a constructive use of any Section 4(f) resource.

3.5 Historical, Architectural, Archaeological, and Cultural Resources

3.5.1 Definition of Resource and Regulatory Setting

Cultural resources encompass a range of sites, properties, and physical resources relating to human activities, society, and cultural institutions. Such resources include past and present expressions of human culture and history in the physical environment, such as prehistoric and historic archaeological sites, structures, objects, and districts that are considered important to a culture or community. Cultural resources also include aspects of the physical environment, namely natural

³⁴ The *Operation of Small Unmanned Aircraft Systems Over People* rule (codified in 14 CFR Part 107) permits routine operation of small UAS (UAs weighing less than 55 pounds) within visual line of sight at night and over people without a waiver or exemption under certain conditions.

features and biota that are a part of traditional ways of life and practices and are associated with community values and institutions.

The major law that protects cultural resources is the National Historic Preservation Act (NHPA). Section 106 of the NHPA of 1966 [54 U.S.C. § 306108] requires federal agencies to consider the effects of their undertakings on properties listed or eligible for listing in the National Register of Historic Places (NRHP). This includes properties of traditional religious and cultural importance to an Indian tribe or Native Hawaiian organization that meets the NRHP criteria. Regulations related to this process are contained in 36 CFR Part 800, Protection of Historic Properties. Compliance with Section 106 requires consultation with the SHPO and applicable other parties, including Indian tribes.

Major steps in the Section 106 process include identifying the Area of Potential Effects (APE), identifying historic and cultural resources within the APE, consulting with the SHPO and Tribal Historic Preservation Officers (THPOs) for tribes that are identified as potentially having traditional cultural interests in the area, and determining the potential effects on historic properties as a result of the action.

The FAA has not established a significance threshold for this impact category; however, the FAA has identified a factor to consider when evaluating the context and intensity of potential environmental impacts for historical, architectural, archaeological, and cultural resources. A factor to consider in assessing a significant impact is when an action would result in a finding of adverse effect through the Section 106 process. However, an adverse effect finding does not automatically trigger the preparation of an Environmental Impact Statement (i.e., a significant impact). If an adverse effect is determined, the Section 106 process will be resolved through a Memorandum of Agreement (MOU) or Programmatic Agreement (PA) to record resolution measures to mitigate or minimize adverse effects.

3.5.2 Affected Environment

The APE for the proposed action is the entire study area where Wing is planning to conduct UA package deliveries, as shown in Figure 2.2-1. According to the National Park Service's online database of the NRHP, a total of 629 historic properties and 157 historic districts occur within the APE (National Park Service 2024). These historic properties and districts are listed in the attached Tribal and SHPO letters (Appendices F and G, respectively).

3.5.3 Environmental Consequences

3.5.3.1 No Action Alternative

Under the no action alternative, Wing would not implement commercial UA package delivery options in the Central Florida metro and surrounding areas. Wing would continue to conduct UA package delivery operations under Part 135 in locations currently authorized by its OpSpecs and at other locations under 14 CFR Park 107. The no action alternative is not expected to result in significant impacts related to historical, architectural, archaeological, and cultural resources.

3.5.3.2 Proposed Action

Nests would be located in commercially zoned areas within parking lots of shopping centers and large retailers. Infrastructure for this project would consist almost entirely of pre-existing hardstand and would involve no ground disturbance. Therefore, the nature of UA effects on historic properties would be limited to non-physical, reversible impacts (i.e., the introduction of audible and/or visual elements). The only aboveground structures would consist of autoloaders no more than 10 feet in height and seven feet wide, which could incur a minor visual effect on historic properties if those properties are within the viewshed of the autoloaders. However, required standoff distances of 45–80 feet, depending on airspace classification as described in Appendix G, would minimize these impacts.

Wing projects up to 400 delivery flights per operating day per nest, meaning any historic or cultural resource would experience few overflights per day, if any. All takeoff and loading operations would occur at least 300 feet away from any historic properties, adhering to standoff requirements for noise-sensitive areas. Deliveries at or near historic properties would involve the UA hovering at 23 feet AGL for about 30 seconds. In flight, the UA would appear as a small object moving at twice the speed of bird flight. These rapid and intermittent flight operations would result in minimal visual effects. Additionally, Wing's flight planning software minimizes overflights of any specific location by varying flight paths (Section 2.2, Proposed Action).

Noise levels for takeoff and delivery would remain below 84 dB SEL for 30 seconds, similar to a freight train 100 feet away. In-flight noise for the 7000W-B model at 165 feet AGL is 56.5 dBA SEL, comparable to the sound inside an urban residence, while the 8000-A model produces 62.0 dBA, akin to a conversation at a 3-foot distance. The FAA's noise exposure analysis (Section 3.6, Noise and Noise-Compatible Land Use, and Appendix G) confirms that noise levels would be below significance thresholds, even in areas of highest exposure. The small size of the UA ensures no vibrations that could affect historic structures or contents within the APE.

In conclusion, Wing UA operations would only incur intermittent and minor visual and audible effects on historic properties. While delivery noise and potential visual impacts were considered for properties where a quiet setting or an unobstructed sky contributes to significance, any effects would be negligible and temporary. In accordance with 36 CFR § 800.4(a)(1), the FAA will communicate with the Florida SHPO and local government stakeholders that there would be *no adverse effect* on historic properties by the proposed action based on the minimal infrastructure required for the project, consideration of historic properties in the OpSpecs as noise-sensitive areas, and the temporary nature of potential audible and visual effects (Appendix G).

The FAA also consulted with four THPOs for tribes that may potentially attach religious or cultural significance to resources in the APE. The four tribes are: (1) Coushatta Tribe of Louisiana; (2) Miccosukee Tribe of Indians; (3) Muscogee (Creek) Nation; and (4) Seminole Tribe of Florida. The FAA sent consultation letters to the first three tribes on July 11, 2024, and to the Seminole Tribe of Florida on September 19, 2024, regarding the entire APE and did not receive any responses or objections.

The FAA is awaiting concurrence from the SHPO of its determination of *no adverse effect* by the proposed action. As currently analyzed, the proposed action would not result in significant impacts on historical, architectural, archaeological, or cultural resources. The FAA's tribal and historic outreach letters are included as Appendices F and G, respectively.

3.6 Noise and Noise-Compatible Land Use

3.6.1 Definition of Resource and Regulatory Setting

Noise is considered any unwanted sound that interferes with normal activities (such as sleep, conversation, student learning) and can cause annoyance. Aircraft noise is often the most noticeable environmental effect associated with any aviation project. Several federal laws, including the Aviation Safety and Noise Abatement Act of 1979, as amended (49 U.S.C. §§ 47501-47507) regulate aircraft noise and noise-compatible land use. Through 14 CFR Part 36, the FAA regulates noise from aircraft. FAA Order 1050.1F, Appendix B, Paragraph B-1.3 requires the FAA to identify the location and number of noise-sensitive areas that could be significantly impacted by noise. As defined in Paragraph 11-5b of Order 1050.1F, page 11-3, a noise-sensitive area is "an area where noise interferes with normal activities associated with its use. Normally, noise-sensitive areas include residential, educational, health, and religious structures and sites, and parks, recreational areas, areas with wilderness characteristics, wildlife refuges, and cultural and historical sites."

Sound is measured in terms of the decibel (dB), which is the ratio between the sound pressure of the sound source and 20 micropascals, which is nominally the threshold of human hearing. Various weighting schemes have been developed to collapse a frequency spectrum into a single dB value. The A-weighted decibel, or dBA, corresponds to human hearing accounting for the higher sensitivity in the mid-range frequencies. To comply with NEPA requirements, the FAA has issued requirements for assessing aircraft noise in FAA Order 1050.1F, Appendix B. The FAA's required noise metric for aviation noise analysis is the yearly day-night average sound level (DNL) metric. The DNL metric is a single value representing the logarithmically averaged aircraft sound level at a location over a 24-hour period, with a 10 dB adjustment added to those noise events occurring from 10:00 p.m. to 7:00 a.m. the following morning. A significant noise impact is defined in Order 1050.1F as an increase in noise of DNL 1.5 dB or more at or above DNL 65 dB noise exposure or a noise exposure at or above the DNL 65 dB due to a DNL 1.5 dB or greater increase.

3.6.2 Affected Environment

The approximate land area within the study area is 14,200 square miles, the approximate water area is 237 square miles, and the estimated population within the counties included in the study area is 9,587,041 per 2022 estimates (see Section 3.7, *Environmental Justice*).

The ambient (or background) sound level in the operations area varies and depends on the uses in the immediate vicinity. For example, the ambient sound level along a major highway is higher than the ambient sound level within a residential neighborhood. Existing sound sources in the operating area are primarily those from anthropogenic sources associated with commercial, industrial, transportation (e.g., highways, rail, and air travel), and residential land uses in an urban and city environment (e.g., vehicles, construction equipment, aircraft). Except for areas proximate to airports (see Figure 3.6-1), existing aviation noise levels in the Central Florida study area are expected to be well below the FAA's threshold for significant noise exposure to residential land use (DNL 65 dB).

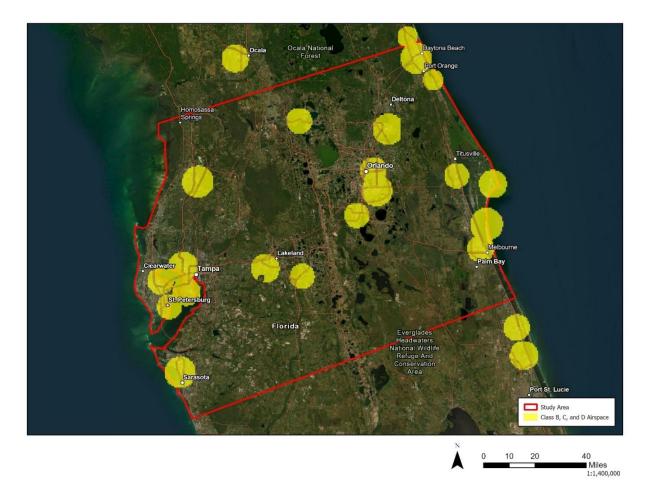


Figure 3.6-1. Controlled Surface Area of Class B, Class C, and Class D Airspace

3.6.3 Environmental Consequences

3.6.3.1 No Action Alternative

Under the no action alternative, Wing would not implement commercial UA package delivery options in the Central Florida metro and surrounding areas. Wing would continue to conduct UA package delivery operations under Part 135 in locations currently authorized by its OpSpec and at other locations under 14 CFR Part 107. The no action alternative is not expected to cause a significant impact on any noise-sensitive resources within the study area.

3.6.3.2 Proposed Action

Operations would include up to 400 deliveries from each nest and would occur up to 365 days per year. The FAA developed a methodology to evaluate the potential noise exposure in the proposed study area that could result from implementation of the proposed action (Appendix D). The noise assessment evaluated noise emissions data for the Hummingbird 7000W-B and 8000-A.

Due to the unknown fleet mix and operational profile(s) that would be used (i.e. manual load, nearfield autoload, or offsite autoload), this analysis assumes the most conservative scenario with

the farthest setback distances presented in Tables 9 to 16 of Appendix D. This analysis was used to define the potential significant impacts due to the proposed action. Noise assessments were performed for each of the flight phases as discussed in detail in the following sections.

Noise Exposure for Nest Operations

Based on a daily maximum of 400 deliveries per nest, 24 FitBIT operations before 7 a.m., 1 GeoBIT operation, and 365 operating days per year, Table 3.6-1 provides the most conservative extent of daily noise exposure for nest operations.

Annual Average Daily DNL Equivalent Deliveries	DNL Equivalent FitBit Operations	DNL Equivalent GeoBit Operations	DNL 65 dB	DNL 60 dB	DNL 55 dB	DNL 50 dB
400	240	1	35 feet	65 feet	120 feet	235 feet

Table 3.6-1.	. Estimated	Extent of	Noise	Exposure	from Nest
--------------	-------------	-----------	-------	----------	-----------

Source: ICF 2024.

Note: Distances are the worst-case noise scenario (longest set back distances) based on Tables 9 through 12 of Appendix D. dB = decibel; DNL = day-night average sound level; FitBIT = fitness built-in test; GeoBIT = geography built-in test.

As described in Section 2.2, *Proposed Action*, nests would be placed at least 120 feet away from noise-sensitive areas within the controlled surface areas of Class B, Class C, and Class D airspace. In addition, nests would be placed at least 65 feet away from noise-sensitive areas when they are outside of the controlled surface areas of Class B, Class C, and Class D airspace. Based on the above distances, the increase of noise would not be expected to exceed DNL 1.5 dB within DNL 65 dB of existing aviation noise exposure or become DNL 65 dB with the increase of DNL 1.5 dB because DNL 60- and 65-dB of existing aviation noise exposure would not exceed the controlled surface areas of Class B, Class C, and Class D airspace. Therefore, there would be no significant impact due to the nest operations.

Noise Exposure for Offsite Package Autoload Operations

As stated in 2.2.3, offsite package autoload operations consist of UA descent from its close transit altitude (safe altitude above local terrain and obstacles) to 22 feet AGL and lowers the package hook. The UA then passes approximately 10 feet laterally over the autoloader. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single offsite package autoload operation consists of arrival, package autoload, and departure phases. As shown in Table 3.6-2, offsite package autoload operations would not exceed 65 DNL at 25 feet from an offsite autoloading location at a rate of 400 deliveries per day.

Average Daily Deliveries per Autoloader	65 DNL Distance (feet)	60 DNL Distance (feet)	55 DNL Distance (feet)	50 DNL Distance (feet)	45 DNL Distance (feet)
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25

Table 3.6-2. DNI Noise Fx	knosure Contour Distances at ar	n Offsite Package Autoloading Location
	aposare contour Distances at an	Tonsite Tackage Autoroading Location

Average Daily Deliveries per	65 DNL	60 DNL	55 DNL	50 DNL	45 DNL
Autoloader	Distance (feet)				
10	<25	<25	<25	<25	40
15	<25	<25	<25	<25	50
20	<25	<25	<25	30	55
25	<25	<25	<25	35	65
50	<25	<25	<25	50	95
75	<25	<25	35	60	135
100	<25	<25	40	70	170
150	<25	<25	50	95	230
200	<25	30	55	115	275
300	<25	40	70	165	355
400	<25	45	80	205	430

Note: Distances are the worst case noise scenario (longest set back distances) based on Tables 13 and 14 of Appendix D. DNL = day-night average sound level.

Noise Exposure for En Route Operations

Based on the information provided by Wing, it is expected that UA would generally cruise at or above an altitude of 165 feet AGL and travel at a ground speed of 59 mph (51 knots) during en route flight. The en route noise exposure for a single point exposed to 400 delivery and return flights (800 flights total) would be 40.7 dBA DNL. Considering that en route UA noise would be significantly low under any delivery scenarios, this was not quantified further.

Noise Exposure for Delivery Operations

The noise exposure for delivery operations includes the noise exposure for the delivery point itself, based on maximum daily deliveries to any one location. The DNL delivery noise exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. The noise exposure for any one delivery point is provided in Tables 15 and 16 of Appendix D and summarized in Table 3.6-3 for various DNL levels. At the level of five daily DNL equivalent deliveries, significant noise effects would not be expected anywhere beyond the immediate point of delivery.

Average Daily DNL Equivalent Deliveries	65 DNL Distance, Feet	60 DNL Distance, Feet	55 DNL Distance, Feet	50 DNL Distance, Feet	45 DNL Distance, Feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25

Table 3.6-3. DNL for Delivery Locations Based on Maximum Deliveri	ies per Location
---	------------------

Source: ICF 2024.

Note: Distances are the worst case noise scenario (longest set back distances) based on Tables 15 and 16 of Appendix D. DNL = day-night average sound level.

Overall Noise Exposure Results

The maximum noise exposure levels are associated with nest operations, where DNL 65 dB occurs within 45 feet of a nest perimeter and DNL 60 dB occurs within 65 feet. As described in Section 2.2, *Proposed Action*, nests would be located at least 65 feet away from noise-sensitive areas. In addition, when nests are planned to be within the controlled surface areas of Class B, Class C, and Class D airspace, nests would be placed 120 feet away from noise-sensitive areas.

Based on the noise analysis, and the above operating parameters, the proposed action would not have a significant noise impact.

3.7 Environmental Justice

3.7.1 Definition of Resource and Regulatory Setting

Environmental justice (EJ) is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. Fair treatment means that no group of people should bear a disproportionate share of the negative environmental consequences resulting from industrial, governmental, and commercial operations or policies. Meaningful Involvement means that people have an opportunity to participate in decisions about activities that may affect their environment and/or health; the public's contribution can influence the regulatory agency's decision; their concerns will be considered in the decision-making process; and the decision makers seek out and facilitate the involvement of those potentially affected.

EO 12898 directs each federal agency to "make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and lowincome populations." Subsequent orders at the federal level—including DOT Order 5610.2C—have reinforced the directives outlined in EO 12898. CEQ also developed guidelines (CEQ 1997) to assist federal agencies in incorporating the goals of EO 12898 into the NEPA process.

EO 14096, *Revitalizing Our Nation's Commitment to Environmental Justice for All*, was enacted on April 21, 2023. EO 14096 on EJ does not rescind EO 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, which has been in effect since February 11, 1994, and is currently implemented through DOT Order 5610.2C, *U.S. Department of Transportation Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*. This implementation will continue until further guidance is provided regarding the implementation of the new EO 14096 on EJ.

DOT Order 5610.2C defines a minority person as a person who is Black, Hispanic or Latino, Asian American, American Indian or Alaska Native, or Native Hawaiian or Other Pacific Islander. The DOT Order defines a minority population as any readily identifiable group of minority persons who live in geographic proximity, and if circumstances warrant, geographically dispersed/transient persons (such as migrant workers or Native Americans) who will be similarly affected by a proposed DOT program, policy, or activity. DOT Order 5610.2C defines a low-income person as a person whose median household income is at or below the Department of Health and Human Services (HHS) poverty guidelines. It defines a lowincome population as any readily identifiable group of low-income persons who live in geographic proximity, and, if circumstances warrant, geographically dispersed/transient persons (such as migrant workers or Native Americans) who would be similarly affected by a proposed DOT program, policy, or activity.

More information about this environmental impact category is presented in Chapter 14 of the FAA Order 1050.1F Desk Reference (FAA 2023).

3.7.2 Affected Environment

The study area includes 21 counties: Brevard, Citrus, DeSoto, Hardee, Hernando, Highlands, Hillsborough, Indian River, Lake, Manatee, Marion, Okeechobee, Orange, Osceola, Pasco, Pinellas, Polk, Sarasota, Seminole, Sumter and Volusia.

DOT Order 5610.2C accounts for both race and ethnicity in addressing EJ impacts. The FAA identified minority populations, classified by both race and ethnicity³⁵, using the Decennial Census down to the county level. Separate data is provided for racial minority and Hispanic populations; therefore, this analysis identifies these populations by both classifications. The FAA identified low-income populations using 2022 American Community Survey (ACS) 5-year estimates from the U.S. Census Bureau. The FAA compared the ACS 5-year estimates to the 2022 HHS Poverty Guidelines for the 48 contiguous states and the District of Columbia to calculate the percentage of households below the poverty threshold for each county.

The FAA selected a "Reference Community" to provide a benchmark by which the individual counties could be compared to identify areas of EJ concern within the study area. Due to the size and population of the study area, the FAA used the average of the 21 counties as the Reference Community for this analysis.³⁶ This regional Reference Community allows the demographics of localized populations (i.e., counties) to be compared to the total population within the overall study area.³⁷

Tables 3.7-1 and 3.7-2 show the demographic information of each county within the study area, the Reference Community, and the state of Florida. The percentage of racial minorities, collected by the Census as "All Other Races," residing within the Reference Community is approximately 19.53 percent. This is slightly lower than that of the state of Florida. The percentage of ethnic minorities, those identifying as Hispanic, residing in the Reference Community is 21.96 percent, which is slightly lower than the state average. For purposes of identifying a "meaningfully greater" threshold, the

³⁵ As defined by the U.S. Census Bureau.

³⁶ Per *Promising Practices for EJ Methodologies in NEPA Reviews* (March 2016), a product of the Federal Interagency Working Group on EJ, a larger scale reference community (e.g., municipal, state, or regional) may be required under this circumstance to obtain results that accurately reflect the existence of a minority population in the geographic unit of analysis (e.g., census block) being analyzed.

³⁷ See *Community Guide to Environmental Justice and NEPA Methods* (March 2019), a product of the Federal Interagency Working Group on EJ, for more information on the importance of selecting an appropriate Reference Community and its use in meaningfully greater analyses

FAA identified any county whose percentage of "All Other Races" equals or exceeds 19.53 percent and/or whose percentage of Hispanic population equals or exceeds 21.96 percent as an area of EJ concern.

The FAA also considered communities where EJ populations predominate (i.e., the minority population is equal to or greater than 50 percent) as areas of EJ concern.

Geographic Area	Total Population	White	% White	All Other Races	% All Other Races	% Hispanic	Meaningfully Greater by Race?	Meaningfully Greater by Ethnicity?
Brevard County	606,612	430,936	71.04%	107,769	17.77%	11.19%	No	No
Citrus County	153,843	131,477	85.46%	13,125	8.53%	6.01%	No	No
DeSoto County	33,976	18,624	54.82%	5,341	15.72%	29.46%	No	Yes
Hardee County	25,327	11,873	46.88%	2,850	11.25%	41.87%	No	Yes
Hernando County	194,515	144,060	74.06%	21,410	11.01%	14.93%	No	No
Highlands County	101,235	65,511	64.71%	14,781	14.60%	20.69%	No	No
Hillsborough County	1,459,762	667,791	45.75%	364,590	24.98%	29.28%	Yes	Yes
Indian River County	159,788	117,422	73.49%	21,534	13.48%	13.04%	No	No
Lake County	383,956	253,214	65.95%	65,367	17.02%	17.03%	No	No
Manatee County	399,710	273,101	68.32%	55,630	13.92%	17.76%	No	No
Marion County	375,908	253,837	67.53%	66,161	17.60%	14.87%	No	No
Okeechobee County	39,644	24,671	62.23%	5,116	12.90%	24.86%	No	Yes
Orange County	1,429,908	531,362	37.16%	425,521	29.76%	33.08%	Yes	Yes
Osceola County	388,656	113,362	29.17%	64,205	16.52%	54.31%	No	Yes
Pasco County	561,891	392,375	69.83%	76,359	13.59%	16.58%	No	No
Pinellas County	959,107	684,463	71.36%	172,205	17.95%	10.68%	No	No
Polk County	725,046	392,621	54.15%	144,730	19.96%	25.89%	Yes	Yes
Sarasota County	434,006	349,700	80.57%	41,070	9.46%	9.96%	No	No
Seminole County	470,856	264,072	56.08%	100,245	21.29%	22.63%	Yes	Yes
Sumter County	129,752	109,213	84.17%	12,956	9.99%	5.84%	No	No
Volusia County	553,543	379,527	68.56%	91,364	16.51%	14.93%	No	No
Reference Community	456,526	267,105	58.51%	89,159	19.53%	21.96%	N/A	N/A
Florida	21,538,187	11,100,503	51.54%	4,740,444	22.01%	26.45%	N/A	N/A

Table 3.7-1. Selected Demographic Characteristics (Race) by County

Source: U.S. Census Bureau 2020

Table 3.7-2 presents the income and poverty data for each geography, along with the HHS Poverty Guidelines. The poverty threshold is proportional to the household size, which is also presented in Table 3.7-2. Overall, the Reference Community has a poverty level of 17.65 percent, 4.31 percent lower than the state. Similar to what was done for race and ethnicity, the FAA applied a zero percent threshold. Therefore, the FAA identified any county whose percentage of households below poverty equals or exceeds 17.65 percent as an area of EJ concern. Table 3.7-3 shows the counties identified as areas of EJ concern compared to the Reference Community.

Geographic Area	Number of Households	Average Household Size	2022 HHS Poverty Guideline	% of Households Below Poverty	Meaningfully Greater?
Brevard County	246,650	2.45	\$20,434.00	14.7%	No
Citrus County	67,551	2.26	\$19,437.20	21.7%	Yes
DeSoto County	12,340	2.52	\$20,764.40	25.4%	Yes
Hardee County	8,127	2.9	\$22,558.00	28.4%	Yes
Hernando County	79,169	2.46	\$20,481.20	17.6%	No
Highlands County	44,685	2.25	\$19,490.00	22.7%	Yes
Hillsborough County	559,970	2.58	\$21,047.60	15.7%	No
Indian River County	65,735	2.42	\$20,292.40	16%	No
Lake County	153,817	2.49	\$20,622.80	14%	No
Manatee County	161,656	2.47	\$20,528.40	14.1%	No
Marion County	154,996	2.38	\$20,103.60	20.4%	Yes
Okeechobee County	14,919	2.49	\$20,622.80	21.5%	Yes
Orange County	491,378	2.83	\$22,227.60	14.7%	No
Osceola County	119,817	3.27	\$24,304.40	16.2%	No
Pasco County	223,385	2.51	\$20,717.20	17.5%	No
Pinellas County	418,716	2.24	\$19,442.80	17.1%	No
Polk County	264,145	2.73	\$21,755.60	17.6%	No
Sarasota County	199,345	2.17	\$19,112.40	12.9%	No
Seminole County	183,487	2.54	\$20,858.80	11.9%	No
Sumter County	64,305	1.92	\$17,932.40	12.9%	No
Reference Community	176,710	2.494	\$20,641.68	17.65%	No
Florida	8,353,441	2.53	\$20,811.60	16.5%	No

Table 3.7-2. Selected Demographic Characteristic (Poverty) by County

Sources: U.S. Census Bureau 2022, HHS 2022.

			% Households Below
Geographic Area	% All Other Races	% Hispanic	Poverty
Brevard County	Х	Х	Х
Citrus County	Х	Х	21.7%
DeSoto County	Х	29.46%	25.4%
Hardee County	Х	41.87%	28.4%
Hernando County	Х	Х	Х
Highlands County	Х	Х	22.7%
Hillsborough County	24.98%	29.28%	Х
Indian River County	Х	Х	Х
Lake County	Х	Х	Х
Manatee County	Х	Х	Х
Marion County	Х	Х	20.4%
Okeechobee County	Х	24.86%	21.5%
Orange County	29.76%	33.08%	Х
Osceola County	Х	54.31%	Х
Pasco County	Х	х	Х
Pinellas County	Х	х	Х
Polk County	19.96%	25.89%	Х
Sarasota County	Х	х	Х
Seminole County	21.29%	22.63%	Х
Sumter County	Х	х	Х
Reference Community	19.53%	21.96%	17.65%

Table 3.7-3. Communities of Environmental Justice Concern

Sources: U.S. Census Bureau 2020; U.S Census Bureau 2022; HHS 2022.

X = Does not meet the threshold for consideration as an environmental justice community of concern.

In summary, of the 21 counties, four are considered areas of EJ concern with respect to race because they have higher percentages of racial minorities compared to the Reference Community. Eight counties are considered areas of EJ concern with respect to ethnicity because they have higher percentages of ethnic minorities than the Reference Community. Six counties are considered areas of EJ concern with respect to poverty because they have higher percentages of households below poverty than the Reference Community.

3.7.3 Environmental Consequences

3.7.3.1 No Action Alternative

Under the no action alternative, Wing would not implement commercial UA package delivery operations in the Central Florida metro and surrounding areas and would continue to conduct UA package delivery operations under Part 135 in locations currently authorized by its OpSpecs and at other locations under 14 CFR Part 107,11 which limits operations to UA weighing less than 55 pounds and within visual line of sight. Market demand would not be met, and consumers would continue to use personal ground transportation to retrieve small goods. This alternative does not

support the stated purpose and need. Therefore, the no action alternative is not expected to result in significant impacts on environmental justice communities.

3.7.3.2 Proposed Action

As described in the sections above, the proposed action would not result in significant impacts in any other environmental impact category. As noted in Section 3.6, Noise and Noise-Compatible Land Use, the UA's noise emissions could be perceptible in areas within the study area but would stay well below the level determined to constitute a significant impact (DNL 65 dB). As part of the environmental review of individual Part 135 applications, the FAA will review the applicant's proposal to ensure the proposal would not result in land use compatibility issues with respect to noise. If the FAA identifies concerns, the FAA will work with the applicant to avoid the issue (see Section 3.6).

Drone package deliveries would provide additional access to small goods, such as groceries and medicine, which could present a positive effect on low-income and minority communities where individuals may not have reliable access to personal vehicles and/or other modes of transportation. For these reasons, the proposed action may result in a benefit to low-income and minority communities by providing additional and on-demand access to small goods. The proposed action would not create impacts that exceed thresholds of significance in other environmental impacts, nor would it generate impacts on the physical or natural environment that affect an EJ population in a way that the FAA determines are unique to the EJ population and significant to that population. Therefore, the proposed action would not result in significant EJ impacts, including disproportionately high and adverse effects on minority and/or low-income populations.

3.8 Visual Effects (Visual Resources and Visual Character)

3.8.1 Definition of Resource and Regulatory Setting

Visual effects deal broadly with the extent to which the project would either (1) produce light emissions that create annoyance or interfere with activities; or (2) contrast with, or detract from, the visual resources and/or the visual character of the existing environment. Visual effects can be difficult to define and assess because they involve subjectivity. In this case, visual effects would be limited to the introduction of a visual intrusion—a UA in flight—which could be out of character with the suburban or natural landscapes.

The FAA has not developed a visual effects significance threshold. Factors the FAA considers in assessing significant impacts include the degree to which the action would have the potential to (1) affect the nature of the visual character of the area, including the importance, uniqueness, and aesthetic value of the affected visual resources; (2) contrast with the visual resources and/or visual character in the study area; or (3) block or obstruct the views of visual resources, including whether these resources would still be viewable from other locations.

3.8.2 Affected Environment

The proposed action would take place over mostly suburban and commercially developed properties. As noted in Section 3.4, Department of Transportation Act, Section 4(f) Resources, there are some publicly owned resources that could be valued for aesthetic attributes within the study area. However, Wing's flight planning software is designed to increase variability in flight paths to minimize overflights of any given location; with the diversification of flight paths, the frequency of overflights would inversely scale as the distance from a nest increases. During takeoff, remote pickup, and delivery, the UA would depart from a nest and travel en route at an altitude less than 400 feet AGL (en route travel would generally occur between 150 and 250 feet AGL). Deliveries would mostly take place at residences, and, in some cases, there may be instances where the delivery would be to a customer located within a Section 4(f) resource (see Section 3.4.2 for more information on 4(f) properties). A 6-foot-radius clear space is required for delivery, such as a driveway, parking lot, field, common area, patio, or clear spaces surrounding multi-family dwellings, as determined during the delivery request process.³⁸ The duration of delivery from the time the customer approves the delivery to the transition back to en route flight mode is expected to last approximately 15 seconds. The FAA estimates at typical operating altitude and speeds the UA en route would be observable for approximately 6 seconds by an observer on the ground.

3.8.3 Environmental Consequences

3.8.3.1 No Action Alternative

Under the no action alternative, Wing could continue to operate its Hummingbird UA (7000W-A or 7000W-B) within Frisco and Little Elm at the level analyzed in the 2022 EA (FAA 2022). Wing's drone operations would not alter any landforms or land uses, as discussed in the 2022 EA. Therefore, there will continue to be no effect on the visual character of the area from existing operations. Although the no action alternative involves drone airspace operations that could result in visual impacts on sensitive areas, such as Section 4(f) areas, where visual setting is a vital resource of the property, given the short flight durations and low number of proposed flights per day under the no action alternative, no significant impacts on visual resources and visual character are anticipated. Therefore, the no action alternative is not expected to result in significant visual effects.

3.8.3.2 Proposed Action

The proposed action would make no changes to any landforms or land uses; thus, there would be no effect on the visual character of the area, as the nests would be located in established commercial areas as further described in Section 2.2, *Proposed Action*. The proposed action involves airspace operations that could result in visual impacts on sensitive areas such as Section 4(f) properties where the visual setting is an important resource of the property. The short duration when each UA flight could be seen from any resource in the study area and the low number of overflights within any given location would minimize any potential for significant visual impacts.

³⁸ In the event that the clear space contains obstructions such as trees or cars, the UA would abort the delivery and return to the nest.

The proposed action does not have the potential to do the following:

- Create annoyance or interfere with normal activities from light emissions;
- Affect the visual character of the area due to the light emissions, including the importance, uniqueness, and aesthetic value of the affected visual resources;
- Affect the nature of the visual character of the area, including the importance, uniqueness, and aesthetic value of the affected visual resources;
- Contrast with the visual resources and/or visual character in the study area; and
- Block or obstruct the views of visual resources, including whether these resources would still be viewable from other locations.

Therefore, the proposed action is not expected to cause significant impacts to visual resources.

Consideration of cumulative impacts applies to the impacts resulting from implementing the proposed action along with other actions. The CEQ regulations define cumulative impacts as "effects on the environment that result from the incremental effects of the action when added to the effects of other past, present, and reasonably foreseeable actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative effects can result from individually minor but collectively significant actions taking place over a period of time." (40 CFR § 1508.1(g)(3).)

As most of the impacts discussed in Chapter 3, *Affected Environment and Environmental Consequences,* were found to be minimal and given that the drone flight is limited in its ability to interact with other outside actions due to its short duration, the proposed action's contribution to cumulative impacts in the study area would largely be from noise. Additionally, Wing is developing an automated deconfliction network for UA avoidance across participating operators in the Dallas-Fort Worth area that is expected to be enacted in early 2024. Similar efforts could be undertaken as other operators move into the Central Florida operating area. Thus, this section will focus on the proposed action's potential cumulative impact on the noise environment.

Because UA operations would occur in areas subject to other aviation noise sources, it is necessary to evaluate the cumulative noise exposure that would result from the other aviation noise sources present. Examples of such scenarios are Wing operations occurring in the vicinity of an airport where Wing flight activity may overlap with traditional aircraft. Aviation noise sources are most likely to be the dominant contribution to noise impacts near airports. By comparison, other sources of noise would not appreciably contribute to overall noise levels at these locations.

There are 319 airports within the study area (see Appendix H). The potential for noise and compatible land use cumulative effects would result from UA and manned aircraft operating within DNL 60 dB noise exposure areas of existing airports. As such, the potential for cumulative effects would be minimized because Wing has elected to require that all nests would be placed at least 120 feet away from noise-sensitive areas within the controlled surface areas of Class B, Class C, and Class D airspace. In addition, nests would be placed at least 65 feet away from noise-sensitive areas when they are outside of the controlled surface areas of Class B, Class C, and Class D airspace. No other Part 135 UA operations currently occur in the Central Florida area. The proposed automated deconfliction network for UA avoidance would help reduce any such cumulative effects by limiting drone flight path overlap. Wing's flight planning software is designed to increase variability in flight paths to minimize overflights of any given location, thereby reducing the potential for cumulative effects would be required to complete an environmental review before beginning operations, ensuring that any potential cumulative effects are properly analyzed and disclosed.

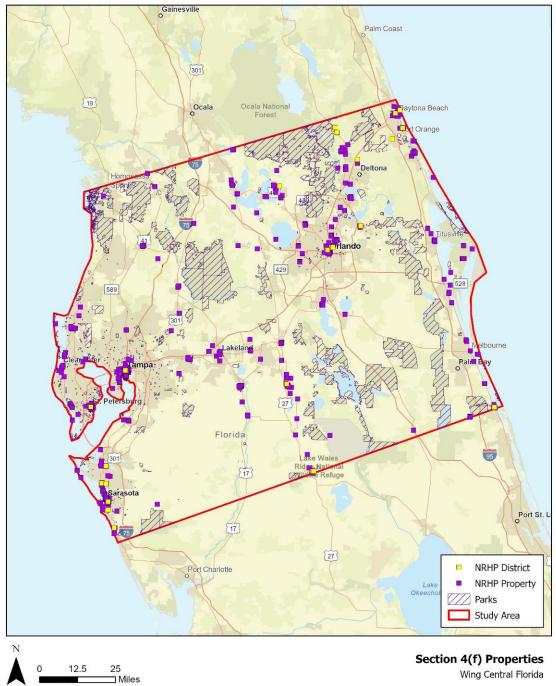
Nest sites would be in areas zoned for commercial activities and away from noise-sensitive areas. Nests would be powered using available electric outlets for recharging batteries. No cumulative effects are expected on the power grid or from energy sources.

Wing acknowledges that future operators may propose locating operations within this proposed action's study area. Should that occur, Wing understands the potential for impacts may increase due to a future operator's project and would work with that operator and the FAA to mitigate potential impacts. Wing also understands that any future operators would be required to perform their own NEPA analysis to identify the potential for any noise impacts due to their operations. The degree to which all of the different operators would operate within areas of shared airspace is dependent on the operators, their specific business use cases, and their ability to deconflict with one another in those overlapping areas. Each operator is responsible for coordinating with other operators in the same geographic area to avoid significant cumulative impacts. Wing will communicate and coordinate with other operators to limit operations occurring concurrently in the same area to avoid any significant impacts.

As discussed in Chapter 3, the proposed action is not expected to significantly impact the environmental impact categories (see Section 3.2). Areas of existing aviation noise sources within the study area would be avoided; thus, the proposed action would not contribute to significant cumulative noise impacts. No other actions are anticipated to interact with the proposed action to result in cumulative effects; therefore, the proposed action is not expected to result in significant cumulative effects.

- August, T. and T. Moore. 2018. *Autonomous Drones Are a Viable Tool for Acoustic Bat Surveys*. Available: <u>https://www.biorxiv.org/content/10.1101/673772v1.full.pdf</u>. Accessed: December 6, 2024.
- Bocanegra, O. 2020. *Whooping Crane Determination Key*. Memorandum. Available: <u>https://www.fws.gov/sites/default/files/documents/whooping-crane-dkey.pdf</u>. Accessed: December 6, 2024.
- Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and U.S. Forest Service. No Date. National Wild and Scenic Rivers System. Available: <u>https://www.rivers.gov</u>. Accessed: December 6, 2024.
- Christie, K. S., S. J. Gilbert, C. Brown, M. Hatfield, and L. Hanson. 2016. Unmanned Aircraft Systems in Wildlife Research: Current and Future Applications of a Transformative Technology. *Frontiers in Ecology and the Environment* 14(5):241–251. Available: <u>https://doi.org/10.1002/fee.1281</u>.
- Connecticut Audubon Society. No Date. *Flying Drones Pose Danger to Threatened Birds*. Available: <u>https://ct.audubon.org/news/flying-drones-pose-danger-threatened-</u> <u>birds#:~:text=Drones%20can%20cause%20nest%20abandonment,repeated%20harassment%20f</u> <u>rom%20a%20drone</u>. Accessed: December 6, 2024.
- Cornell Lab of Ornithology (Cornell Lab). No Date. *All About Birds: Bald Eagle*. Available: <u>https://www.allaboutbirds.org/guide/Bald_Eagle/overview.</u> Accessed: December 6, 2024.
- Cross Timbers Urban Forestry Council. No Date. *Cross Timbers Ecosystem*. Available: <u>http://ctufc.org/cross-timbers-ecosystem</u>. Accessed: December 6, 2024.
- Ednie, G., D.M. Bird, and K.H. Elliott. 2021. Fewer Bat Passes Are Detected During Small, Commercial Drone Flights. *Sci Rep* 11, 11529. Available: <u>https://doi.org/10.1038/s41598-021-90905-0</u>.
- Federal Aviation Administration (FAA). 2015. Order 1050.1F, Environmental Impacts: Policies and Procedures. Available: <u>https://www.federalregister.gov/documents/2015/07/24/2015-18084/final-order-10501f-environmental-impact-policies-and-procedures</u>. Accessed: December 6, 2024.
- Federal Aviation Administration (FAA). 2022. Wing Aviation Drone Package Delivery Operations Frisco and Little Elm, Texas, Final Environmental Assessment. Available: <u>https://www.faa.gov/uas/advanced_operations/nepa_and_drones</u>. Accessed: December 6, 2024.
- Federal Aviation Administration (FAA). 2023. *1050.1F Desk Reference*. Available: <u>https://www.faa.gov/about/office_org/headquarters_offices/apl/environ_policy_guidance/poli_cy/faa_nepa_order/desk_ref</u>. Accessed: December 6, 2024.

Fu, Y., M. Kinniry, and L. N. Kloepper. 2018. The Chirocopter: A UAV for Recording Sound and Video of Bats at Altitude. *Methods in Ecology and Evolution* 9(6):1531–1535. Available: <u>https://doi.org/10.1111/2041-210x.12992</u>.


iNaturalist. 2023. iNaturalist. Available: <u>https://www.inaturalist.org/</u>. Accessed: December 6, 2024.

- Kalb, N., and C. Randler. 2019. Behavioral Responses to Conspecific Mobbing Calls Are Predator-Specific in Great Tits (*Parus major*). *Ecology and Evolution* 9(16):9207–9213. Available: <u>https://doi.org/10.1002/ece3.5467</u>.
- Lyon-Hill, Sarah, Tilashalski, Melissa, Ellis, Kimberly, and Travis Elli. 2020. Measuring the Effects of Drone Delivery in the United States. Virginia Tech Office of Economic Development and the Grado Department of Industrial & Systems Engineering. <u>https://cece.vt.edu/content/dam/econdev_vt_edu/projects/technology/Virginia%20Tech%20%</u> <u>20Measuring%20the%20Effects%20of%20Drone%20Delivery%20in%20the%20United%20States</u> <u>September%202020.pdf</u>. Accessed December 6, 2024.
- Lyons, M. B., K. Brandis, C. T. Callaghan, J. McCann, C. E. Mills, S. Ryall, and R. T. Kingsford. 2018. Bird Interactions with Drones, from Individuals to Large Colonies. *Australian Field Ornithology* 35:51– 56. Available: <u>https://doi.org/10.20938/afo35051056</u>.
- Mannheim, M. 2021. Wing Resumes Drone Deliveries in Canberra After Raven Attacks Forced Pause During Nesting Season. December 10. ABC News. Available: <u>https://www.abc.net.au/news/2021-12-11/wing-resumes-drone-deliveries-after-raven-attacks/100689690</u>. Accessed: December 6, 2024.
- Mass Audubon. 2023. *Aggressive Birds*. Available: <u>https://www.massaudubon.org/nature-wildlife/birds/aggressive-birds</u>. Accessed: December 6, 2024.
- McConnell, C. 2021. Identifying, Protecting and Managing Stopover Habitats for Wild Whooping Cranes on U.S. Army Corps of Engineers Lakes. *bioRxiv (Cold Spring Harbor Laboratory)*. Available: <u>https://doi.org/10.1101/2020.12.30.424870</u>.
- National Oceanic and Atmospheric Administration (NOAA) National Weather Service. No Date. Twilight Types. Available: <u>https://www.weather.gov/lmk/twilight-</u> <u>types#:~:text=Civil%20Twilight%3A,horizon%2C%20and%20ends%20at%20sunrise</u>. Accessed: December 6, 2024.
- National Park Service. 2023a. National Register Database and Research. Available: <u>https://www.nps.gov/subjects/nationalregister/database-research.htm</u>. Accessed: December 6, 2024.
- National Park Service. 2023b. *National Wild and Scenic Rivers System*. Available: <u>https://nps.maps.arcgis.com/apps/MapJournal/index.html?appid=ba6debd907c7431ea765071e</u> <u>9502d5ac#</u>. Accessed: December 6, 2024.
- National Park Service. 2023c. *Nationwide Rivers Inventory*. Available: <u>https://www.nps.gov/subjects/rivers/nationwide-rivers-inventory.htm</u>. Accessed: December 6, 2024.

Royal Society for the Protection of Birds (RPSB). 2023. *What is Mobbing?* Available: <u>https://www.rspb.org.uk/birds-and-wildlife/wildlife-guides/birdwatching/bird-behaviour/what-</u> is-mobbing/. Accessed: December 6, 2024.

Sexton, N. R., A. M. Dietsch, A. W. D. Carlos, L. Koontz, A. R. Solomon, and H. V. Miller. 2011. National Wildlife Refuge Visitor Survey 2010/2011: Individual Refuge Results for Monte Vista National Wildlife Refuge. U.S. Geological Survey. Available: <u>https://pubs.usgs.gov/ds/643/Mountain-</u> <u>Prairie%20Region%20(R6)/Monte%20Vista%20NWR%20-</u> <u>%20NWR%20visitor%20survey%202010_2011.pdf</u>. Accessed: December 6, 2024.

- U.S. Census Bureau (USCB). 2021. ACS 1-Year Survey Estimates Tables. Available: <u>https://data.census.gov/</u>. Accessed: December 6, 2024.
- U.S. Department of Health and Human Services (HHS). 2023. *Federal Poverty Income Guidelines.* Available: <u>https://www.dhs.pa.gov/Services/Assistance/Documents/2023-Federal-Poverty-Income-Guidelines.pdf</u>. Accessed: December 6, 2024.
- U.S. Fish and Wildlife Service (USFWS). No Date (-a). *ECOS: Species Profile*. Environmental Conservation Online System. Available: <u>https://ecos.fws.gov/ecp/species/33</u>. Accessed: December 6, 2024.
- U.S. Fish and Wildlife Service (USFWS). No Date (-b). Perimyotis subflavus | U.S. Fish & Wildlife Service. Available: <u>https://www.fws.gov/species/tricolored-bat-perimyotis-subflavus</u>. Accessed: December 6, 2024.
- U.S. Fish and Wildlife Service (USFWS). No Date (-c). *Keeping Wildlife Safe from Drones: Keeping Bald Eagles and Other Wildlife Safe from Drones*. Available: <u>https://www.fws.gov/story/keeping-wildlife-safe-drones#:~:text=Eagles%20and%20many%20other%20raptors,injury%20to%20the%20adult%20b irds</u>. Accessed: December 6, 2024.
- U.S. Fish and Wildlife Service (USFWS). No Date (-d). *Information for Planning and Consultation*. Available: <u>https://ipac.ecosphere.fws.gov/</u>. Accessed: December 6, 2024.
- U.S. Fish and Wildlife Service (USFWS). No Date (-e). *ECOS: Species Profile*. Environmental Conservation Online System. Available: <u>https://ecos.fws.gov/ecp/species/758</u>. Accessed: December 6, 2024.
- U.S. Department of the Navy. 2022. *The Air Almanac 2023.* The Nautical Almanac Office United States Naval Observatory. Available: <u>https://aa.usno.navy.mil/publications/aira</u>. Accessed: December 6, 2024.
- Yetter, A. P., D. Brandt, W. C. Harrell, K. L. Metzger, D. M. Baasch, and T. J. Hefley. (2015). Whooping Crane Stopover Site Use Intensity Within the Great Plains. Open-File Report 2015-1166. Available: <u>https://doi.org/10.3133/ofr20151166</u>.

Wing Central Florida

1:1,400,000

Appendix C List of Agencies Consulted, Preparers, and Reviewers

Consulting Agency / Tribal Government	Representative
Coushatta Tribe of Louisana	Chairman Jonathan Cernek
Miccosukee Tribe of Indians	Chairman Talbert Cypress
Muscogee (Creek) Nation	Principal Chief David Hill
Seminole Tribe of Florida	Chairman Marcellus Osceola Jr.
Florida State Historic Preservation Office	Scott Edwards
U.S. Fish and Wildlife Service	Pending
Florida Department of Environmental Protection	State Environmental Clearinghouse

Name and Affiliation	Years of Industry Experience	EA Responsibility
	FAA Evaluators	
Shelia Neumann Ph.D., P.E.; FAA AFS (Office of Safety Standards, Flight Standards Service) General Aviation Operations	30	Environmental Protection Specialist, NEPA Project Lead and Document Review
Christopher Hurst REM, CEA, CESCO; FAA AFS (Office of Safety Standards, Flight Standards Service) General Aviation Operations	20	Environmental Protection Specialist, Document Review
Christopher Couture, FAA AQS (Aviation Safety, Quality, Integration, and Executive Services)	17	Environmental Protection Specialist, Document Review
Adam Scholten, FAA AEE (Office of Environment and Energy, Noise Division [AEE-100])	13	Environmental Protection Specialist, Noise Analysis and Document Review
Susumu Shirayama, FAA AEE (Office of Environment and Energy, Noise Division [AEE-100])	22	Environmental Protection Specialist, Noise Analysis and Document Review
Preparers		
Rob Greene, ICF	12	NEPA SME, Research, and Document Preparation
Jimmy Zaccagnino, ICF	4	Research and Document Preparation
Elisabeth Mahoney, ICF	5	Research and Document Preparation
Robbie Baldwin, ICF	5	Biologist and Document Preparation
Emma Cwalinski, ICF	3	Research and Document Preparation

TECHNICAL NOISE STUDY REPORT: HUMMINGBIRD 7000W-B AND 8000-A UNMANNED AIRCRAFT PACKAGE DELIVERY OPERATIONS

REPORT NO. 112024

PREPARED FOR:

Federal Aviation Administration Unmanned Aircraft Systems Integration Office (AUS) 950 L'Enfant Plaza SW, Suite 500 Washington, D.C. 20024

PREPARED BY:

ICF

November 2024

Contents

Page

				0
	List of T	Fable	es	iii
	List of F	igur	res	iv
	Acrony	ms a	and Abbreviations	iv
Cha	apter 1 I	ntro	oduction	1-1
	1.1	Pur	rpose	1-1
	1.2	Fur	ndamental Concepts	1-2
	1.3	Reg	gulatory Context	1-2
Cha	apter 2 I	Vetl	hods	2-1
	2.1	Soι	und Level Measurements	2-1
	2.1	.1	Wing Model 7000W-B Sound Level Measurements	2-1
	2.1	.2	Wing Model 8000-A Sound Level Measurements	2-2
	2.2	Ana	alysis Procedure Methodology	2-4
Cha	apter 3 1	「esti	ing Procedure for Wing Operations	3-1
	3.1	Ma	nual Load and Takeoff	3-1
	3.2	Del	livery	3-1
	3.2	.1	Landing	3-1
	3.2	.2	Offsite Package Autoload	3-2
	3.2	.3	Nearfield Launch and Autoload	3-2
	3.2	.4	Fitbit Operation	3-2
	3.2	.5	Geobit Operation	3-3
Cha	apter 4 S	Soun	nd Levels of UA Operations	4-1
	4.1	Soι	und Levels for Wing Model 7000W-B	4-1
	4.1	.1	Manual Loading, Delivery and Landing	4-1
	4.1	.2	Sound Levels for Wing Model 7000W-B Autoload Actions	4-2
	4.1	.3	Sound Levels for Wing Model 7000W-B FitBit and GeoBit Actions	4-3
	4.1	.4	En Route Sound Levels for Wing Model 7000W-B	4-4
	4.2	Soι	und Levels for Wing Model 8000-A	4-5
	4.2	.1	Manual Loading, Delivery and Landing	4-5
	4.2	.2	Sound Levels for Wing Model 8000-A Autoload Actions	4-6
	4.2	.3	Sound Levels for Wing Model 8000-A FitBit and GeoBit Actions	4-8
	4.2	.4	En Route Sound Levels for Wing Model 8000-A	4-9

Chapter 5 I	Noise Exposure from UA Operations	5-1
5.1	Noise Exposure from a Nest	5-1
5.2	Noise Exposure from Offsite Package Autoloading	5-4
5.3	En Route Noise Exposure	5-5
5.4	Noise Exposure from a Delivery Site	5-5
5.5	Cumulative Noise Exposure	5-7
Chapter 6 I	References	6-1

List of Tables

Page

Table 1. Summary of Sound Level Testing, Model 7000W-B	2-2
Table 2. Summary of Sound Level Testing, Model 8000-A	2-3
Table 3. Model 7000W-B: Estimate of SEL for Manual Launch, Delivery and Landing at Nest	4-1
Table 4. Model 7000W-B: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload Actions	4-2
Table 5. Model 7000W-B: Estimate of SEL for FitBit and GeoBit Actions	4-3
Table 6. Model 8000-A: Estimate of SEL for Manual Launch, Delivery and Landing at Nest	4-5
Table 7. Model 8000-A: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload Actions	4-6
Table 8. Model 8000-A: Estimate of SEL for FitBit and GeoBit Actions	4-8
Table 9. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of Operation, Manual Launch Option	5-1
Table 10. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of Operation, Nearfield Launch Option	5-2
Table 11. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of Operation, Manual Launch Option	5-3
Table 12. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of Operation, Nearfield Launch Option	5-3
Table 13. DNL Noise Exposure Distances at an Offsite Package Autoloading Location forModel 7000W-B, for Different Scales of Operation	5-4
Table 14. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of Operation, Remote Launch Option	5-5
Table 15. DNL Noise Exposure Distances at a Delivery Point for Model 7000W-B for Different Scales of Operation	5-6
Table 16. DNL Noise Exposure Distances at a Delivery Point for Model 8000-A for Different Scales of Operation	5-6
Table 17. Cumulative Increase in DNL due to a Proposed Action	5-7

List of Figures

Page

Figure 1.	Hummingbird Wing Model 7000W-B	2-1
Figure 2.	Wing Hummingbird 8000-A UA	2-3

Acronyms and Abbreviations

AGL	above ground level
CONOPS	Concept of operations
dB	decibel
dBA	A-weighted decibel
DNL	day/night level
FAA	Federal Aviation Administration
Lmax	maximum sound level
SEL	sound exposure level
UA	unmanned aircraft

1.1 Purpose

The purpose of this report is to provide calculations of noise exposure for package delivery operations by Hummingbird unmanned aircraft (UA) developed by Wing Aviation LLC, a subsidiary of Alphabet, Inc. Noise exposure estimates are provided for two Hummingbird models: the Model 7000W-B and the Model 8000-A based on sound level testing data collected by AvEnviro Acoustics (2024a, 2024b).

The analysis in this report provides a methodology of estimating noise levels from UA operation that is limited to these specific UA models. Because the methods used in this report are based on collected measurements, they should not be applied to other UA models. The analysis does not include a geographic component, nor does it account for the presence of structures in urban areas.

Passby exposure levels at different distances from a nest or delivery point are based on as-tested conditions, which were intended to simulate all operation types for each UA model. Testing simulations consisted of the following operations:

- Manual package loading at a nest and takeoff toward delivery point
- Package offloading at a delivery point and departure back to nest
- Landing at a nest
- Remote launch, autoload of package at a nest, and takeoff
- Nearfield launch, autoload of package at a nest, and takeoff
- Hover in place
- En route (with and without a package)
- Preflight warmup (a.k.a. "Fitbit" operation)
- Nest homebase survey (a.k.a. "Geobit" operation)

Total DNL noise exposures are calculated based on various scales of package delivery and associated activities using passby exposure levels for the types of operation applicable to nests, delivery points and en route locations.

It is important to note that the results presented in this report shall supersede the results presented in the previous report, *Noise Assessment for Wing Aviation Proposed Package Delivery Operations with Hummingbird 7000W-B Unmanned Aircraft*, prepared March 17, 2023 by Harris Miller Miller and Hanson Inc (2023). The results in the previous Model 7000W-B report relied on certification measurements for en route and hover of a surrogate UA model. This is because sound level measurements had not yet been conducted for simulation of package delivery operations using the Model 7000W-B at the time the previous report was written. In contrast, the sound level measurements presented in this report are based closely on the concept of operations (CONOPS) for all modes of UA package delivery and associated operations.

1.2 Fundamental Concepts

Various noise descriptors or metrics have been developed to describe time-varying noise levels. The following metrics are used in this evaluation.

- Sound Exposure Level (SEL): SEL represents the total sound energy occurring over a specified period compressed into a one-second time interval. The SEL metric has broad utility in noise prediction and is a primary measurement collected for sound level testing of the two UA models.
- Day Night Average Sound Level (DNL): DNL is the energy average of A-weighted sound levels occurring over a 24-hour period, with a 10 decibel (dB) penalty applied to A-weighted sound levels occurring during nighttime hours between 10 p.m. and 7 a.m. The DNL is used in this analysis to describe noise exposure for daily operations from a nest, en route, or delivery point.
- Maximum Sound Level (Lmax): Lmax is the highest instantaneous sound level measured during a specified period.
- Community Noise Equivalent Level (CNEL): Similar to DNL, CNEL is the energy average of the Aweighted sound levels occurring over a 24-hour period, with a 10 dB penalty applied to Aweighted sound levels occurring during the nighttime hours between 10 p.m. and 7 a.m. and a 5 dB penalty applied to the A-weighted sound levels occurring during evening hours between 7 p.m. and 10 p.m.

1.3 Regulatory Context

The noise exposure estimates in this document are intended to be used for environmental assessments of operations involving the Models 7000W-B and 8000-A, for compliance with the National Environmental Policy Act and operational requirements for a commercial carrier under 14 Code of Federal Regulations Part 135. The analysis method used in this report does not apply standard models such as the Aviation Environmental Design Tool, but instead applies an estimation method based on collected noise measurements. As such the application of this method is only applicable to the Model 7000W-B and 8000-A UAs.

2.1 Sound Level Measurements

The analysis in this report used sound level testing data from two reports: *Noise Measurement Results: Wing Model 7000W-B Revision D*, dated November 4, 2024, prepared by AvEnviro Acoustics (2024a), and *Noise Measurement Results: Wing Model 8000-A Revision C*, dated October 28, 2024 also prepared by AvEnviro Acoustics (2024b).

2.1.1 Wing Model 7000W-B Sound Level Measurements

The Hummingbird 7000W-B is a hybrid UA featuring a multi-rotor design with sixteen round diameter propellers. This UA has fixed wing elements, including four motors for forward flight, while also using rotors to provide vertical lift and the capability to hover during packing loading and delivery operations. Packages are loaded or unloaded to the UA during hover by a retractable cord.

The 7000W-B UA weighs 14 pounds when combined with its maximum payload weight of 2.3 pounds. It has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of approximately 3 feet. Model 7000W-B is shown in Figure 1.

Figure 1. Hummingbird Wing Model 7000W-B.

Sound level testing was conducted at the Wing flight test center in Hollister, California in March 2024. The testing protocol followed FAA direction given in the document, *Measuring Drone Noise for Environmental Review Process*, dated October 2023 (FAA 2023). A brief summary of test results is shown in Table 1. The test results that include forward flight assume a nominal cruise speed of 50.5 knots (AvEnviro Acoustics 2024a).

Test Series	Altitude	Microphone Position	Average SEL (dBA)	Average Lmax (dBA)
En Route with Package	100 feet AGL	Under flight path	59.2	54.3
En Route without Package	100 feet AGL	Under flight path	55.5	50.3
Nest: Manual Loading and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	80.6	66.8
Delivery Point: Arrival, Delivery, Departure	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	83.4	71.9
Nest: Arrival, Landing	Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	78.1	68.2
Offsite Package Autoload	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	81.7	68.9
Nest: Nearfield launch, Autoload and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	82.1	68.6
Nest: Preflight warmup (a.k.a. "Fitbit")	7 feet AGL	50 feet away from nest	80.3	64.0
Nest: Homebase survey (a.k.a. "Geobit")	66 feet AGL	50 feet away from nest	81.0	66.2

Table 1. Summary of Sound Level Testing, Model 7000W-B

Source: AvEnviro Acoustics 2024a.

AGL = above ground level

dBA = A-weighted decibel

2.1.2 Wing Model 8000-A Sound Level Measurements

The Hummingbird 8000-A is a hybrid UA featuring a multi-rotor design with twelve round diameter propellers. This UA has fixed wing elements, including four motors for forward flight, while also using rotors to provide vertical lift and the capability to hover during packing loading and delivery operations. Packages are loaded or unloaded to the UA during hover by a retractable cord.

The 8000-A UA weighs 24.3 pounds when combined with its maximum payload weight of 6.6 pounds. It has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet. Model 8000-A is shown in Figure 2.

Figure 2. Wing Hummingbird 8000-A UA

Sound level testing was conducted at the Wing flight test center in Hollister, California in April 2024. The testing protocol followed FAA direction given in the document, *Measuring Drone Noise for Environmental Review Process*, dated October 2023 (FAA 2023). A brief summary of key test results is shown in Table 2. The test results that include forward flight assume a nominal cruise speed of 50.5 knots (AvEnviro Acoustics 2024b).

Test Series	Altitude	Microphone Position	Average SEL (dBA)	Average Lmax (dBA)
En Route with Package	100 feet AGL	Under flight path	64.7	58.7
En Route without Package ¹	100 feet AGL	Under flight path	62.7	55.5
Nest: Manual Loading and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	79.0	65.8
Delivery Point: Arrival, Delivery, Departure	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	83.6	71.5
Nest: Arrival, Landing	Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	77.7	66.3
Offsite Package Autoload	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	80.9	66.8
Nest: Nearfield launch, Autoload and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	81.6	66.8
Nest: Preflight warmup (a.k.a. "Fitbit")	7 feet AGL	50 feet away from nest	77.1	63.2

Table 2. Summary of Sound Level Testing, Model 8000-A

Test Series	Altitude	Microphone Position	Average SEL (dBA)	Average Lmax (dBA)
Nest: Homebase survey (a.k.a. "Geobit")	66 feet AGL	50 feet away from nest	79.4	66.7

Source: AvEnviro Acoustics 2024b.

¹ Based on guidance from the test report, data for en route without a package is not used. This item uses the same sound level as en route with a package.

AGL = above ground level; dBA = A-weighted decibel

2.2 Analysis Procedure Methodology

To calculate SEL for receptors located near a nest or delivery point, a combination of actions are evaluated to define different types of operations, as a UA transitions between different operating modes of takeoff, hover, ascend, descend, and en route. The types of operations evaluated are the following:

- Manual package loading at nest
- Package delivery at a delivery point
- Landing at nest
- Package autoload at an offsite location
- Nearfield launch and package autoload at nest
- Preflight warmup (a.k.a. "Fitbit")
- Homebase survey (a.k.a. "Geobit")

The SEL calculation for each of these operation types involves the use of sound level data as measured by an array of microphones during simulation testing of each operation, as described in the noise measurement test reports (AvEnviro 2024a, AvEnviro 2024b). Microphones placed on a linear path relative to the UA launch point collected sound level data at distances of 25 feet, 50 feet, 100 feet , 200 feet, 400 feet and 800 feet. The incident SEL sound levels were used to determine attenuation rates between microphone positions, which were influenced by different degrees of en route and hover noise depending on the type of operation tested. However, as described in the noise measurement test reports, ambient noise from other sources heavily influenced data collected at the 400-foot and 800-foot positions is not used in this analysis. At 800 feet, the SEL is equivalent to en route noise as measured during testing. As such, for the distances greater than 200 feet from the UA launch point, attenuation would assume a falloff rate consistent with an en route SEL level at 800 feet. At distances greater than 800 feet, the en route level is used.

DNL values are calculated for four types of locations: 1) a nest, 2) a delivery point, 3) an offsite autoloader, and 4) directly under the en route path. The DNL values at a nest are calculated by summing the sound energy for a launch and package loading operation with a return to land at the nest to describe sound levels for a single delivery cycle. UA noise from FitBit and GeoBit operations are also accounted for in DNL values from a nest. The DNL value for a single delivery cycle at each of the four locations is scaled for multiple UA operations using a logarithmic multiplier (i.e., log of the number of events multiplied by 10). adjusted by a factor of 49.4 to convert from SEL to DNL.

Sound level testing included a simulation of different UA operations to account for different activities that would take place at nest and delivery points. Each operation type includes a specific sequence of actions, described in the following subsections.

3.1 Manual Load and Takeoff

Sequence of manual package loading and takeoff operation from the launch point (e.g., nest):

- 1. Ascend from launch pad until reaching 33 feet above ground level AGL, then descend slightly to 22 feet AGL (about 9 seconds for 7000W-B, 11 seconds for 8000-A)
- 2. Hover at 22 feet AGL during package pickup (about 20 seconds for both models)
- 3. Aircraft with package ascends from 22 feet AGL to 165 feet AGL (about 14 seconds for both models)
- 4. Begin horizontal flight at constant acceleration until a speed of 50.5 knots is reached (about 13 seconds for 7000W-B, 15 seconds for 8000-A)
- 5. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2 Delivery

Sequence of package delivery operation to a delivery point:

- 1. Aircraft with package approaches at 165 feet AGL above microphone array
- 2. Decelerate from 50.5 knots to zero (about 15 seconds for 7000W-B, 13 seconds for 8000-A)
- 3. Descend from 165 feet AGL to 22 feet AGL (about 20 seconds for 7000W-B, 28 seconds for 8000-A)
- 4. Hover at 22 feet AGL during package drop (about 12 seconds for both models)
- 5. Empty aircraft ascends from 22 feet AGL to 165 feet AGL (about 15 seconds for 7000W-B, 16 seconds for 8000-A)
- 6. Begin horizontal flight at constant acceleration until a speed of 50.5 knots (i.e., Vcruise) is reached (about 14 seconds for 7000W-B, 18 seconds for 8000-A)
- 7. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2.1 Landing

Sequence of landing operation at nest:

- 1. Empty aircraft approaches at 165 feet AGL above microphone array
- 2. Decelerate from 50.5 knots to zero (about 14 seconds for both models)

3. Descend from 165 feet AGL to ground (for 7000W-B, the UA descends to 20 feet AGL in about 15 seconds and from 20 feet AGL to ground in about 13 seconds; for 8000-A, the UA descends to 20 feet AGL in about 24 seconds and from 20 feet AGL to ground in about 12 seconds)

3.2.2 Offsite Package Autoload

For offsite package autoload operation, the UA takes off from a distant nest location and approaches the offsite package loading point.

- 1. Empty aircraft approaches at 165 feet AGL above microphone array
- 2. Decelerate from 50.5 knots to zero (about 17 seconds for both models)
- 3. Descend from 165 feet AGL to 22 feet AGL (about 15 seconds for 7000W-B, 25 seconds for 8000-A)
- 4. Hover at 22 feet AGL during package pickup (about 22 seconds for both models)
- 5. Aircraft with package ascends from 22 feet AGL to 165 feet AGL (about 15 seconds for both models) Begin horizontal flight at constant acceleration until a speed of 50.5 knots (i.e., V_{cruise}) is reached (about 14 seconds for both models)
- 6. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2.3 Nearfield Launch and Autoload

For nearfield launch, the UA takes off and approaches the package loading point from a nearby nest.

- 1. Empty aircraft ascends from nest 50 feet away to 165 feet AGL (about 15 seconds for 7000W-B, 16 seconds for 8000-A)
- 2. Transit to nearby autoloader (about 8 seconds for 7000W-B, 12 seconds for 8000-A)
- 3. Descend from 165 feet AGL to 14 feet AGL at constant velocity of (about 15 seconds for 7000W-B, 26 seconds for 8000-A)
- 4. Hover at 14 feet AGL during package pickup (about 22 seconds for both models)
- 5. Aircraft with package ascends from 14 feet AGL to 165 feet AGL (about 15 seconds for both models)
- 6. Begin horizontal flight at constant acceleration until a speed of 50.5 knots (i.e., Vcruise) is reached (about 14 seconds for both models)
- 7. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2.4 Fitbit Operation

The Fitbit operation is a brief hover operation to warm up the battery and conduct preflight tests at the beginning of each day of flight operation. This would be done for each individual UA at the nest. Testing time varies but generally would be less than two minutes.

- 1. Climb to 7 feet AGL (about 3 seconds for both models)
- 2. Hover in place (assumes 118 seconds for 7000W-B, 49 seconds for 8000-A)

3. Descend from 7 feet AGL to ground (about 6 seconds for both models)

3.2.5 Geobit Operation

The Geobit operation is a brief hover operation above the nest to verify geolocation of ground-based infrastructure.

- 1. Climb to 66 feet AGL (about 8 seconds for both models)
- 2. Hover in place (about 25 seconds for both models)
- 3. Descend from 66 feet AGL to ground (about 40 seconds for both models)

4.1 Sound Levels for Wing Model 7000W-B

4.1.1 Manual Loading, Delivery and Landing

Calculated sound levels for Wing Model 7000W-B manual loading, delivery, and landing at the launch point are shown in Table 3.

Distance between			
Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
25	86.6	88.4	83.2
50	80.6	83.5	78.1
75	76.8	79.9	75.0
100	74.1	77.3	72.8
125	72.6	75.5	71.1
150	71.4	74.0	69.6
175	70.3	72.7	68.4
200	69.4	71.6	67.4
225	68.3	70.4	66.2
250	67.3	69.4	65.0
275	66.4	68.5	64.0
300	65.6	67.6	63.1
325	64.9	66.8	62.3
350	64.2	66.1	61.5
375	63.5	65.4	60.8
400	62.9	64.8	60.1
425	62.4	64.2	59.5
450	61.8	63.7	58.8
475	61.3	63.1	58.3
500	60.9	62.6	57.7
525	60.4	62.1	57.2
550	60.0	61.7	56.7
575	59.6	61.3	56.3
600	59.2	60.8	55.8
625	58.8	60.4	55.4
650	58.4	60.1	55.0
675	58.1	59.7	54.6
700	57.7	59.3	54.2

Table 3. Model 7000W-B: Estimate of SEL for Manual Launch, Delivery and Landing at Nest

Distance between Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
725	57.4	59.0	53.8
750	57.1	58.7	53.5
775	56.8	58.3	53.1
800	56.5	58.0	52.8
825	56.5	58.0	52.8
850	56.5	58.0	52.8
875	56.5	58.0	52.8
900	56.5	58.0	52.8
925	56.5	58.0	52.8
950	56.5	58.0	52.8
975	56.5	58.0	52.8
1000	56.5	58.0	52.8

Source: AvEnviro 2024a, ICF 2024.

¹ Assumes one en route trip with package on board.

² Assumes one en route trip with package on board plus one en route trip without a package.

³ Assumes one en route trip without a package.

dBA = A-weighted decibel; SEL = sound exposure level

4.1.2 Sound Levels for Wing Model 7000W-B Autoload Actions

Calculated sound levels for offsite autoload, and nearfield launch and autoload for Model 7000W-B are shown in Table 4.

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
25	87.1	87.1
50	81.7	82.1
75	78.7	79.2
100	76.6	77.1
125	75.0	75.3
150	73.6	73.9
175	72.5	72.7
200	71.5	71.6
225	70.4	70.3
250	69.3	69.2
275	68.4	68.1
300	67.6	67.2
325	66.8	66.3
350	66.1	65.5

 Table 4. Model 7000W-B: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload

 Actions

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
375	65.4	64.7
400	64.8	64.0
425	64.2	63.4
450	63.6	62.8
475	63.1	62.2
500	62.6	61.6
525	62.1	61.1
550	61.7	60.6
575	61.2	60.1
600	60.8	59.6
625	60.4	59.2
650	60.0	58.7
675	59.7	58.3
700	59.3	57.9
725	59.0	57.6
750	58.7	57.2
775	58.3	56.8
800	58.0	56.5
825	58.0	56.5
850	58.0	56.5
875	58.0	56.5
900	58.0	56.5
925	58.0	56.5
950	58.0	56.5
975	58.0	56.5
1000	58.0	56.5

Source: AvEnviro 2024a, ICF 2024.

¹ Assumes one incoming en route trip without a package plus one outgoing en route trip with package on board. dBA = A-weighted decibel; SEL = sound exposure level

4.1.3 Sound Levels for Wing Model 7000W-B FitBit and GeoBit Actions

Calculated sound levels for Fitbit and Geobit operations for Model 7000W-B are shown in Table 5.

Distance between Launch		
Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
25	87.3	85.3
50	80.3	81.0
75	76.5	78.0
100	73.8	75.9

Table 5. Model 7000W-B: Estimate of SEL for FitBit and GeoBit Actions

Distance between Launch Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
125	72.2	74.0
150	70.9	72.4
175	69.8	71.1
200	68.8	69.9
225	68.0	68.9
250	67.2	68.0
275	66.5	67.1
300	65.9	66.4
325	65.3	65.7
350	64.8	65.1
375	64.3	64.5
400	63.8	63.9
425	63.4	63.4
450	63.0	62.9
475	62.6	62.4
500	62.2	62.0
525	61.8	61.5
550	61.5	61.1
575	61.2	60.8
600	60.9	60.4
625	60.6	60.0
650	60.3	59.7
675	60.0	59.4
700	59.8	59.1
725	59.5	58.8
750	59.3	58.5
775	59.0	58.2
800	58.8	57.9
825	58.6	57.6
850	58.4	57.4
875	58.2	57.1
900	58.0	56.9
925	57.8	56.6
950	57.6	56.4
975	57.4	56.2
1000	57.2	56.0

Source: AvEnviro 2024a, ICF 2024.

dBA = A-weighted decibel; SEL = sound exposure level

4.1.4 En Route Sound Levels for Wing Model 7000W-B

The SEL for an en route overflight with a package loaded on the Model 7000W-B was measured to be 59.2 dBA. The en route overflight SEL for a Model 7000W-B with no package was measured to be 55.5 dBA (AvEnviro 2024a). During testing, en route measurements were taken with UA in forward

flight at an altitude of 100 feet AGL, which is lower than the expected operating altitude of 165 feet AGL. To adjust the measured en route sound level to the operating altitude of 165 feet AGL, a data correction factor using the logarithm of the ratio of altitudes multiplied by 12.5 was added to the en route SEL, consistent with procedures described in 14 CFR Part 36. The corrected SEL values were calculated to be 56.5 dBA with a package and 52.8 dBA without a package. These corrected en route sound levels were used for distances 800 feet or greater from the nest or delivery site.

4.2 Sound Levels for Wing Model 8000-A

4.2.1 Manual Loading, Delivery and Landing

Calculated sound levels for Wing Model 8000-A manual loading, delivery and landing at the launch point are shown in Table 6.

Distance between Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
25	84.4	87.3	81.8
50	79.0	83.6	77.7
75	76.9	80.7	75.4
100	75.4	78.6	73.7
125	74.4	77.0	71.6
150	73.6	75.7	70.0
175	72.9	74.6	68.5
200	72.3	73.7	67.3
225	71.4	72.9	66.7
250	70.6	72.2	66.1
275	69.9	71.5	65.6
300	69.3	70.9	65.2
325	68.7	70.3	64.7
350	68.1	69.8	64.3
375	67.6	69.3	64.0
400	67.1	68.9	63.6
425	66.7	68.5	63.3
450	66.3	68.1	63.0
475	65.9	67.7	62.7
500	65.5	67.4	62.5
525	65.1	67.0	62.2
550	64.8	66.7	62.0
575	64.4	66.4	61.7
600	64.1	66.1	61.5
625	63.8	65.8	61.3
650	63.5	65.5	61.1

Table 6. Model 8000-A: Estimate of SEL for Manual Launch, Delivery and Landing at Nest

Distance between Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
675	63.2	65.3	60.9
700	63.0	65.0	60.7
725	62.7	64.8	60.5
750	62.5	64.6	60.3
775	62.2	64.3	60.1
800	62.0	64.1	60.0
825	62.0	64.1	60.0
850	62.0	64.1	60.0
875	62.0	64.1	60.0
900	62.0	64.1	60.0
925	62.0	64.1	60.0
950	62.0	64.1	60.0
975	62.0	64.1	60.0
1000	62.0	64.1	60.0

Source: AvEnviro 2024b, ICF 2024.

¹ Assumes one en route trip with package on board.

² Assumes one en route trip with package on board plus one en route trip without a package.

³ Assumes one en route trip without a package.

dBA = A-weighted decibel; SEL = sound exposure level

4.2.2 Sound Levels for Wing Model 8000-A Autoload Actions

Calculated sound levels for offsite autoload, and nearfield launch and autoload for Model 8000-A are shown in Table 7.

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
25	85.2	85.4
50	80.9	81.6
75	78.6	79.1
100	77.0	77.4
125	75.9	76.0
150	75.0	74.9
175	74.2	73.9
200	73.5	73.1
225	72.7	72.2
250	72.0	71.3
275	71.3	70.5
300	70.8	69.8
325	70.2	69.2

Table 7. Model 8000-A: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload Actions

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
350	69.7	68.6
375	69.2	68.1
400	68.8	67.5
425	68.4	67.1
450	68.0	66.6
475	67.6	66.2
500	67.3	65.8
525	67.0	65.4
550	66.6	65.0
575	66.3	64.6
600	66.1	64.3
625	65.8	64.0
650	65.5	63.6
675	65.3	63.3
700	65.0	63.1
725	64.8	62.8
750	64.5	62.5
775	64.3	62.2
800	64.1	62.0
825	64.1	62.0
850	64.1	62.0
875	64.1	62.0
900	64.1	62.0
925	64.1	62.0
950	64.1	62.0
975	64.1	62.0
1000	64.1	62.0

Source: AvEnviro 2024b, ICF 2024.

¹ Assumes one incoming en route trip without a package plus one outgoing en route trip with package on board. dBA = A-weighted decibel; SEL = sound exposure level

4.2.3 Sound Levels for Wing Model 8000-A FitBit and GeoBit Actions

Calculated sound levels for Fitbit and Geobit operations for Model 8000-A are shown in Table 8.

Distance between Launch Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
25	84.1	84.4
50	77.1	79.4
75	73.6	75.3
100	71.1 ¹	72.5 ¹
125	69.1	70.2
150	67.5	68.4
175	66.2	66.8
200	65.0	65.5
225	64.0	64.3
250	63.1	63.3
275	62.2	62.3
300	61.5	61.4
325	60.8	60.6
350	60.1	59.9
375	59.5	59.2
400	59.0	58.6
425	58.4	57.9
450	57.9	57.4
475	57.5	56.8
500	57.0	56.3
525	56.6	55.8
550	56.2	55.4
575	55.8	54.9
600	55.4	54.5
625	55.1	54.1
650	54.7	53.7
675	54.4	53.3
700	54.1	52.9
725	53.8	52.6
750	53.5	52.2
775	53.2	51.9
800	52.9	51.6
825	52.6	51.3
850	52.4	51.0
875	52.1	50.7
900	51.9	50.4

Table 8. Model 8000-A: Estimate of SE	EL for FitBit and GeoBit Actions
---------------------------------------	----------------------------------

Distance between Launch		
Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
925	51.6	50.1
950	51.4	49.9
975	51.2	49.6
1000	51.0	49.4

Source: AvEnviro 2024b, ICF 2024.

 1 The SEL value for FitBit and GeoBit operations at 100 feet was adjusted from the test report to use a falloff rate from the 50 foot to the 200 foot value due to no valid passes during testing.

dBA = A-weighted decibel; SEL = sound exposure level

4.2.4 En Route Sound Levels for Wing Model 8000-A

The SEL for an en route overflight with a package loaded on the Model 8000-A was measured to be 64.7 dBA. The en route overflight SEL for a Model 8000-A with no package was measured to be 62.7 dBA (AvEnviro 2024b). During testing, en route measurements were taken with UA in forward flight at an altitude of 100 feet AGL, which is lower than the expected operating altitude of 165 feet AGL. To adjust the measured en route sound level to the operating altitude of 165 feet AGL, a data correction factor using the logarithm of the ratio of altitudes multiplied by 12.5 was added to the en route SEL, consistent with procedures described in 14 CFR Part 36. The corrected SEL values were calculated to be 62.0 dBA with a package and 60.0 dBA without a package. These corrected en route sound levels were used for distances 800 feet or greater from the nest or delivery site.

This chapter presents estimated DNL values for package delivery operations assuming different rates of delivery for a nest. This analysis assumes all package deliveries would occur during daytime hours only (i.e., 7:00 a.m. to 10:00 p.m.), so no nighttime penalties are applied to package deliveries. Fitbit operations would be done before package delivery operations each day, and are assumed to be done before 7:00 a.m. As such nighttime penalties would apply to Fitbit operations. Geobit operations would be conducted on an intermittent basis at the rate of about one event per week. To simulate a loudest case, Geobit operations are included in the DNL analysis.

5.1 Noise Exposure from a Nest

A single delivery operation consists of launch, package load, departure, return and landing phases, and the full cycle of these actions are accounted for in noise exposure at a nest. In addition to package deliveries, the noise exposure values include up to 24 nighttime Fitbit operations and one Geobit operation. Therefore, the DNL value at a nest accounts for the following:

- Package loading operations: manual, offsite package autoload, or nearfield autoload (up to 400 events)
- Landings at nest post-delivery (up to 400 events)
- FitBit (240 DNL equivalent events)
- GeoBit (1 DNL equivalent event)

Estimated DNL noise exposure distances at a nest operating Model 7000W-B UAs are shown in Table 9 for Manual loading and Table 10 for Nearfield Autoloading. Noise exposure DNL values are shown at different scales: from 1 delivery per day to 400 deliveries per day. The noise exposure values assume a departure and return flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet from the nest. According to the calculations, package loading operations would exceed 65 DNL at 35 feet from a nest location, at a rate of 400 package loading operations per day for both loading scenarios.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	35	50	85	160
5	<25	35	50	90	165
10	<25	35	55	90	165
15	<25	35	55	90	170
20	<25	35	55	90	175
25	<25	35	55	95	175
50	<25	40	60	100	195

 Table 9. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of

 Operation, Manual Launch Option

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
75	<25	40	65	105	210
100	<25	40	65	115	220
150	<25	45	70	125	245
200	<25	45	75	140	265
300	30	50	85	165	295
400	35	55	95	185	325

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	35	50	85	160
5	<25	35	50	90	165
10	<25	35	55	90	170
15	<25	35	55	95	175
20	<25	35	55	95	180
25	<25	35	55	95	185
50	<25	40	60	105	205
75	<25	40	65	120	220
100	<25	40	70	125	235
150	<25	45	80	145	260
200	<25	50	85	160	285
300	30	55	100	190	320
400	35	65	115	215	350

 Table 10. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of

 Operation, Nearfield Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

Estimated DNL noise exposure distances at a nest operating Model 8000-A UAs are shown in Table 11 for Manual loading and Table 12 for Nearfield Autoloading. Noise exposure DNL values are shown at different scales: from 1 delivery per day to 400 deliveries per day. The noise exposure values assume a departure and return flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet from the nest. According to the calculations, package loading operations would exceed 65 DNL at less than 25 feet from a nest location, at a rate of 400 package loading operations per day for both loading scenarios.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	40	65	110
5	<25	<25	40	65	115
10	<25	<25	40	65	120
15	<25	<25	40	70	125
20	<25	<25	45	70	130
25	<25	<25	45	75	135
50	<25	<25	45	85	160
75	<25	30	50	95	190
100	<25	30	50	105	215
150	<25	35	60	125	255
200	<25	40	70	145	300
300	<25	45	85	180	375
400	<25	45	100	215	440

 Table 11. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of

 Operation, Manual Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	40	65	110
5	<25	<25	40	65	115
10	<25	<25	40	70	120
15	<25	<25	45	70	130
20	<25	<25	45	75	135
25	<25	<25	45	75	140
50	<25	<25	50	90	170
75	<25	30	55	105	200
100	<25	35	60	115	225
150	<25	35	70	140	270
200	<25	40	80	160	315
300	<25	50	100	200	390
400	<25	55	120	235	455

 Table 12. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of

 Operation, Nearfield Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

5.2 Noise Exposure from Offsite Package Autoloading

Estimated DNL noise exposure distances at an offsite package autoloader location for the Model 7000W-B are shown in Table 13. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package autoload, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at less than 25 feet from an offsite autoloading location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25
10	<25	<25	<25	<25	40
15	<25	<25	<25	<25	50
20	<25	<25	<25	30	55
25	<25	<25	<25	35	65
50	<25	<25	<25	50	95
75	<25	<25	35	60	115
100	<25	<25	40	70	140
150	<25	<25	50	90	175
200	<25	30	55	105	205
300	<25	40	70	135	245
400	<25	45	80	160	280

Table 13. DNL Noise Exposure Distances at an Offsite Package Autoloading Location for Model 7000W-B, for Different Scales of Operation

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

Estimated DNL noise exposure distances at an offsite package autoloader location for the Model 8000-A are shown in Table 14. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package autoload, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at less than 25 feet from an offsite autoloading location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25
10	<25	<25	<25	<25	30
15	<25	<25	<25	<25	40
20	<25	<25	<25	<25	50
25	<25	<25	<25	<25	60
50	<25	<25	<25	45	95
75	<25	<25	<25	55	135
100	<25	<25	30	70	170
150	<25	<25	40	95	230
200	<25	<25	50	115	275
300	<25	30	65	165	355
400	<25	40	80	205	430

 Table 14. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of

 Operation, Remote Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

5.3 En Route Noise Exposure

Noise exposure from UA en route trajectories would be loudest directly under the flight path. In practice, UAs would serve many delivery points from a given nest, however in areas where there is a high demand for deliveries, en route UA noise may be intermittently audible depending on the level of existing ambient noise. Based on calculations however, even if the louder of the two Hummingbird UA models (Model 8000-A) under en route conditions used the same en route trajectory for delivery service to surrounding areas, the noise exposure level accounting for both the delivery and return paths would be no higher than 40.7 DNL at a rate of up to 400 deliveries per day. Considering that en route UA noise would not exceed 45 DNL under any delivery scenarios, this was not quantified further.

5.4 Noise Exposure from a Delivery Site

Estimated DNL noise exposure distances at a delivery point for the Model 7000W-B are shown in Table 15. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package delivery, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at 30 feet from a nest location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries at Delivery Point ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	35
10	<25	<25	<25	<25	50
15	<25	<25	<25	30	60
20	<25	<25	<25	40	65
25	<25	<25	<25	45	75
50	<25	<25	35	60	100
75	<25	<25	40	70	125
100	<25	<25	50	80	145
150	<25	30	60	100	180
200	<25	40	65	115	205
300	<25	45	80	140	245
400	30	55	90	165	280

Table 15. DNL Noise Exposure Distances at a Delivery Point for Model 7000W-B for Different
Scales of Operation

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

Estimated DNL noise exposure distances at a delivery point for the Model 8000-A are shown in Table 16. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package delivery, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at less than 25 feet from a nest location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries at Delivery Point ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25
10	<25	<25	<25	<25	45
15	<25	<25	<25	<25	60
20	<25	<25	<25	35	70
25	<25	<25	<25	40	80
50	<25	<25	<25	65	120
75	<25	<25	40	80	155
100	<25	<25	45	95	185
150	<25	<25	60	120	235

Table 16. DNL Noise Exposure Distances at a Delivery Point for Model 8000-A for Different Scales
of Operation

Average Daily Deliveries at Delivery Point ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
200	<25	35	70	140	280
300	<25	45	90	180	365
400	<25	55	105	210	435

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

5.5 Cumulative Noise Exposure

Criteria for significance of impacts and changes in noise exposure are defined in FAA Order 1050.1F *Environmental Impacts: Policies and Procedures* (FAA 2015). Order 1050.1F Exhibit 4-1 states the following with respect to threshold of significance for a proposed action:

The action would increase noise by DNL 1.5 dB or more for a noise sensitive area that is exposed to noise at or above the DNL 65 dB noise exposure level, or that will be exposed at or above the DNL 65 dB level due to a DNL 1.5 dB or greater increase, when compared to the no action alternative for the same timeframe. For example, an increase from DNL 65.5 dB to 67 dB is considered a significant impact, as is an increase from DNL 63.5 dB to 65 dB.

A cumulative increase in noise from a proposed action can be calculated using the difference between the additional noise exposure introduced by a proposed action and the no action alternative. The cumulative DNL increase associated with different values of the proposed action is shown in Table 17.

Proposed Action minus No Action (x)	Cumulative Increase in DNL (∆)
x < -3.8 dB	Δ < 1.5 dB
-3.8 dB < x < 0.0 dB	$1.5 \text{ dB} < \Delta < 3 \text{ dB}$
0.0 dB < x < 3.3 dB	$3 dB < \Delta < 5 dB$
3.3 dB < x	$5 \text{ dB} < \Delta$

Table 17. Cumulative Increase in DNL due to a Proposed Action

For air traffic airspace and procedure actions where the study area is larger than the immediate vicinity of an airport, Order 1050.1F specifies the following change-of-exposure criteria to identify locations where noise exposure levels will increase by a magnitude considered reportable. An action that would increase noise exposure by 3 dB where no action is between 60 and 65 DNL, or by 5 dB where no action is between 45 and 60 DNL would be considered reportable.

AvEnviro Acoustics. 2024a. Environmental Noise Assessment: Wing Model 7000W-B Revision D.

AvEnviro Acoustics. 2024b. Environmental Noise Assessment: Wing Model 8000-A Revision C.

- Code of Federal Regulations (CFR). *Noise Standards: Aircraft Type and Airworthiness Certification.* Available: <u>https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-36.</u> Accessed: July 23, 2024.
- Federal Aviation Administration (FAA). 2015. Order 1050.1F. Environmental Impacts: Policies and Procedures. Appendix B. Available: <u>https://www.faa.gov/documentLibrary/media/Order/FAA_Order_1050_1F.pdf#page=113</u> Accessed: July 23, 2024.
- Federal Aviation Administration (FAA) Office of Environment and Energy. 2023. Drone Team, AEE-100. *Measuring Drone Noise for Environmental Review Process*. Draft Measurement Protocol for Applications for EA Noise Analysis V05, PowerPoint Presentation, October 2023.
- Harris Miller Miller and Hanson. 2023. *Noise Assessment for Wing Aviation Proposed Package Delivery Operations with Hummingbird 7000W-B Unmanned Aircraft*, prepared March 17, 2023.
- ICF International. 2024. *Noise Modeling for the Technical Noise Study Report: Hummingbird 7000W-B and 8000-A Unmanned Aircraft Package Delivery Operations.* Dallas-Fort Worth, TX. Prepared for the Federal Aviation Administration.
- Wing Aviation LLC. 2024. Description of Proposed Action and Alternatives, Supplemental EA for Package Delivery Operations for Dallas-Fort Worth Metro.

Federal Aviation Administration

Memorandum

Date: November 12, 2024

To: David Senzig (Acting), Noise Division Manager, Office of Environment and Energy (AEE-100)

From: Shelia S. Neumann, Ph.D., P.E., Flight Standards (AFS), General Aviation and Commercial Operations Branch, AFS-752

Subject: Environmental Assessment (EA) Noise Methodology Approval Request for Amending Wing Aviation LLC's Operations Specifications for Drone Operations in Central Florida

AFS requests AEE approval of the noise methodology to be used for the Environmental Assessment (EA) for Wing Aviation LLC (Wing) operations using Hummingbird 7000W-B Unmanned Aircraft and Hummingbird 8000-A (UAs) (commonly referred to as drones) in Central Florida and an associated operating area to provide package delivery services as a Title 14, Code of Federal Regulations (14 CFR) Part 135 operator as described below.

As required under the National Environmental Policy Act (NEPA), the FAA must consider the potential for environmental impacts in informing the agency's decision to approve proposed Federal actions, including the potential for noise impacts as detailed in FAA Order 1050.1F.

As the FAA does not currently have a standard approved noise model for UA, this memo serves as a request for written approval from AEE-100 to use the methodology proposed in the following sections to support the noise analysis for this EA.

Description of Aircraft and Proposed Operations

AFS is evaluating Wing's request to amend its B050 Operations Specifications (OpSpec), *Authorized Areas of En Route Operations, Limitations, and Provisions,* specifically to a reference section titled Limitations, Provisions, and Special Requirements, dated March 17, 2022. The amendment would add a new paragraph with descriptive language about the Central Florida operating area boundaries and would allow Wing to conduct up to 400 deliveries per day per nest. Wing is projecting to establish up to 150 nests in the Central Florida operating area under the scope of the proposed action. FAA's approval of an amendment is required before these operations can occur. Wing is proposing to use the Hummingbird 7000W-B, which features a multi-rotor design with 16 round diameter propellers. The Hummingbird 7000W-B drone system consists of three main components: the launch pads (contained in "nests"), the drone, and the software. Flight missions are automatically planned by Wing's flight planning software. A mission originates from a nest location, and Wing's software automatically assigns, deconflicts, and routes each flight to the delivery location and back to a nest. Each nest site would include a controlled area wherein UA flights are launched and recovered. Wing is proposing to use the Hummingbird 7000W-B and 8000-A to conduct full-scale commercial UA delivery operations in Central Florida. Each drone flight would vary in duration, depending on the location of the delivery point. Hummingbird 8000-A is a multi-rotor design with 12 round diameter propellers. Its weight is under 25 pounds when combined with its maximum payload weight of 5 pounds and has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet.

Remote pickup operations from each nest would be supported at up to 12 partner establishments depending upon demand and nest capacity. Pickup operations would follow general flight phases and parameters identical to typical delivery operations and would include the addition of a pickup phase. The pickup phase is similar to the delivery phase.

Wing anticipates the updated fleet makeup would be comprised of 70 to 80 percent 7000W-B aircraft and 20 to 30 percent 8000-A aircraft. The fleet mix of individual nests would be variable based on payload, route, and demand characteristics; nests with a wider range of offerings are anticipated to carry higher proportions of 7000W-B Aircraft.

Wing is projecting to establish up to 150 nests throughout Central Florida to include Tampa and Orlando metropolitan operating and surrounding areas. Proposed operations would include approximately 400 deliveries per day, per nest, and would occur only during daylight hours, approximately 7:00 a.m. to 10:00 p.m., to include holidays. Wing is not proposing to conduct night operations (defined as 10:00 p.m. to 7:00 a.m.) and would not typically operate over water. However, operating hours would also include in-nest checkout flights between 6:00 a.m. and 7:00 a.m.

Noise Analysis Methodology

AFS requests the use of the noise analysis methodology described in Report No. 112024 for "Technical Noise Study Report: Hummingbird 7000W-B and 8000-A Unmanned Aircraft Package Delivery Operations," dated November 4, 2024.

Federal Aviation Administration

Memorandum

Date:	November 12, 2024
To:	Shelia S. Neumann, Ph.D., Flight Standards (AFS), General Aviation and Commercial Branch, (AFS-752)
From:	Sandy Liu, Manager (Acting), Noise Division, Office of Environment and Energy (AEE-100) Sandy R Liu
Subject:	Environmental Assessment (EA) Noise Methodology Approval Request for Amending Wing Aviation LLC's Operations Specifications for Drone Operations in Central Florida

The Office of Environment and Energy, Noise Division (AEE-100), has reviewed the proposed non-standard noise modeling methodology to be used for Wing Aviation LLC (Wing) operations using the Hummingbird 7000W-B and 8000-A unmanned aircraft (UA) throughout Central Florida metropolitan area. This request is in support of the Environmental Assessment for Wing to amend operations specifications for drone operations in Central Florida metropolitan area.

Wing is proposing to expand its UA retail package delivery capabilities by extending hours of operations, establishing up to 150 nests, and providing remote pickup and delivery services. Wing's intent is to offer service throughout Central Florida including Tampa and Orlando metropolitan areas from a network of nests, where each would serve a specific area, thereby avoiding an over-concentration of flights surrounding any given nest. Wing's nests would continue to be located in commercially zoned areas, such as shopping centers, large individual retailers, and shopping malls. Wing would maintain its total number of daily operations per nest of 400 flights per operational day. Current Wing delivery operations occur between 7:00 a.m. and 7:00 p.m. Wing proposes to extend delivery operations to 7:00 a.m. to 10:00 p.m. In addition, operations would include low altitude (<8ft) in-nest hover checks, or Fitness Built in Tests (FitBITs) between 6:00 a.m. and 7:00 a.m. Additionally, higher hover flights (approximately 60 feet) may be performed up to 18 times per nest, per week, where the UA makes a separate hover flight to update the reference map of the nest; these flights are termed Geography Built In Test (GeoBITs) because of their similarity to the FitBIT stationary hover flight over the nest.

As the FAA does not currently have a standard approved noise model for assessing UA, and in accordance with FAA Order 1050.1F, all non-standard noise analysis in support of the noise impact analysis for the National Environmental Policy Act (NEPA) must be approved by AEE. This letter serves as AEE's response to the method developed in Report No. 112024 for "Technical Noise Study Report: Hummingbird 7000W-B and 8000-A Unmanned Aircraft Package Delivery Operations," dated November 4, 2024.

The proposed methodology appears to be adequate for this analysis; therefore, AEE concurs with the methodology proposed for this project. Please understand that this approval is limited to this particular Environmental Review, location, vehicle, and circumstances. Any additional projects using this or other methodologies or variations in the vehicle will require separate approval.

Table E-1. State Species of Greatest Conservation Need in Brevard, Citrus, DeSoto, Hardee, Hernando, Highlands, Hillsborough, Indian River, Lake, Manatee, Marion, Okeechobee, Orange, Osceola, Pasco, Pinellas, Polk, Sarasota, Seminole, Sumter and Volusia Counties, Florida.

Taxon	Scientific Name	Common Name	ESA Status	State Status
Amphibi	ans			
	Amphiuma pholeter	One-toed Amphiuma		
	Lithobates capito	Gopher frog		
	Notophthalmus perstriatus	Striped Newt		
Birds				
	Ammodramus savannarum floridanus	Florida Grasshopper Sparrow	E	
	Ammospiza maritima	Seaside Sparrow		
	Ammospiza maritima peninsulae	Scott's Seaside Sparrow		ST
	Antigone canadensis pratensis	Florida Sandhill Crane		ST
	Aphelocoma coerulescens	Florida Scrub-Jay	E	
	Aramus guarauna	Limpkin		
	Athene cunicularia	Burrowing Owl		
	Athene cunicularia floridana	Florida Burrowing Owl		ST
	Buteo brachyurus	Short-tailed Hawk		
	Caracara plancus	Crested Caracara	т	
	Charadrius melodus	Piping Plover	т	
	Charadrius nivosus	Snowy Plover		ST
	Cistothorus palustris	Marsh Wren		
	Cistothorus palustris marianae	Marian's Marsh Wren		ST
	Dryobates borealis	Red-cockaded Woodpecker	Е	
	Dryobates villosus	Hairy Woodpecker		
	Egretta rufescens	Reddish Egret		ST
	Egretta thula	Snowy Egret		
	Elanoides forficatus	Swallow-tailed Kite		
	Elanus leucurus	White-tailed Kite		
	Falco peregrinus	Peregrine Falcon		
	Falco sparverius paulus	Southeastern American Kestrel		ST
	Fregata magnificens	Magnificent Frigatebird		
	Grus americana	Whooping Crane		
	Haematopus palliatus	American Oystercatcher		ST
	Haliaeetus leucocephalus	Bald Eagle		
	Sterna antillarum	Least Tern		ST
	Laterallus jamaicensis	Black Rail	Т	

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Mycteria americana	Wood Stork	Т	
	Pandion haliaetus	Osprey		
	Peucaea aestivalis	Bachman's Sparrow		
	Platalea ajaja	Roseate Spoonbill		ST
	Rostrhamus sociabilis	Snail Kite	E	
	Rynchops niger	Black Skimmer		ST
	Setophaga discolor paludicola	Florida Prairie Warbler		
	Sterna dougallii	Roseate Tern	Т	
	Sternula antillarum	Least Tern		ST
ish				
	Acipenser oxyrinchus	Atlantic Sturgeon	Е	
	Acipenser oxyrinchus desotoi	Gulf Sturgeon	Т	
	Acipenser oxyrinchus oxyrinchus	Atlantic Sturgeon	E	
	Ctenogobius pseudofasciatus	Slashcheek Goby		
	Cyprinodon variegatus hubbsi	Lake Eustis Minnow		
	Enneacanthus chaetodon	Blackbanded Sunfish		
	Kryptolebias marmoratus	Mangrove Rivulus		
	Pteronotropis welaka	Bluenose Shiner		ST
Mammal	5			
	Corynorhinus rafinesquii	Rafinesque's Big-eared Bat		
	Eumops floridanus	Florida Bonneted Bat	E	
	Myotis austroriparius	Southeastern Myotis		
	Neofiber alleni	Round-tailed Muskrat		
	Neogale frenata peninsulae	Florida Long-tailed Weasel		
	Neogale vison halilimnetes	Gulf Salt Marsh Mink		
	Peromyscus polionotus niveiventris	Southeast Beach Mouse	Т	
	Puma concolor coryi	Florida Panther	Е	
	Sciurus niger niger	Southeastern Fox Squirrel		
	Trichechus manatus	West Indian Manatee	Т	
	Trichechus manatus latirostris	Florida Manatee	Т	
Reptiles				
	Drymarchon couperi	Eastern Indigo Snake	т	
	Heterodon simus	Southern Hog-nosed Snake		
	Lampropeltis extenuata	Short-tailed Kingsnake		ST
	Lampropeltis floridana	Florida Kingsnake		
	Lampropeltis occipitolineata	South Florida Mole Kingsnake		
	Nerodia clarkii taeniata	Atlantic Saltmarsh Watersnake	т	
	Plestiodon egregius lividus	Blue-tailed Mole Skink	т	
	Plestiodon egregius pop. 1	Mole Skink, Egmont Key Population		ST

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Plestiodon reynoldsi	Sand Skink	Т	
	Sceloporus woodi	Florida Scrub Lizard		
Crustace	ans			
	Crangonyx grandimanus	Florida Cave Amphipod		
	Crangonyx hobbsi	Hobbs's Cave Amphipod		
	Crangonyx sulphurium	Sulphurous Cave Amphipod		
	Procambarus acherontis	Orlando Cave Crayfish		
	Procambarus delicatus	Bigcheek Cave Crayfish		
	Procambarus franzi	Orange Lake Cave Crayfish		
	Procambarus leitheuseri	Coastal Lowland Cave Crayfish		
	Procambarus lucifugus	Light-fleeing Cave Crayfish		
	Troglocambarus maclanei	North Florida Spider Cave Crayfish		
	Troglocambarus sp. 1	Orlando Spider Cave Crayfish		
Insects				
	Aethecerinus hornii	Horn's Aethecerinus Longhorn Beetle		
	Anax amazili	Amazon Darner		
	Aneflomorpha delongi	Delong's Aneflomorpha Longhorn Beetle		
	Anomala exigua	Pygmy Anomala Scarab Beetle		
	Anomala eximia	Archbold Anomala Scarab Beetle		
	Anthanassa frisia	Cuban Crescent		
	Atrytone arogos	Arogos Skipper		
	Atrytonopsis loammi	Loammi Skipper		
	Bombus fraternus	Southern Plains Bumble Bee		
	Callophrys gryneus	Oliver Hairstreak		
	Caupolicana floridana	Giant Scrub Plasterer Bee		
	Cicindela highlandensis	Highlands Tiger Beetle		
	Colaspis thomasi	Scrub Oak Colaspis		
	Colletes francesae	Tough Buckthorn Bee		
	Colletes titusensis	a cellophane bee		
	Copris gopheri	Gopher Tortoise Copris Beetle		
	Dorymyrmex flavopectus	Bi-colored Scrub Cone Ant		
	Drapetis sp. 1	Tortoise Burrow Dance Fly		
	Euphyes berryi	Berry's Skipper		
	Eutrichota gopheri	Gopher Tortoise Burrow Dance Fly		
	Geomysaprinus floridae	Equal-clawed Gopher Tortoise Hister Beetle		
	Geopsammodius morrisi	Morris' Tiny Sand-loving Scarab		
	Geopsammodius relictillus	Relictual Tiny Sand-loving Scarab		

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Geopsammodius withlacoochee	Withlacoochee Tiny Sand-loving Scarab		
	Gomphurus modestus	Gulf Coast Clubtail		
	Heterachthes sablensis	Mangrove Longhorn Beetle		
	Hydroptila berneri	Berner's Microcaddisfly		
	Hydroptila wakulla	Wakulla Springs Vari-colored Microcaddisfly		
	Keltonia robusta	Conradina Mirid Bug		
	Keltonia rubrofemorata	Scrub Wireweed Mirid Bug		
	Leiopsammodius deyrupi	Scrub Little Mole Scarab		
	Leptobasis lucifer	Lucifer Damsel		
	Lestes tenuatus	Blue-striped Spreadwing		
	Liopinus sp. 1	Scrub Hickory Longhorn Beetle		
	Melanoplus forcipatus	Broad Cercus Scrub Grasshopper		
	Melanoplus indicifer	East Coast Scrub Grasshopper		
	Melanoplus nanciae	Ocala Claw-Cercus Grasshopper		
	Ministrymon azia	Gray Ministreak		
	Nastra fusca	Neamathla Skipper		
	Nectopsyche tavara	Tavares White Miller Caddisfly		
	Neotrichia rasmusseni	Rasmussen's Neotrichia Caddisfly		
	Odontotaenius floridanus	Archbold Bess Beetle		
	Onthophagus aciculatulus	Sandyland Onthophagus Beetle		
	Onthophagus polyphemi	Onthophagus Tortoise Commensal Scarab Beetle		
	Onychomira floridensis	a comb-clawed beetle		
	Osmia calaminthae	Blue Calamintha Bee		
	Oxyethira florida	Florida Oxyethiran Micro Caddisfly		
	Peltotrupes youngi	Ocala Deepdigger Scarab Beetle		
	Perdita townesi	a miner bee		
	Philonthus gopheri	Gopher Tortoise Rove Beetle		
	Photomorphus archboldi	Nocturnal Scrub Velvet Ant		
	Phyllophaga elizoria	Elizoria June Beetle		
	Phyllophaga okeechobea	Diurnal Scrub June Beetle		
	Phyllophaga panorpa	Southern Lake Wales Ridge June Beetle		
	Phyllophaga skelleyi	Skelley's June Beetle		
	Pieza rhea	Scrub Pygmy Bee Fly		
	Pleotomodes needhami	Ant-loving Scrub Firefly		
	Plesioclytus relictus	Florida Relictual Longhorn Beetle		
	Polyphylla starkae	Auburndale Scrub Scarab Beetle		
	Progomphus alachuensis	Tawny Sanddragon		

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Romulus globosus	Round-necked Romulus Longhorn Beetle		
	Satyrium liparops floridensis	Sparkleberry Hairstreak		
	Selonodon archboldi	Archbold Cebrionid Beetle		
	Serica frosti	Frost's Silky June Beetle		
	Stelis ater	Southwest Florida Stelis Bee		
	Telamona archboldi	Archbold's Treehopper		
	Triaenodes florida	Floridian Triaenode Caddisfly		
Mollusks				
	Aphaostracon asthenes	Blue Spring Hydrobe Snail		
	Aphaostracon monas	Wekiwa Hydrobe Snail		
	Aphaostracon theiocrenetum	Clifton Spring Hydrobe Snail		
	Elliptio monroensis	St. Johns Elephantear		
	Floridobia alexander	Alexander Siltsnail		
	Floridobia helicogyra	Crystal Siltsnail		
	Floridobia leptospira	Flatwood Siltsnail		
	Floridobia petrifons	Rock Springs Siltsnail		
	Floridobia wekiwae	Wekiwa Siltsnail		
Plants				
	Acrostichum aureum	Golden Leather Fern		ST
	Adiantum tenerum	Fan Maidenhair Fern		SE
	Aeschynomene pratensis var. pratensis	Meadow Joint-vetch		SE
	Agalinis flexicaulis	Hampton False Foxglove		
	Agrimonia incisa	Incised Groovebur		ST
	Andropogon arctatus	Florida Bluestem		ST
	Asimina manasota	Manasota Pawpaw		
	Asplenium auritum	Auricled Spleenwort		
	Asplenium heteroresiliens	Wagner's Spleenwort		
	Asplenium plenum	Ruffled Spleenwort		
	Asplenium pumilum	Dwarf Spleenwort		SE
	Asplenium trichomanes-dentatum	Toothed Spleenwort		
	Astragalus obcordatus	Florida Milkvetch		
	Baptisia perfoliata	Catbells		
	Bigelowia nuttallii	Nuttall's Rayless-goldenrod		SE
	Blechnum occidentale var. minor	Sinkhole fern		SE
	Bonamia grandiflora	Florida Lady's-nightcap		
	Calopogon multiflorus	Many-flower Grass-pink		ST
	Campanula robinsiae	Robins' Bellflower		SE
	Carex chapmanii	Chapman's Sedge		ST
	Centrosema arenicola	Sand Butterfly-pea		SE

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Cheilanthes microphylla	Southern Lipfern		SE
	Cheiroglossa palmata	Hand Fern		
	Chionanthus pygmaeus	Pygmy Fringetree	E	
	Chrysopsis floridana	Florida Goldenaster	E	
	Chrysopsis highlandsensis	Highlands Goldenaster		SE
	Clinopodium ashei	Ashe's Savory		
	Clitoria fragrans	Sweet-scented Pigeonwings		
	Coelorachis tuberculosa	Florida Jointgrass	Т	
	Conradina brevifolia	Shortleaf Rosemary	E	
	Conradina grandiflora	Large-flower False Rosemary		ST
	Crotalaria avonensis	Avon Park Rabbit-bells	E	
	Cucurbita okeechobeensis	Okeechobee Gourd	E	
	Deeringothamnus pulchellus	Beautiful Pawpaw	E	
	Deeringothamnus rugelii	Rugel's Pawpaw	E	
	Dennstaedtia bipinnata	Cuplet Hay-scented Fern		SE
	Dicerandra christmanii	Yellow Scrub Balm	E	
	Dicerandra cornutissima	Longspurred Mint	E	
	Dicerandra frutescens	Scrub Balm	E	
	Dicerandra modesta	Blushing Scrub Balm		
	Digitaria gracillima	Longleaf Crabgrass		
	Eragrostis pectinacea var. tracyi	Sanibel Island Lovegrass		SE
	Eriogonum longifolium var. gnaphalifolium	Scrub Buckwheat	Т	
	Eryngium cuneifolium	Wedgeleaf Button-snakeroot	E	
	Euphorbia commutata	Tinted Woodland Spurge		SE
	Euphorbia cumulicola	Sand-dune Spurge		
	Euphorbia rosescens	Rosy-pink Spurge		SE
	Forestiera godfreyi	Godfrey's Swamp-privet		SE
	Glandularia maritima	Coastal Sanddune Vervain		
	Glandularia tampensis	Tampa Vervain		
	Gymnopogon chapmanianus	Chapman's Skeletongrass		
	Harrisia aboriginum	Aboriginal Prickly-apple		
	Harrisia fragrans	Fragrant Prickly-apple		
	Harrisia simpsonii	Simpson's Prickly-apple		
	Hartwrightia floridana	Florida Hartwrightia		ST
	Hasteola robertiorum	Hammockherb		SE
	Helianthus carnosus	Lakeside Sunflower		SE
	Helianthus debilis ssp. vestitus	Hairy Beach Sunflower		
	Hypericum cumulicola	Highlands Scrub St. John's-wort	E	
	Hypericum edisonianum	Edison's Ascyrum		SE

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Illicium parviflorum	Yellow Anisetree		SE
	Justicia cooleyi	Cooley's Water-willow	Е	
	Lantana depressa var. floridana	Florida Lantana		SE
	Lechea cernua	Nodding Pinweed		ST
	Lechea divaricata	Pine Pinweed		SE
	Liatris ohlingerae	Florida Gayfeather	E	
	Litsea aestivalis	Pondspice		
	Lupinus westianus var. aridorum	Scrub Lupine		ST
	Lythrum flagellare	Lowland Loosestrife		SE
	Malaxis unifolia	Green Adder's-mouth Orchid		SE
	Matelea floridana	Florida Milkvine		SE
	Matelea pubiflora	Trailing Milkvine		SE
	Mesadenus lucayanus	Florida Keys Ladies'-tresses		
	Monotropa hypopitys	American Pinesap		SE
	Najas filifolia	Narrowleaf Naiad		ST
	Nemastylis floridana	Fall-flowering Ixia		SE
	Nolina atopocarpa	Florida Bear-grass		ST
	Nolina brittoniana	Britton's Bear-grass	E	
	Nymphaea jamesoniana	James' Water-lily		SE
	Opuntia stricta	Erect Prickly-pear		ST
	Panicum abscissum	Cut-throat Grass		
	Parnassia grandifolia	Largeleaf Grass-of-Parnassus		
	Paronychia chartacea	Paper-like Whitlow-wort		SE
	Pavonia spinifex	Barb-fruit Mallow		
	Pecluma dispersa	Widespread Rockcap Fern		
	Pecluma plumula	Plumed Rockcap Fern		
	Pecluma ptilodon ssp. caespitosum	Palmleaf Rockcap Fern		
	Peperomia humilis var. humilis			SE
	Platanthera integra	Yellow Fringeless Orchid		SE
	Polygala lewtonii	Lewton's Polygala	E	
	Polygonella basiramia	Wireweed	Е	
	Polygonella myriophylla	Small's Jointweed	Е	
	Prunus geniculata	Scrub Plum	E	
	Pycnanthemum floridanum	Florida Mountainmint		ST
	Rhynchospora megaplumosa			SE
	Salix floridana	Florida Willow		SE
	Schizachyrium niveum	Scrub Bluestem		SE
	Sideroxylon alachuense	Alachua Sink Buckthorn		SE
	Sideroxylon lycioides	Buckthorn Bully		SE
	Spigelia loganioides	Florida Pinkroot		SE

Taxon	Scientific Name	Common Name	ESA Status	State Status
	Spiranthes floridana	Florida Ladies'-tresses	Status	Status
	Spiranthes igniorchis	Fire Ladies'-tresses		
	Spiranthes lanceolata	Leafless Beaked Ladies'-tresses		
	Spiranthes lanceolata var. paludicola	Leafless Beaked Ladies'-tresses		
	Stylisma abdita	Flowering Southern Morning-glory		SE
	Tephrosia curtissii	Curtiss's Hoary-pea		
	Thelypteris reptans	Creeping Star-hair Fern		SE
	Thelypteris serrata	Toothed Lattice-vein Fern		SE
	Trichomanes petersii	Dwarf Filmy Fern		
	Trichomanes punctatum ssp. floridanum	Florida Filmy Fern		SE
	Triphora amazonica	Broadleaf Nodding-caps		
	Triphora craigheadii	Craighead's Nodding-caps		SE
	Triphora yucatanensis	Yucatan Nodding-caps		
	Vicia ocalensis	Ocala Vetch		SE
	Warea amplexifolia	Wide-leaf Warea	Е	
	Warea carteri	Carter's Mustard	Е	
	Zephyranthes simpsonii	Rain Lily		ST
	Ziziphus celata	Florida ziziphus	Е	

Source: NatureServe 2024. ESA = Endangered Species Act, E = Endangered, T = Threatened, SE = State Endangered, and ST = State Threatened.

Federal Aviation Administration **Aviation Safety**

800 Independence Ave., SW.

Washington, DC 20591

Field Office Supervisor U.S. Fish and Wildlife Service Florida Ecological Services Field Office 777 37th St. Suite D-101 Vero Beach, Florida 32960-3559 Submitted to: <u>fw4flesregs@fws.gov</u>

SUBJECT: Endangered Species Act Section 7 Consultation for Unmanned Aircraft Commercial Package Delivery Operations in Central Florida

In accordance with Section 7 of the Endangered Species Act (ESA), the Federal Aviation Administration (FAA) is requesting U.S. Fish and Wildlife Service (USFWS) concurrence that the FAA's action of authorizing Wing Aviation LLC (Wing) to expand its unmanned aircraft (UA or drone) small package delivery operations in the Tampa and Orlando, Florida metropolitan areas *may affect, but is not likely to adversely affect*, the Florida bonneted bat, tricolored bat, Florida panther, southeastern beach mouse, West Indian manatee, crested caracara, eastern black rail, Everglade snail kite, Florida scrub-jay, piping plover, red-cockaded woodpecker, red knot, wood stork, American crocodile, Atlantic salt marsh snake, blue-tailed mole skink, eastern indigo snake, green sea turtle, hawksbill sea turtle, leatherback sea turtle, loggerhead sea turtle, and sand skink. Our biological evaluation is provided below, including a brief background, project description, identification of the action area, and a discussion of potential effects to ESA-listed species.

Background

Wing currently operates under 14 Code of Federal Regulations (CFR) Part 135 from the Dallas-Fort Worth metro area, Texas. Wing has a Part 135 Air Carrier Operating Certificate from the FAA, which allows it to carry the property of another for compensation or hire beyond visual line of sight (BVLOS). The certificate contains a stipulation that operations must be conducted in accordance with the provisions and limitations specified in the carrier's Operations Specifications (OpSpecs).¹ Wing is applying to the FAA to add nest sites and operating hours included in its OpSpecs for the Tampa and Orland, Florida greater metropolitan areas (hereafter central Florida).

Project Description

Wing has requested the FAA amend the OpSpecs in Wing's Part 135 air carrier certificate to enable expansion of its commercial drone package delivery operations in central Florida metro (see **Figure 1**). Wing is proposing UA retail package delivery operations from up to 150 sites (hereafter "nests") distributed throughout the action area. Wing proposes to operate a maximum of 400 flights per operating day from each nest, with each flight taking a package to a customer delivery address before returning to a nest. The UA would be transporting healthcare products and other consumer goods in partnership with merchants in the community. There would be variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly much less than

400 flights per day from each nest, and gradually ramp up to no more than 400 flights per day as consumer demand increases. The maximum potential number of total eventual operations would be 60,000 (400 Ops*150 Nests). Flights would not occur over water and are specifically planned using proprietary software to avoid repeated exposures to individual locations.

Wing is proposing to disperse nests throughout the operational area (**Figure 1**), each located in a commercial area, such as a shopping center, large retailer, shopping mall, etc. Each nest would house up to two dozen aircraft on charging pads and one or more merchants may use each nest for drone deliveries. Nests would be distributed throughout central Florida following a measured rollout plan developed with Wing's partners and continuing best practices from Wing's established community outreach program. The proposed operations would occur from 6:00am to 10:00pm for 7 days of the week, including holidays. In addition, operations would include low altitude (<8ft) in-nest hover checks, or Fitness Built in Tests (FitBITs) between 6:00 a.m. and 7:00 a.m. in preparation for the normal operational day which would begin no earlier than 7:00 a.m. Additional, higher hover flights (approximately 60 feet) may be performed up to 18 times per nest, per week, where the UA makes a separate hover flight to update the reference map of the nest; these flights are termed Geography Built In Test (GeoBITs) because of their similarity to the FitBit stationary hover flight over the nest and would occur during regular operating hours.

Unmanned Aircraft

The primary UAs used for the proposed operations are Wing's Hummingbird 7000W-B and 8000-A models. Specifications of these models are as follows:

- Hummingbird 7000W-B.
 - Multi-rotor design with 16 round diameter propellers (Figure 1).
 - Weight under 15 pounds when combined with its maximum payload weight of 2.7 pounds.
 - Has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of 4 feet.
- 8000-A.
 - Multi-rotor design with 12 round diameter propellers (Figure 2).
 - Weight under 25 pounds when combined with its maximum payload weight of 5 pounds.
 - Has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet.

All Wing aircraft use electric power from rechargeable lithium-ion batteries. Wing anticipates that the central Florida fleet makeup would be comprised of 70 to 80 percent 7000W-B aircraft and 20 to 30 percent 8000-A aircraft. The fleet mix of individual nests would be variable based on payload, route, and demand characteristics; nests with a wider range of offerings are anticipated to carry higher proportions of 7000W-B Aircraft.

Flight Operations

The UA would be operated at an altitude of 150–300 feet above ground level (AGL) and always below an altitude of 400 feet AGL while en route to and from delivery locations. At a delivery location, the UA would descend vertically to a stationary hover and lower a package to the ground by line for delivery. Once a package has been lowered to the ground, the UA would then retract the line, ascend vertically to a cruise altitude, and depart the delivery area en route back to a nest.

The UA would fly a predefined flight path that is set prior to takeoff. Flight missions are automatically planned by Wing's flight planning software. A mission is associated with a nest location, and Wing's

software automatically assigns, deconflicts, and routes each flight. Each nest site would have access to a controlled area wherein UA flights are launched and recovered.

A typical flight profile can be broken into the following general flight phases: takeoff, en route outbound, delivery, en route inbound, and landing.

Takeoff

Once the UA is cleared for takeoff at a launch pad, the UA takes off from the ground vertically to an altitude of 23 feet AGL and hovers for 30 seconds while the package is loaded. The UA then climbs to the en route altitude (150–300 feet AGL).

En Route Outbound

The en route outbound phase is the part of flight in which the fully loaded UA transits from the nest to a delivery point on a predefined flight path. During this flight phase, the UA will typically operate at an altitude of 150–300 feet AGL and a typical airspeed of 51 knots.

Delivery

The delivery phase consists of descent from the en route altitude to a delivery point to deliver a package. The UA descends vertically to 23 feet AGL while maintaining position over the delivery point. The UA hovers at 23 feet AGL for approximately 30 seconds while dropping the package and then proceeds to climb vertically back to en route altitude.

En Route Inbound

The UA continues to fly at an altitude of 150–300 feet AGL and a speed of 51 knots towards the nest.

Landing

Upon reaching the nest, the UA slowly descends over its assigned landing pad and lands on the pad.

Remote Pickup Operations

Remote pickup operations from each nest would be supported at up to 12 partner establishments depending upon demand and nest capacity. Pickup operations would follow general flight phases and parameters identical to typical delivery operations and would include the addition of a pickup phase. The pickup phase is similar to the delivery phase. The UA descends from its close transit altitude (safe altitude above local terrain and obstacles) to 14.5 feet AGL and lowers the package hook. The UA then passes approximately 10 feet laterally over the autoloader. The autoloader's Y-shaped poles passively guide the package hook to a narrow slot that ensures secure attachment of the package. The package is then retracted to the UA before it proceeds to climb to the en route altitude. Remote pickup operations from descent to finish are expected to take no longer than 1 minute and 30 seconds (90 seconds). Delivery, en route return, and land operations would then occur as described above.

Predicted Sound Levels

The FAA conducted a noise analysis using sound level measurement data for the UA— the Hummingbird 7000W-B and 8000-A. Generally, the 7000W-B generates larger sound levels during takeoff and landing but lower sound levels during transit than the 8000-A. The estimated maximum sound exposure level (SEL) for the takeoff and landing phases of flight of the 7000W-B is approximately 80.6 A-weighted decibels (dBA) at about 50 feet from the drone whereas the estimated maximum SEL for the same flight phases of the 8000-A is 79.0 dBA as shown in Tables 1–2 in the noise report (see **Attachment B** for the noise report). Both platforms generate similar noise at delivery, with the 7000W-B generating 83.4 dBA SEL and 8000-A generating 83.6 dBA (Tables 1-2, **Attachment B**). The maximum SEL for the en route phase of the 8000-A is approximately 62.0 dBA when the drone is flying 50 knots at 165 feet AGL and the maximum SEL for the en route phase of the 7000W-B with the same flight parameters is 56.5 dBA (Sections 4.1.4 and 4.2.4 in **Attachment B**). Predicted sound levels decrease as distances from the drone increase. The majority of en route flight operations will be conducted with the quieter 7000W-B platform, although the specific of distribution of operations between platforms would be variable based

on payload, route, and demand characteristics.

Action Area

The action area is defined as all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action (50 CFR § 402.02). The action area is defined as Wing's proposed operating area (see **Figure 1**). This area captures all possible flight routes to the delivery areas and where potential effects (e.g., visual, auditory, physical) to listed species could occur.

According to the U.S. Environmental Protection Agency and Florida Department of Environmental Protection Agency, the action area is entirely within the Southern Coastal Plain level III ecoregion and overlaps four level IV ecoregions: Gulf Coast Flatwoods (northwestern portion of the action area), Southwestern Florida Flatwoods (western portion of the action area), Central Florida Ridges and Uplands (central portion of the action area), and Eastern Florida Flatwoods (eastern portion of the action area) (Griffith et al. 1999). The following is a general description of each of these ecoregions in Florida; however, note that much of the land surface in the action area is developed or disturbed, as it contains the cities of Clearwater, St. Petersburg, Sarasota, Tampa, Spring Hill, Kissimmee, Orlando, Sanford, Daytona Beach, and Melbourne. Outside these cities, much of the land has been converted to suburban development and agriculture. There are forest patches interspersed throughout the action area, particularly along drainages and near waterbodies.

- The Gulf Coast Flatwoods region in Florida is a low, predominantly flat, forested region just inland from the coast. Soils are primarily acidic and low in nutrients and are underlain by a mix of sand, shell fragments, silt and clay, and peat. The climate of the region is subtropical, with high rainfall and humidity year-round. Vegetation of the region originally consisted of woodland and open savanna. Common native vegetation includes slash pine (*Pinus elliottii*), long leaf pine (*Pinus palustris*), saw palmetto (*Serenoa repens*) canopies with wiregrass (*Aristida stricta*) herbaceous layers (Griffith et al. 1999).
- The Southwestern Florida Flatwoods are amongst the most extensive terrestrial ecoregions in Florida. Soils are acidic, sandy, and low in organic and clay content. Flooding is common during summer months due to relatively poor drainage. Vegetation of the region originally consisted of woodland and open savanna. Common native vegetation includes slash pine, long leaf pine, saw palmetto canopies with wiregrass herbaceous layers (Griffith et al. 1999).
- The Central Florida Ridges and Uplands extends 275 miles from east to west and from the northern edge of the panhandle into the central area of the peninsula. The area is characterized by low rolling sandhills and separates the coastal plains on either edge. Most of the typical native vegetation communities consist of sandhill, scrub, and xeric hammock communities which were dependent on frequent fire (Griffith et al. 1999).
- The Eastern Florida Flatwoods is a low, predominantly flat, forested region inland from the Atlantic coast. It contains similar soil composition, climate, and vegetation communities as the Gulf Coast and Southwestern Flatwoods (Griffith et al. 1999).

ESA-Listed Species and Critical Habitat in the Action Area

The FAA acquired the Official Species List (see **Attachment A**) from the USFWS Information for Planning and Conservation (IPaC) online system to identify ESA-listed species and designated critical habitat in the action area (**Table 1**). The action area contains designated critical habitat for the aboriginal prickly-apple (*Harrisia aboriginum*), Florida bonneted bat (*Eumops floridanus*), Florida bristle fern (*Trichomanes punctatum ssp. Floridanum*), green sea turtle (*Chelonia mydas*), loggerhead sea turtle (*Caretta caretta*), piping plover (*Charadrius melodus*), red knot (*Calidris melodus*), and West Indian manatee (*Trichechus manatus*).

Table 1. ESA-Listed and Candidate Species Potentially Present in the Action Area

Common Name	Scientific Name	ESA Status
-------------	-----------------	------------

Common Name	Scientific Name	ESA Status
Mammals		
Florida bonneted bat	Eumops floridanus	Endangered
Tricolored bat	Perimyotis subflavus	Proposed Endangered
Florida Panther	Puma concolor coryi	Endangered
Puma	Puma concolor	Similarity of Appearance (Threatened)
Southeastern beach mouse	Peromyscus polionotus niveventris	Threatened
West Indian manatee	Trichechus manatus	Threatened
Birds		
Crested caracara	Caracara plancus audubonii	Threatened
Eastern black rail	Laterallus jamaicensis ssp. jamaicensis	Threatened
Everglade snail kite	Rostrhamus sociabilis plumbeus	Endangered
Florida scub-jay	Aphelocoma coerulecens	Threatened
Piping plover	Charadrius melodus	Threatened
Red-cockaded woodpecker	Picoides borealis	Endangered
Red knot	Calidris canutus rufa	Threatened
Whooping crane	Grus americana	Endangered; Experimental
Wood stork	Mycteria americana	Population, Non-Essential Threatened
Reptiles		
American alligator	Alligator mississippiensis	Similarity of Appearance (Threatened)
American crocodile	Crocodylus acutus	Threatened
Atlantic salt marsh snake	Nerodia clarkia taeniata	Threatened
Blue-tailed mole skink	Eumeces egregious lividus	Threatened
Eastern indigo snake	Drymarchon couperi	Threatened
Green sea turtle	Chelonia mydas	Threatened
Hawksbill sea turtle	Eretmochelys imbricata	Endangered
Leatherback sea turtle	Dermochelys coriacea	Endangered
Loggerhead sea turtle	Caretta caretta	Threatened
Sand skink	Neoseps reynoldsi	Threatened
Fishes		
Gulf sturgeon	Acipenser oxyrinchus	Threatened
Insects		
Miami blue butterfly	Cyclargus thomasi bethunebakeri	Endangered
Monarch butterfly	Danaus plexippus	Candidate
Flowering Plants		
Aboriginal prickly-apple	Harrisia aboriginum	Endangered
Avon park harebells	Crolatalria avonensis	Endangered
Beautiful pawpaw	Deeringothamnus pulchellus	Endangered
Britton's beargrass	Nolina brittoniana	Endangered
Brooksville bellflower	Campanula robinsiae	Endangered
Carter's mustard	Warea carteri	Endangered
Cooley's water-willow	Justicia cooleyi	Endangered
Florida Bonamia	Bonamia grandiflora	Threatened
Florida ziziphus	Zizipush celata	Endangered
Fragrant prickly-apple	Cereus eriophorus var. fragrans Dicerandra christmanii	Endangered
Garrett's mint		Endangered
Highlands scrub hypericum Lakela's mint	Hypericum cumulicola Dicerandra immaculata	Endangered
Lakela's mint Lewton's polygala	Polygala lewtonii	Endangered Endangered
Lewion's polygaia	Folygulu lewiolill	Linualigered

Common Name	Scientific Name	ESA Status
Longspurred mint	Dicerandra conutissima	Endangered
Okeechobee gourd	Cucurbita okeechobeensis ssp. okeechobeensis	Endangered
Papery whitlow-wort	Paronchia chartacea	Threatened
Pigeon wings	Clitoria fragrans	Threatened
Pygmy fringe-tree	Chionthus pygmaeus	Endangered
Rugel's pawpaw	Deeringothamnus rugelii	Endangered
Sandlace	Polygonella myriophylla	Endangered
Scrub blazingstar	Liatris ohlingerae	Endangered
Scrub buckwheat	Eriogonum lonifolium var. gnaphalifolium	Threatened
Scrub lupine	Lupinus aridorum	Endangered
Scrub mint	Dicerandra frutescens	Endangered
Scrub plum	Prunus geniculata	Endangered
Short-leaved rosemary	Conradina brevifolia	Endangered
Snakeroot	Eryngium cuneifolium	Endangered
Wide-leaf warea	Awarea amplexifolia	Endangered
Wireweed	Polygonella basiramia	Endangered
Ferns and Allies		
Florida bristle fern	Trichomanes punctatum ssp. floridanum	Endangered
Lichens		
Florida perforate cladonia	Cladonia perforata	Endangered

Potential Effects of the Action on ESA-Listed Species and Critical Habitat

The action does not include any ground construction or habitat modification. During nominal operations, the UA would not touch the ground except at the nests, which would be located in commercial areas, such as shopping centers. The action would not result in any physical disturbance to habitat. Therefore, the proposed action does not have the potential to affect any habitat or designated critical habitat present within the action area. The FAA has determined the action would have **no effect** on designated critical habitat for the aboriginal prickly-apple, Florida bonneted bat, Florida bristle fern, green sea turtle, loggerhead sea turtle, piping plover, red knot, and West Indian manatee.

UA noise, light emissions, and the potential for airborne strikes with flying species are the action's potential stressors or threats to ESA-listed species. Flight operations would take place mostly in urban and suburban environments, within airspace, and typically remain well above the tree line while en route to and from a nest. The duration of exposure by wildlife on the ground to visual or noise impacts from the UA would be of very short duration (approximately 30 seconds during takeoff/landing and delivery and a few seconds during the en route phase).

As noted above and shown in **Attachment B**, the highest estimated average SEL associated with Wing's proposed operations is 83.6 dBA, which would occur during delivery operations. For reference, the sound level of a diesel truck at 50 feet or a noisy urban environment during the day is approximately 80 to 90 dBA. The highest SEL on the ground when either UA is flying in the en route phase at an altitude of 165 feet AGL is estimated to be around 62.0 dBA, which is comparable to the sound of an air conditioning unit at 100 feet (60 dB).

A noise descriptor for noise effects on wildlife has not been universally adopted, but some research indicates SEL is the most useful predictor of responses. Characteristic of the bulk of research to date has been lack of systematic documentation of the source noise event. Many studies report "sound levels" without specifying the frequency spectrum or duration. A notable exception is a study sponsored by U.S. Air Force that identifies SEL as the best descriptor for response of domestic turkey poults to low-altitude aircraft overflights (Bradley et al. 1990). This study identified a threshold of response for disturbance of

domestic turkeys ("100 percent rate of crowding") as SEL 100 dBA. None of the predicted sound levels for the different flight phases exceed SEL 83.6 dBA.

The following paragraphs describe the anticipated effects of the action on the ESA-listed species listed in Table 1.

Bats

The Florida bonneted bat typically occupies semitropical forests, including pineland, tropical hardwood, mangrove areas, but is also found roosting in both natural and man-made structure (FWC 2011). It typically forages in in open, uncluttered areas and flies less than 10 meters AGL. The species roots singly or in small harem-like colonies containing one male and several females. Florida bonneted bats have low fecundity despite an extensive summer breeding season and gives birth to only one offspring per breeding season. The species may have the smallest range of any bat species in North America and has only been documented within four southern Florida counties: Carlotte, Lee, Collier, and Miami-Dade (Marks and Marks 2008). Predominant threats to Florida bonneted bats include habitat loss, limited roost availability, extreme weather, and pesticides from mosquito control operations (FWC 2011).

The tricolored bat typically uses trees, caves, or manmade structures for roosting and forages for insects during dusk, nighttime, and dawn time periods. Tricolored bats emerge early in the evening and forage at treetop level or above but may forage closer to ground later in the evening. This species exhibits slow, erratic, fluttery flight while foraging and are known to forage most commonly over waterways and forest edges (USFWS 2023). This species spends six to nine months per year hibernating in caves or mines. The USFWS has proposed to list the tricolored bat as an endangered species, primarily due to white-nose syndrome. Other factors that influence the tricolored bat's viability include wind-energy-related mortality, habitat loss, and effects from climate change.

Suitable habitat for both bat species roosting and feeding in the action area includes wooded areas, open water habitat, and manmade structures. Based on current data from the North American Bat Monitoring Program (USGS 2023), there is some probability of either species occurring in the action area, albeit lower in the predominantly urban and suburban environment where nests would be located and deliveries would occur (see **Figure 3**). Nests would be located in commercial areas and therefore not within high-quality roosting or foraging habitats.

Bats at roost or in flight could experience UA noise during the en route and delivery flight phases. Bats foraging at or near the tree line at the time a UA flies by would experience the greatest sound levels. Roosting bats or bats foraging near the ground at the time a UA flies by would experience lower sound levels. Bats may exhibit disturbance behaviors and change their flight paths to avoid drones in the event that flights overlap with bat activity areas (Ednie et al. 2021). Research suggests that drones have "minimal impact on bat behavior" (Fu et al. 2018) primarily from noise emissions. However, drone disturbance is temporary and bats are expected to return to normal foraging and flight activities shortly after the exposure to drone noise ends (Kuhlmann et al. 2022, Ednie et al. 2021). Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, the short period of time the UA would be in any particular location, and the low probability of encountering an individual tricolored bat in the action area, UA noise is not expected to adversely affect tricolored bats. Any increase in ambient sound levels caused by the UA's flight would only last a few seconds during the en route phase and approximately 30 seconds during a delivery.

Bats could also be struck by a drone, particularly during nighttime delivery operations while bats are foraging. Given the bat's ability to avoid flying into objects, the lower flight path of bats compared to those of the UA, the short period of time the UA would be in any one place, and the low probability of encountering a, ESA-listed bat during operations, the likelihood of the UA striking a bat is discountable.

Based on 1) operations occurring mostly in an urban environment, 2) the altitude at which the UA flies in the en route phase (150–300 feet AGL), 3) the expected low sound levels experienced by a bat, 4) any

increase in ambient sound levels would be short in duration, 5) the low probability of ESA-listed bats occurring in the action area, and 6) the low likelihood of the UA striking a bat, the FAA has determined the action *may affect, but is not likely to adversely affect*, the Florida bonneted bat and tricolored bat. Any effects would be discountable (extremely unlikely to occur) or insignificant (not able to be meaningfully measured, detected, or evaluated).

Terrestrial Mammals

Florida panther is the only breeding population of puma in the eastern United States and has been restricted to the Florida peninsula for over 100 years (FWC 2020). Florida panthers have been documented via verified occurrence records in 26 Florida counties and recent data indicate that Florida panthers are distributed into central Florida as far north as I-4. However, the majority of observations distributed within the action area are primarily dispersing males and the breeding population occurs well south. Florida panthers are carnivorous and prey mostly upon white-tailed deer, wild hogs, racoons, armadillos, and livestock. Florida panthers primarily in forested habitats of any size, but also can occur in wetlands, prairie grasslands, and upland shrublands to a lesser extent. Non-forested habitats are typically only used at night and most use occurs within 200 meters of forest cover. The predominant threats to the species are habitat loss from agricultural conversion and urbanization and vehicle collisions (FWC 2020).

Southeastern beach mouse (SEBM) occur in sparsely vegetated coastal sand dunes and adjacent scrub habitat, where it feeds on dune plant seeds and insects (USFWS 2019). Beach mouse breed rapidly with an average gestation of 28 to 30 days and littering intervals as short as 26 days. Local populations fluctuate largely on a seasonal and annual basis depending on food availability, habitat quality and quantity, catastrophic events, disease, and predation. SEBM once occupied over 360 km (224 miles) of Florida's central and southern Atlantic coast; it now occupies about 80 km (50 miles) of coastline (USFWS 2008). SEBM ranges are highly restricted and extant populations are only known to occur on county, state, and Federal lands including Smyrna Dunes Park, Canaveral National Seashore, Merritt Island National Wildlife Refuge, Kennedy Space Center, and Cape Canaveral Air Force Station in Volusia and Brevard counties. Current threats to the species include loss of dune habitat due to human development, coastal erosion, sea level rise, climate change, predation by house cats, and interspecific resource competition from house mice (USFWS 2019).

The action does not include ground disturbance and therefore would not physically impact potential Florida panther or SEBM habitat. If present in the action area during operations, these animals could experience en route noise. Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, the low probability of encountering an individual Florida panther or SEBM during operations, and the short period of time the UA would be in any particular location, UA noise is not expected to adversely affect either species. Further, the chances of any one individual experiencing multiple overflights of a UA are low given the low population numbers of the two species and their limited distribution throughout the action area.

Based on 1) operations occurring mostly in an urban environment, 2) the expected low sound levels experienced by a Florida panther or SEBM, 4) any increase in ambient sound levels would be short in duration, and 5) the low probability of a Florida panther or SEBM occurring in the action area, the FAA has determined that the action *may affect, but is not likely to adversely affect,* the Florida panther and Southeastern beach mouse. Any effects would be discountable (extremely unlikely to occur) or insignificant (not able to be meaningfully measured, detected, or evaluated).

Marine Mammals

West Indian manatees occur primarily in Florida and southeastern Georgia but can range as far north as Rhode Island on the Atlantic coast and as far west as Texas on the Gulf coast (USFWS 2001). The species feeds opportunistically on a variety of submerged, floating, and emergent vegetation, although seagrasses are typically a staple of their diet in coastal areas. They primarily feed in shallow grass beds near deep channels. Manatees migrate seasonally based on water temperature, aggregating in warmwater refuge areas during winter months and disperse along the coast, rivers, and canals during summer months. Breeding typically occurs from March through November and females typically only give birth to one calf. The predominant threats to manatees are death or serious injury resulting from boat strikes, although entrapment in water control structures, entanglement in fishing gear, and ingestion of marine debris also pose danger to the species.

The action does not include ground disturbance and therefore would not physically impact potential West Indian Manatee habitat. If present in the action area near operation, West Indian Manatees could experience en route noise. Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, avoidance of flights over water, the low probability of encountering an individual manatee during operations, and the short period of time the UA would be in any particular location, UA noise is not expected to adversely affect West Indian Manatee. Further, the chances of any one individual experiencing multiple overflights of a UA are low given the low population numbers of the species and limited distribution throughout the action area.

Based on 1) operations occurring mostly in an urban environment, 2) the expected low sound levels experienced by a West Indian manatee, 4) any increase in ambient sound levels would be short in duration, 5) the avoidance of flights over water, and 6) the low probability of a manatee occurring near a delivery location, the FAA has determined that the action *may affect, but is not likely to adversely affect,* the West Indian manatee. Any effects would be discountable (extremely unlikely to occur) or insignificant (not able to be meaningfully measured, detected, or evaluated).

<u>Birds</u>

The Audubon's crested caracara occurs in a wide variety of semi-open habitats offering open ground for hunting and dense cover for nesting (FWC 2023). In Florida, the species inhabits wet prairies with cabbage palms, and may occur in pastures and wooded areas with saw palmetto, cypress, scrub oaks (FWC 2023). Habitat loss and fragmentation along with alteration of the natural fire regime, which results in habitat becoming unsuitable for the species, have been the primary historical pressures on the species (USFWS 2009). Urbanization and the conversion of cattle ranching to crop production, particularly sugar cane, or development are the main factors that continue to cause habitat fragmentation and loss (USFWS 2019).

The eastern black is a subspecies of black rail that occurs in salt, brackish, and freshwater wetlands in the eastern United States (east of the Rocky Mountains), Mexico, Brazil, Central America, and the Caribbean. The species requires dense overhead cover, moist to saturated soils, and persistent emergent wetland plants (USFWS 2019). Predominant threats to the species include habitat fragmentation and wetland conversion for agricultural and urban development, fire suppression, hydrological alteration, and climate change. Sea level rise in coastal areas is a growing threat to the species (USFWS 2019).

The everglade snail kite is a medium-sized raptor which occurs primarily in central Florida, Cuba, and Isla de la Juventud. The species occurs in shallow freshwater marshes and shallow grassy shorelines of lakes. In florida, this includes waters of the Kissimmee Valley, the headwaters of St. Johns River, Lake Okeechobee, the Loxahatchee National Wildlife Refuge, Big Cypress National Preserve, and Everglades National Park (FWC No Date). The species feeds exclusively on apple snails (*Pomacea*) captured at the surface of the water. Primary threats to the species include the loss and fragmentation of wetlands, proliferation of exotic apple snails which are more difficult for young snail kites to consume, and human harassment (FWC No Date).

The Florida scrub-jay is endemic to oak-dominated scrub habitats in Florida (FWC No Date). The species occurs in sand pine and xeric scub, as well as scrubby flatwoods. Degradation and loss of habitat from human activities have resulted in substantial declines in the abundance and distribution of the species. The remaining populations are reproductively isolated, of small size, and are projected to continue to decline (USFWS 2019). The predominant threats to the species are habitat loss, fragmentation, and degradation from urban development and agriculture as well as the disruption of natural fire regimes (FWC No Date).

The piping plover is a small, sand-colored shorebird that nests and feeds along coastal sand and gravel beaches throughout the Eastern seaboard. The species forages around the high tide wrack zone and along the ocean edge as areas are exposed, eating mainly arthropods and marine worms (USFWS 2016). Factors of decline for the piping plover include changes in quality or quantity of riverine habitat due to damming and water withdrawals, habitat destruction and degradation, human disturbance, predation, and spread of invasive plants (USFWS 2016).

The red-cockaded woodpecker (RCW) is a non-migratory and territorial resident of fire-dependent, mature southern pine forests, with particular emphasis on longleaf pine ecosystems. Historically, the species ranged from New Jersey to Florida and west to Texas (USFWS 2020). In Florida, the species occurs in hydric slash pine flatwoods, xeric pine uplands in the panhandle region, and sparse pine forests in the vicinity of Orlando, FL and the Big Cypress National Preserve. Predominant threats to the species include habitat loss, fragmentation, and degradation from urban and agricultural development in addition to the suppression of natural fire regimes.

The red knot breeds in the northern arctic region. Overwintering typically occurs in the southern hemisphere, but some birds overwinter in Florida. The Atlantic Coast of Florida also is a common stopover during spring and fall migrations. The red knot forages along the shoreline (USFWS 2019). In the southeastern U.S., the red knot population is believed to be moderately resilient. Regional abundance estimates suggest the populations in this region have been mostly stable since the 1980s. Factors of decline for the red knot include loss of habitat, disruption of natural predator cycles on breeding grounds, reduced prey availability, and asynchronies in timing of their migratory cycle (USFWS 2019).

The wood stork is the only stork that occurs in North America. Wood storks are large, thick wading birds with long legs. They have a long neck and a long, thick bill. The birds are white with black flight feathers and tail. The head lacks feathers, is dark, and appears scaly (USFWS 2019). Wood stork prey on fish and crustaceans in both fresh and saltwater habitats. They generally nest near wetland habitats using bald cypress, sweetgum, and mangroves for nesting. Predominant threats to the species include habitat fragmentation and wetland conversion for agricultural and urban development, fire suppression, hydrological alteration, and climate change. Sea level rise in coastal areas is a growing threat to the species (USFWS 2019).

The action does not involve ground disturbance or vegetation removal and therefore would not physically impact any foraging or nesting habitat. If present in the action area, ESA-listed birds could experience UA noise during the en route and delivery flight phases. Birds resting or foraging at or near the tree line at the time a UA flies by would experience the greatest sound levels. Birds near the ground at the time a UA flies by would experience lower sound levels. Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, the low probability of encountering an individual ESA-listed birds in developed and agricultural areas, and the short period of time the UA would be in any particular location, UA noise is not expected to adversely affect ESA-listed birds. Further, the chances of any individual experiencing multiple overflights of a UA are low given the mobility of the birds. One study found that, in most instances, drones within 4 meters of birds did not cause a behavioral response (Vas et al. 2015). In another study, drones barely elicited behavioral responses in terrestrial mammals (Mulero-Pázmány et al. 2017).

ESA-listed birds could be struck by a UA in flight when foraging above tree tops or in flight between foraging sites or during migration. The risk of a strike is low given their ability to fly and avoid the UA, as well as the low probability of encountering ESA-listed birds during drone deliveries.

Based on 1) operations occurring mostly in an urban environment, 2) the altitude at which the UA flies in the en route phase (150–300 feet AGL); 3) the expected low sound levels experienced by ESA-listed birds, 4) any increase in ambient sound levels would be short in duration, 5) the low probability of encountering ESA-listed birds in developed nest and delivery areas, and 6) the low likelihood of the UA striking an ESA-listed bird, the FAA has determined that the action *may affect, but is not likely to adversely affect* ESA-

listed birds. Any effects would be discountable (extremely unlikely to occur) or insignificant (not able to be meaningfully measured, detected, or evaluated).

Terrestrial and Aquatic Reptiles

American crocodile primarily occurs in mangrove swamps, mangrove-lined bays, creeks, and inland swamps (UFWS 2019). In Florida, this range shifts seasonally from exposed shorelines during nesting season to fresh and brackish inland swamps, creeks, and bays. Generally, the species appears to prefer less saline waters, and prefer the presence of shelter in the form of undercut banks, snags, and roots with access to waters deeper than 1 meter. The current distribution of the species is limited to southern Florida, including coastal areas of Miami-Dade, Monroe, Collier, and Lee counties although historically the species has ranged as far north as Palm Beach and Tampa counties along the east and west coastlines. Predominant threats to the species include habitat modification and degradation through urban, suburban, and agricultural development, human disturbance and encroachment in estuarine areas, and extreme weather patterns.

Atlantic salt marsh snake occur in coastal salt marshes and mangrove swamps of varying salinity. They are typically associated with saltwort flats and salt grass-bordered creeks. The species is typically observed at night where they feed on small fishes, frogs and, and fiddler crabs (USFWS 2019). The species is distributed in a narrow geographic coastal band from southern Texas, east along the Gulf of Mexico coastline, around the Florida peninsula, and up the east coast of Florida as far as Volusia county. The predominant threat to the species is habitat loss and modification through urban and agricultural development of coastal salt marshes.

Blue-tail mole skinks occupy the xeric upland habitats of the Central Ridge in peninsular Florida. The species primarily occurs in rosemary and oak-dominated scrub, turkey oak barrens, high pine, and xeric hammock environments in ares with few plant roots, open canopies, scattered vegetation, and patches of bare sand (USFWS 2019). The species tend to be clumped in distribution in areas with optimal surface litter, soil moisture, and prey distribution. Blue-tail mole skinks only occur in Highlands, Polk, and Osceola counties and is rare throughout its range. The predominant threat to the species is habitat loss and degradation through residential, commercial, and agricultural development.

Eastern indigo snakes are found throughout the southeastern U.S., but primarily occurs in the coastal plains of Georgia and Florida. Across this range, the eastern indigo snake inhabit pine flatwoods, scrubby flatwoods, high pine, dry prairie, tropical hardwood hammocks, freshwater marsh edges, agricultural fields, coastal dunes, and human altered habitats (USFWS 2019). Habitat variety is important for the species given their winter sheltering habitat requirements and ranging foraging behavior. Underground refugia is a key requirement of the species and they are closely associated with gopher tortoise presence in xeric requirements. In Florida, the species occurs widely in nearly every county of the state. Habitat loss and fragmentation by residential and commercial development is the predominant threat to the species.

Sand skinks occur in xeric upland ecosystems and are most abundant in open canopy areas free of abundant roots with bare sand between high pine and scrub systems (USFWS 2019). In Florida, the species occur in the sandy ridges of central Florida across Highlands, Lake, Marion, Osceola, Polk, and Putnam counties. Sand skinks burrow or "swim" through sand to hunt arthropod prey and typically are most active from February to May. The predominant threats to the species are modification and destruction of habitat for agricultural and urban development as well as disruption of natural fire regimes.

The action does not include ground disturbance and therefore would not physically impact mangrove, wetland, swamp, or xeric upland habitats. Although the habitat quality of the majority of the operating area (i.e., suburban and urban environments) is low for ESA-listed species and UAs would not overfly water areas, terrestrial reptiles could potentially experience en route noise. However, given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations,

the low probability of encountering an individual during operations, and the short period of time the UA would be in any particular location, UA noise is not expected to adversely affect either species. Further, the chances of any one individual experiencing multiple overflights of a UA are low given the mobility of the animals.

Based on 1) operations occurring mostly in an urban environment, 2) the altitude at which the UA flies in the en route phase (150–300 feet AGL); 3) the expected low sound levels experienced by ESA-listed reptiles, 4) any increase in ambient sound levels would be short in duration, and 5) the low probability of a either species occurring in the action area, the FAA has determined that the action *may affect, but is not likely to adversely affect,* the American crocodile, Atlantic salt marsh snake, blue-tail mole skink, eastern indigo snake, and sand skink. Any effects would be discountable (extremely unlikely to occur) or insignificant (not able to be meaningfully measured, detected, or evaluated).

Sea Turtles

Green sea turtle is found in tropical and sub-tropical waters worldwide. In the U.S., the species occur in coastal waters from Texas to Massachusetts. Florida waters and coastal areas host important feeding and nesting sites for green sea turtles, with large-scale nesting on the east coast in Brevard, Indian River, St. Lucie, Martin, Palm Beach, and Broward counties (USFWS 2019). The species occupy three predominant habitat types: high energy oceanic beaches, convergence zones in pelagic areas, and benthic feeding grounds in shallow, protected waters. Nesting occurs onshore above high-water lines from May through November. Predominant onshore threats to the species include artificial lighting, beach nourishment, beach armoring, and human disturbance during nesting season.

Hawksbill sea turtles occur in tropical and subtropical water so the Indian, Pacific, and Atlantic oceans. In the continental U.S., the species is known to occur in southern Florida, the northern Gulf of Mexico, Texas, and Puerto Rico (USFWS 2019). Although the species can occur along the eastern seaboard as far north as Massachusetts, sightings are rare north of Florida. In Florida, the species occurs primarily in the waters of the Florida Keys and reefs off Palm Beach county and nesting is restricted to the southeastern coast of Florida in Broward, Miami-Dade, and Volusia counties from July to October. Predominant onshore threats to the species include artificial lighting, beach nourishment, beach armoring, and human disturbance during nesting season.

Leatherback sea turtles occur globally in the waters of the Indian, Pacific, and Atlantic oceans. The species is highly migratory and is believed to be the most pelagic of all sea turtle species where they feed on jelly fish, siphonophores, and salpae (USFWS 2019). Leatherback sea turtles are known to nest along the eastern seaboard from Florida to South Carolina. In Florida, the species often share nesting beaches with loggerhead and green sea turtles and regularly nest along the east coast in Indian River, St. Lucie, Martin, Palm Beach, Broward, and Miami-Dade counties from February through November. Predominant onshore threats to the species include artificial lighting, beach nourishment, beach armoring, and human disturbance during nesting season.

Loggerhead sea turtles occur in temperate and tropical oceanic waters throughout the Indian, Pacific, and Atlantic Ocean where they primarily feed on benthic invertebrates. Globally, the species ranges as far north as Newfoundland and as far south as Argentina (USFWS 2019). Loggerheads are the most common species of sea turtle in South Florida and major nesting concentrations occur along both the Atlantic and Gulf of Mexico Coastlines. Nesting is most prevalent along the east coast, with approximately 80 percent of observed nesting occurring in Brevard, Indian River, St. Lucie, Martin, Palm Beach, and Broward counties from March through November. Predominant onshore threats to the species include artificial lighting, beach nourishment, beach armoring, and human disturbance during nesting season.

The action does not include ground disturbance and therefore would not physically impact nesting habitat for any species of sea turtle. Although UAs would not overfly water areas and operating hours would not primarily occur during nighttime nesting hours, nesting sea turtles could potentially

experience some en route noise or light emissions from UAs. However, sea turtles are low-frequency hearing specialists and likely have limited ability to perceive the predominantly high frequency noise emitted by transiting UAs (Piniak et al. 2012; Rees et al. 2018). The limited available data suggest that nesting sea turtles are not disturbed by UA activity in their vicinity and would not be disturbed by nearby transiting UAs (Bevan et al. 2018; Selles-Rios et al. 2022). Although artificial night lighting is a predominant stressor to these species, light emissions from UAs are limited to collision prevention lighting after civil twilight hours and would not noticeably contribute to the ambient light environment of nesting beaches or to the disorientation of nesting turtles or their hatchlings. Given the estimated sound levels of the UA, the UA's linear flight profile to and from nests and delivery locations, the low probability of encountering an individual turtle during operations, and the short period of time the UA would be in any particular location, UA noise and light emissions iare not expected to adversely affect sea turtles. Further, the chances of any one individual experiencing multiple overflights of a UA are low given the the limited number of deliveries expected in the vicinity of nesting and the relatively short-timespan that nesting turtles are on shore during operating hours.

Based on 1) operations occurring mostly in an urban environment, 2) the altitude at which the UA flies in the en route phase (150–300 feet AGL); 3) the expected low sound and light levels experienced by ESAlisted rsea turtles, 4) any increase in ambient sound or light levels would be short in duration, and 5) the relatively low probability of the species occurring in the action area, the FAA has determined that the action *may affect, but is not likely to adversely affect,* the green sea turtle, hawksbill sea turtle, leatherback sea turtle, and hawksbill sea turtle. Any effects would be discountable (extremely unlikely to occur) or insignificant (not able to be meaningfully measured, detected, or evaluated).

<u>Fish</u>

Gulf sturgeon is not susceptible to disturbance from UA noise, collision risk, or light emissions. The action does not involve any flights over water, ground-disturbing activities, or activities within suitable habitat for this species. As there is no plausible route of effect to this species, the FAA determined the action would have **no effect** on gulf sturgeon.

Insects

The Miami blue butterfly inhabits tropical hardwood hammock, tropical pine rocklands, and beachside scrub (FWC No Date). The species feeds on three plant hosts: balloonvine, gray nickerbean, and blackbead and can produce multiple generations between February and November. Historically, the species occurred in east and west coastal Florida counties as far north as Hillsborough and Volusia counties, but has not been observed on mainland Florida since 1980. Habitat loss and degradation were the largest historical threats to the species. Given that Miami blue butterflies likely do not occur within the Action Area and the action does not involve any ground-disturbance or habitat degradation, the FAA has determined the action would have **no effect** on Miami blue butterfly.

The monarch butterfly is a candidate for federal listing. The primary threat to monarch butterflies is habitat loss, including the loss of breeding, migratory, and overwintering habitat. Pesticide use and climate change are also threats. The action would not physically affect butterfly habitat or host plants. Monarch butterflies could be struck by drones en route to and from delivery; however, strikes are not likely given the species' mobility. Information regarding drone impacts on insects is limited, and there have been no widespread negative impacts identified in the scientific literature. Based on the information available and the limited scale of operations, the action is not expected to adversely affect the monarch butterfly.

Flowering Plants, Ferns and Allies, and Lichens

Flowering plants, ferns and allies, and lichens are not susceptible to disturbance from UA noise, collision risk, or light emissions. The action does not involve any ground-disturbing activities or activities within suitable habitat for these species. As there is no plausible route of effect to these species, the FAA

determined the action would have **no effect** on all flowering plants, ferns and allies, and lichens potentially present within the action area.

Conclusion

Based on the analysis above, the FAA has determined the action *may affect, but is not likely to adversely affect*, the Florida bonneted bat, tricolored bat, Florida panther, SEBM, West Indian Manatee, crested caracara, eastern black rail, Everglade snail kite, Florida scrub-jay, piping plover, red-cockaded woodpecker, red knot, wood stork, American crocodile, Atlantic salt marsh snake, blue-tailed mole skink, eastern indigo snake, green sea turtle, hawksbill sea turtle, leatherback sea turtle, loggerhead sea turtle, and sand skink. The FAA appreciates your review of the proposed project and requests your concurrence with our effects determinations for these three species. If you have any questions, please contact Dr. Shelia Neumann at <u>9-faa-drone-environmental@faa.gov</u>.

Sincerely,

Derek Hufty

Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Attachments: Figure 1. Action Area Figure 2. Hummingbird Unmanned Aircraft Figure 3. Tricolored Bat Mean Occupancy Probabilities Attachment A. USFWS Official Species List Attachment B. Noise Assessment Report

References

- Bevan, E., Whiting, S., Tucker, T., Guinea, M., Raith, A., and Douglas, R. 2018. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS One. Available: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194460&type=printable. Accessed: November 10, 2024.
- Bradley, F., C. Book, and A.E. Bowles. 1990. Effects of Low-Altitude Aircraft Overflights on Domestic Turkey Poults. Report No. HSD-TR-90-034, U.S. Air Force Systems Command, Noise and Sonic Boom Impact Technology Program, June.
- Ednie, G., Bird, D. M., & Elliott, K. H. (2021). Fewer bat passes are detected during small, commercial drone flights. Scientific Reports, 11: 11529. Available: https://www.nature.com/articles/s41598-021-90905-0. Accessed: November 1, 2024.
- Florida Fish and Wildlife Conservation Commission (FWC). 2011. Florida Bonneted Bat Biologial Status Review Report. Accessed: November 5, 2024. Available: https://myfwc.com/media/1962/florida-bonneted-bat-bsr.pdf.
- Florida Fish and Wildlife Conservation Commission (FWC). 2020. Species Status Assessment for the Florida Panther. Available: https://myfwc.com/media/29517/floridapantherssa_version1.pdf. Accessed: November 1, 2024.
- Florida Fish and Wildlife Conservation Commission (FWC). 2023. Audobon's Crested Caracara. Available: https://myfwc.com/wildlifehabitats/profiles/birds/raptors-and-vultures/audubon-s-crestedcaracara/. Accessed: November 4, 2024.
- Florida Fish and Wildlife Conservation Commission (FWC). No Date. Everglade Snail Kite. Available: https://myfwc.com/wildlifehabitats/profiles/birds/raptors-and-vultures/everglade-snail-kite/. Accessed: November 7, 2024.
- Fu, Y., Kinniry, M., and Kloepper, L. N. (2018). The Chirocopter: A UAV for recording sound and video of bats at altitude. Methods in Ecology and Evolution. 9(6): 1531–1535. Available: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.12992. Accessed: November 5, 2024.
- Griffith, G.E. Omernik, J.M, and Pierson, S.M. 1999. Level III and IV Ecoregions of Florida. Corvallis, Oregon, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory. Accessed: November 1, 2024. Available: https://gaftp.epa.gov/epadatacommons/ORD/Ecoregions/fl/fl_eco_lg.pdf.
- Kuhlmann, K., Fontaine, A., Brisson-Curadeau, E., Bird, D.M., and Eliott, K.H. 2022. Miniaturization eliminates detectable impacts of drones on bat activity. Methods in Ecology and Evolution. 13: 842 851. Available: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13807. Accessed: November 1, 2024.
- Marks, G.E. and C.S. Marks. 2008. Status of the Florida bonneted bat (Eumops floridanus). Final report. Submitted by the Florida Bat Conservancy for the US Fish and Wildlife Service under grant agreement number 401815G192. Florida Bat Conservancy. Bay Pines, Florida.
- Mulero-Pázmány, M., S. Jenni-Eiermann, N. Strebel, T. Sattler, J. José Negro, and Z. Tablado. 2017. Unmanned Aircraft Systems as a New Source of Disturbance for Wildlife: A Systematic Review. PloS

One. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178448. Accessed November 10, 2024.

- Piniak WED, Mann DA, Eckert SA, Harms CA (2012) Amphibious hearing in sea turtles. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, New York, NY, p 83–87.
- Rees, A.F., Avens, L., Katia, B. et al. 2018. The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions. Endangered Species Research. 35: 81-100. Available: https://www.int-res.com/articles/esr2018/35/n035p081.pdf. Accessed: November 10, 2024.
- Selles-Rios, B., Flatt, E., Ortiz-Garcia, J., Garcia-Colome, J., Latour, O., and Whitworth, A. 2022. Warm beach, warmer turtles: Using drone-mounted thermal infrared sensors to monitor sea turtle nesting activity. Frontiers in Conservation Science. 3: 954791. Available: https://www.frontiersin.org/journals/conservation-science/articles/10.3389/fcosc.2022.954791/full. Accessed: November 10, 2024.
- U.S. Fish and Wildlife Service (USFWS). 2001. Florida Manatee Recovery Plan. Third Revision. Available: https://ecos.fws.gov/docs/recovery_plan/011030.pdf. Accessed: November 5, 20204
- U.S. Fish and Wildlife Service (USFWS). 2009. Florida Population of the Audubon's Crested Caracara (Polyborus plancus audubonii) 5-Year Review: Summary and Evaluation. Available: https://ecospheredocuments-production-public.s3.amazonaws.com/sams/public_docs/species_nonpublish/1417.pdf. Accessed: November 10, 2024.
- U.S. Fish and Wildlife Service (USFWS). 2016. Draft Revised Recovery Plan for the Northern Great Plains Piping Plover. First Revision. Available: https://ecos.fws.gov/docs/recovery_plan/Vol%20I%20NGP%20Draft%20Revised%20Breeding%20Rec %20Plan%20(JR%20Edits)%20(kk)%2020160224_1.pdf. Accessed: November 10, 2024.
- U.S. Fish and Wildlife Service (USFWS). 2019. South Florida Multi-Species Recovery Plan. Available: https://ecos.fws.gov/docs/recovery_plan/sfl_msrp/SFL_MSRP_Species.pdf. Accessed: November 1, 2024.
- U.S. Fish and Wildlife Service (USFWS). 2023. Tricolored Bat. Available: https://www.fws.gov/species/tricolored-bat-perimyotis-subflavus. Accessed: November 5, 2024.
- USGS (U.S. Geological Survey). 2023. NABat Status and Trends. 2019 Occupancy Map for Tricolored Bat (Perimyotis subflavus). Available: https://sciencebase.usgs.gov/nabat/#/results. Accessed: November 14, 2023.
- Vas, E., A. Lescroel, O. Duriez, G. Boguszewski, and D. Gremillet. 2015. Approaching Birds with Drones:
 First Experiments and Ethical Guidelines. Biology Letters. 11: 20140754. Available:
 https://royalsocietypublishing.org/doi/10.1098/rsbl.2014.0754. Accessed: November 10, 2024.

Figure 1. Action Area

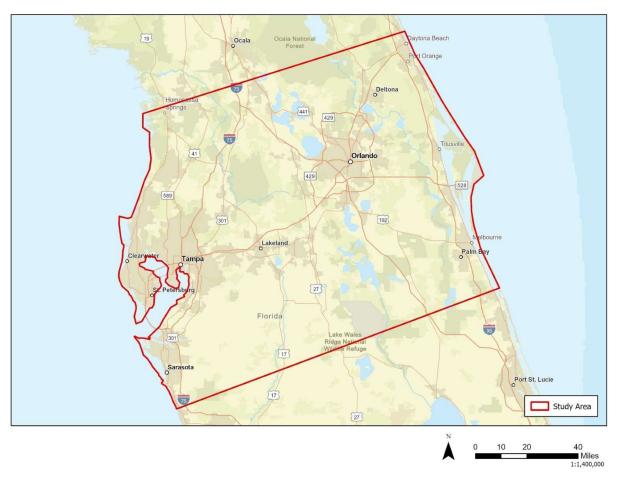


Figure 2. Wing Hummingbird Unmanned Aircraft with Package Attached

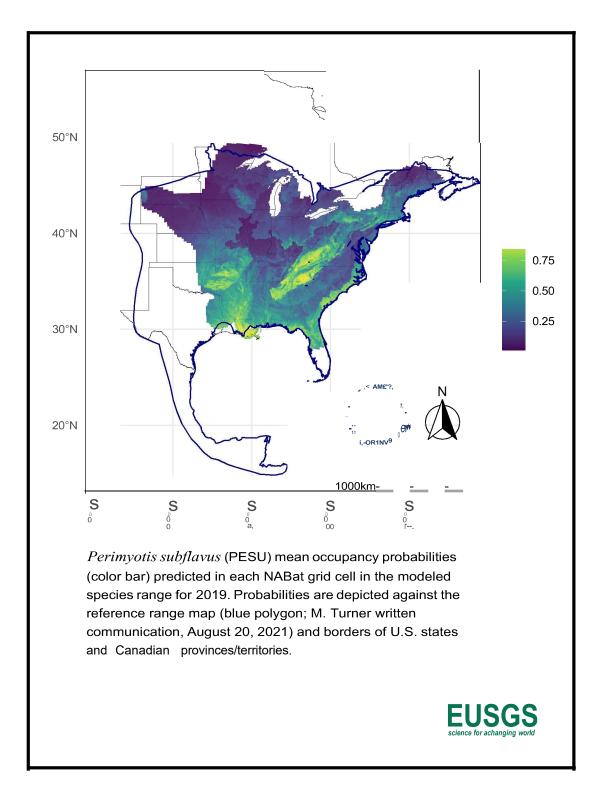


Figure 3. Tricolored Bat Mean Occupancy Probabilities

Attachment A. USFWS Official Species List

United States Department of the Interior

FISH AND WILDLIFE SERVICE Florida Ecological Services Field Office 777 37th St Suite D-101 Vero Beach, FL 32960-3559 Phone: (352) 448-9151 Fax: (772) 562-4288 Email Address: fw4flesregs@fws.gov

In Reply Refer To: Project Code: 2024-0130805 Project Name: Wing Central Florida EA 08/15/2024 14:44:55 UTC

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. **Please include your Project Code, listed at the top of this letter, in all subsequent correspondence regarding this project.** Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

https://www.fws.gov/sites/default/files/documents/endangered-species-consultation-handbook.pdf

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/program/migratory-bird-permit/whatwe-do.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/library/collections/threats-birds.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/partner/council-conservation-migratory-birds.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Bald & Golden Eagles
- Migratory Birds
- Marine Mammals
- Coastal Barriers
- Wetlands

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Florida Ecological Services Field Office

777 37th St Suite D-101 Vero Beach, FL 32960-3559 (352) 448-9151

PROJECT SUMMARY

Project Code:	2024-0130805
Project Name:	Wing Central Florida EA
Project Type:	Drones - Use/Operation of Unmanned Aerial Systems
Project Description:	Wing Aviation, LLC (Wing), a subsidiary of Alphabet Inc., holds a Federal Aviation Administration (FAA) standard air carrier certificate under 14 Code of Federal Regulations (CFR) Part 135 (Part 135), which allows holders to conduct on-demand or scheduled (commuter) operations, and a 49 United States Code (U.S.C.) Section 44807 exemption, which allows Wing to carry the property of another for compensation or hire beyond visual line of sight (BVLOS) using its Hummingbird Unmanned Aircraft System (UAS).
	Wing is proposing to conduct UA retail package delivery operations from up to 150 sites in the Central Florida metro and surrounding areas using Wing's Hummingbird 7000W-B and 8000-A Wing's intent is to offer service throughout the Central Florida metro and surrounding areas from a network of nests, where each would serve a specific area, thereby avoiding an over-concentration of flights surrounding any given nest. Each nest houses up to 24 aircraft and each has a delivery range of approximately 6 miles. Wing proposes a maximum of 150 nest locations within the Central Florida metro and surrounding areas. Site locations of seven initial nests are provided in Table 1. Wing's nests would be located in commercially zoned areas, such as shopping centers, large individual retailers, and shopping malls. Wing projects operating a maximum of 400 delivery flights per operating day from each nest, with operations initially occurring between 7:00 a.m. and 7:00 p.m. and then extending to 7:00 a.m. to 10:00 p.m. In addition, operations would include low altitude (<8ft) in-nest hover checks (referred to as FitBITs) between 6:00 a.m. and 7:00 a.m. in preparation for the normal operational day which would begin no earlier than 7:00 a.m.
	Nests would be distributed throughout the Central Florida metro and

Nests would be distributed throughout the Central Florida metro and surrounding areas following a measured rollout plan to be developed with Wing's partners and continuing best practices from Wing's established community outreach program, and in compliance with state and local statutory and regulatory requirements. Wing's nests would be located in established parking lots of commercially zoned areas whose use is consistent with local zoning and land use requirements, such as shopping centers, large individual retailers, and shopping malls. Remote pickup infrastructure consisting of an autoloader (Figure 2.2.7) would be installed within existing or proposed nests or at offsite locations, utilized during limited remote pickup and delivery operations, and would also be located within commercially zoned areas. Individual autoloader locations (either within a nest or offsite) would typically include up to three autoloaders within or in the vicinity of most nest sites, with a handful more distributed locations having up to 10 autoloaders, depending on market demand, for a total installation of 100-300 autoloaders distributed throughout the operating area.

Project Location:

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@28.1919084,-81.72369024900419,14z</u>

Counties: Florida

ENDANGERED SPECIES ACT SPECIES

There is a total of 61 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME	STATUS
Florida Bonneted Bat <i>Eumops floridanus</i> There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/8630</u>	Endangered
Florida Panther <i>Puma (=Felis) concolor coryi</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/1763</u> General project design guidelines: <u>https://ipac.ecosphere.fws.gov/project/SLZVUCQMSVFQZL6D7PLBMZRWHQ/documents/generated/7123.pdf</u>	Endangered
Puma (=mountain Lion) <i>Puma (=Felis) concolor (all subsp. except coryi)</i> Population: FL No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/6049</u>	Similarity of Appearance (Threatened)
Southeastern Beach Mouse <i>Peromyscus polionotus niveiventris</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/3951</u>	Threatened
Tricolored Bat <i>Perimyotis subflavus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/10515</u>	Proposed Endangered
 West Indian Manatee Trichechus manatus There is final critical habitat for this species. Your location overlaps the critical habitat. This species is also protected by the Marine Mammal Protection Act, and may have additional consultation requirements. Species profile: https://ecos.fws.gov/ecp/species/4469 General project design guidelines: 	Threatened
https://ipac.ecosphere.fws.gov/project/SLZVUCQMSVFQZL6D7PLBMZRWHQ/ documents/generated/7281.pdf	

BIRDS

NAME	STATUS
Crested Caracara (audubon''''s) [fl Dps] <i>Caracara plancus audubonii</i> Population: FL DPS No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/8250</u>	Threatened
Eastern Black Rail <i>Laterallus jamaicensis ssp. jamaicensis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/10477</u>	Threatened
Everglade Snail Kite Rostrhamus sociabilis plumbeus There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/7713</u>	Endangered

NAME	STATUS
Florida Grasshopper Sparrow Ammodramus savannarum floridanus No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/32</u>	Endangered
Florida Scrub-jay <i>Aphelocoma coerulescens</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/6174</u>	Threatened
 Piping Plover Charadrius melodus Population: [Atlantic Coast and Northern Great Plains populations] - Wherever found, except those areas where listed as endangered. There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/6039 	Threatened
Red-cockaded Woodpecker <i>Picoides borealis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/7614</u>	Endangered
Rufa Red Knot <i>Calidris canutus rufa</i> There is proposed critical habitat for this species. Your location overlaps the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/1864</u>	Threatened
Whooping Crane <i>Grus americana</i> Population: U.S.A. (AL, AR, CO, FL, GA, ID, IL, IN, IA, KY, LA, MI, MN, MS, MO, NC, NM, OH, SC, TN, UT, VA, WI, WV, western half of WY) No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/758</u>	Experimental Population, Non- Essential
Wood Stork <i>Mycteria americana</i> Population: AL, FL, GA, MS, NC, SC No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/8477</u> General project design guidelines: <u>https://ipac.ecosphere.fws.gov/project/SLZVUCQMSVFQZL6D7PLBMZRWHQ/</u> <u>documents/generated/6954.pdf</u>	Threatened

REPTILES

NAME	STATUS
American Alligator Alligator mississippiensis No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/776</u>	Similarity of Appearance (Threatened)
American Crocodile <i>Crocodylus acutus</i> Population: U.S.A. (FL) There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/6604</u>	Threatened
Atlantic Salt Marsh Snake Nerodia clarkii taeniata No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/7729</u>	Threatened

NAME	STATUS
Blue-tailed Mole Skink <i>Eumeces egregius lividus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/2203</u>	Threatened
Eastern Indigo Snake Drymarchon couperi No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/646</u>	Threatened
Green Sea Turtle <i>Chelonia mydas</i> Population: North Atlantic DPS There is proposed critical habitat for this species. Your location overlaps the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/6199</u>	Threatened
Hawksbill Sea Turtle <i>Eretmochelys imbricata</i> There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/3656</u>	Endangered
Leatherback Sea Turtle <i>Dermochelys coriacea</i> There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/1493</u>	Endangered
Loggerhead Sea Turtle <i>Caretta caretta</i> Population: Northwest Atlantic Ocean DPS There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/1110</u>	Threatened
Sand Skink <i>Neoseps reynoldsi</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/4094</u>	Threatened
FISHES NAME	STATUS
Gulf Sturgeon Acipenser oxyrinchus (=oxyrhynchus) desotoi There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/651</u>	Threatened
INSECTS NAME	STATUS
Miami Blue Butterfly <i>Cyclargus thomasi bethunebakeri</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/3797</u>	Endangered
Monarch Butterfly <i>Danaus plexippus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>	Candidate

FLOWERING PLANTS

NAME	STATUS
Aboriginal Prickly-apple Harrisia (=Cereus) aboriginum (=gracilis) Population: There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/2833</u>	Endangered
Avon Park Harebells <i>Crotalaria avonensis</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/7093</u>	Endangered
Beautiful Pawpaw Deeringothamnus pulchellus Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/4069</u>	Endangered
Britton's Beargrass <i>Nolina brittoniana</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/4460</u>	Endangered
Brooksville Bellflower <i>Campanula robinsiae</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/5809</u>	Endangered
Carter's Mustard Warea carteri Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/5583</u>	Endangered
Cooley's Water-willow Justicia cooleyi Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/4653</u>	Endangered
Florida Bonamia Bonamia grandiflora Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/2230</u>	Threatened
Florida Ziziphus Ziziphus celata Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/2950</u>	Endangered
Fragrant Prickly-apple <i>Cereus eriophorus var. fragrans</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/982</u>	Endangered
Garrett's Mint <i>Dicerandra christmanii</i> Population:	Endangered

NAME	STATUS
No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/8333</u>	
Highlands Scrub Hypericum Hypericum cumulicola Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/2940</u>	Endangered
Lakela's Mint <i>Dicerandra immaculata</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/6390</u>	Endangered
Lewton's Polygala <i>Polygala lewtonii</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/6688</u>	Endangered
Longspurred Mint Dicerandra cornutissima Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/1660</u>	Endangered
Okeechobee Gourd <i>Cucurbita okeechobeensis ssp. okeechobeensis</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/5999</u>	Endangered
Papery Whitlow-wort Paronychia chartacea Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/1465</u>	Threatened
Pigeon Wings Clitoria fragrans Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/991</u>	Threatened
Pygmy Fringe-tree Chionanthus pygmaeus Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/1084</u>	Endangered
Rugel's Pawpaw <i>Deeringothamnus rugelii</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/5355</u>	Endangered
Sandlace Polygonella myriophylla Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/5745</u>	Endangered

NAME	STATUS
Scrub Blazingstar <i>Liatris ohlingerae</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/864</u>	Endangered
Scrub Buckwheat <i>Eriogonum longifolium var. gnaphalifolium</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/5940</u>	Threatened
Scrub Lupine Lupinus aridorum Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/736</u>	Endangered
Scrub Mint Dicerandra frutescens Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/799</u>	Endangered
Scrub Plum Prunus geniculata Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/2238</u>	Endangered
Short-leaved Rosemary <i>Conradina brevifolia</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/2929</u>	Endangered
Snakeroot <i>Eryngium cuneifolium</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/7487</u>	Endangered
Wide-leaf Warea Warea amplexifolia Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/412</u>	Endangered
Wireweed Polygonella basiramia Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/1718</u>	Endangered
FERNS AND ALLIES	CT ATT IC

NAME Florida Bristle Fern *Trichomanes punctatum ssp. floridanum* Population:

There is **final** critical habitat for this species. Your location overlaps the critical habitat.

STATUS

Endangered

STATUS

NAME

Species profile: <u>https://ecos.fws.gov/ecp/species/8739</u>

Species profile: https://ecos.fws.gov/ecp/species/7516

LICHENS	
NAME	STATUS
Florida Perforate Cladonia <i>Cladonia perforata</i> Population:	Endangered
No critical habitat has been designated for this species.	

CRITICAL HABITATS

There are 8 critical habitats wholly or partially within your project area under this office's jurisdiction.

NAME	STATUS
Aboriginal Prickly-apple <i>Harrisia</i> (= <i>Cereus</i>) <i>aboriginum</i> (= <i>gracilis</i>) <u>https://ecos.fws.gov/ecp/species/2833#crithab</u>	Final
Florida Bonneted Bat <i>Eumops floridanus</i> https://ecos.fws.gov/ecp/species/8630#crithab	Final
Florida Bristle Fern <i>Trichomanes punctatum ssp. floridanum</i> https://ecos.fws.gov/ecp/species/8739#crithab	Final
Green Sea Turtle <i>Chelonia mydas</i> https://ecos.fws.gov/ecp/species/6199#crithab	Proposed
Loggerhead Sea Turtle <i>Caretta caretta</i> https://ecos.fws.gov/ecp/species/1110#crithab	Final
Piping Plover Charadrius melodus https://ecos.fws.gov/ecp/species/6039#crithab	Final
Rufa Red Knot <i>Calidris canutus rufa</i> https://ecos.fws.gov/ecp/species/1864#crithab	Proposed
West Indian Manatee <i>Trichechus manatus</i> <u>https://ecos.fws.gov/ecp/species/4469#crithab</u>	Final

USFWS NATIONAL WILDLIFE REFUGE LANDS AND FISH HATCHERIES

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

The following FWS National Wildlife Refuge Lands and Fish Hatcheries lie fully or partially within your project area:

FACILITY NAME

- ARCHIE CARR NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22ARCHIE+CARR+NATIONAL+WILDLIFE+REFUGE%5C%22"
- CHASSAHOWITZKA NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22CHASSAHOWITZKA+NATIONAL+WILDLIFE+REFUGE%5C%22"
- CRYSTAL RIVER NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22CRYSTAL+RIVER+NATIONAL+WILDLIFE+REFUGE%5C%22"
- EVERGLADES HEADWATERS NATIONAL WILDLIFE REFUGE AND CONSERVATION AREA <u>https://www.fws.gov/our-facilities?</u> <u>\$keywords="%5C%22EVERGLADES+HEADWATERS+NATIONAL+WILDLIFE+REFUGE+AND+CONSERVATION+AREA%5C</u>
- LAKE WALES RIDGE NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22LAKE+WALES+RIDGE+NATIONAL+WILDLIFE+REFUGE%5C%22"
- LAKE WOODRUFF NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22LAKE+WOODRUFF+NATIONAL+WILDLIFE+REFUGE%5C%22"
- MERRITT ISLAND NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22MERRITT+ISLAND+NATIONAL+WILDLIFE+REFUGE%5C%22"

PELICAN ISLAND NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22PELICAN+ISLAND+NATIONAL+WILDLIFE+REFUGE%5C%22"

- PINELLAS NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22PINELLAS+NATIONAL+WILDLIFE+REFUGE%5C%22"
- ST. JOHNS NATIONAL WILDLIFE REFUGE https://www.fws.gov/our-facilities?\$keywords="%5C%22ST.+JOHNS+NATIONAL+WILDLIFE+REFUGE%5C%22"

BALD & GOLDEN EAGLES

Bald and golden eagles are protected under the Bald and Golden Eagle Protection Act¹ and the Migratory Bird Treaty Act².

Any person or organization who plans or conducts activities that may result in impacts to bald or golden eagles, or their habitats³, should follow appropriate regulations and consider implementing appropriate conservation measures, as described in the links below. Specifically, please review the <u>"Supplemental Information on Migratory Birds and Eagles"</u>.

- 1. The <u>Bald and Golden Eagle Protection Act</u> of 1940.
- 2. The <u>Migratory Birds Treaty Act</u> of 1918.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

There are likely bald eagles present in your project area. For additional information on bald eagles, refer to <u>Bald Eagle Nesting and Sensitivity to Human Activity</u>

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, see the PROBABILITY OF PRESENCE SUMMARY below to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
Bald Eagle <i>Haliaeetus leucocephalus</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention	Breeds Sep 1 to Jul 31
because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626	

PROBABILITY OF PRESENCE SUMMARY

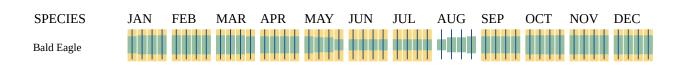
The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read <u>"Supplemental Information on Migratory Birds and Eagles"</u>, specifically the FAQ section titled "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Green bars; the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during that week of the year.

Breeding Season (=)

Yellow bars; liberal estimate of the timeframe inside which the bird breeds across its entire range.


Survey Effort ()

Vertical black lines; the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

■ probability of presence ■ breeding season | survey effort − no data

Non-BCC Vulnerable

Additional information can be found using the following links:

- Eagle Management <u>https://www.fws.gov/program/eagle-management</u>
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/</u> <u>collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/</u> <u>documents/nationwide-standard-conservation-measures.pdf</u>
- Supplemental Information for Migratory Birds and Eagles in IPaC <u>https://www.fws.gov/</u> <u>media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-</u> <u>project-action</u>

MIGRATORY BIRDS

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats³ should follow appropriate regulations and consider implementing appropriate conservation measures, as described in the links below. Specifically, please review the <u>"Supplemental Information on Migratory Birds and Eagles"</u>.

- 1. The <u>Migratory Birds Treaty Act</u> of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, see the PROBABILITY OF PRESENCE SUMMARY below to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
American Kestrel Falco sparverius paulus	Breeds Apr 1 to
This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions	Aug 31
(BCRs) in the continental USA	0
https://ecos.fws.gov/ecp/species/9587	

DDEEDING

NAME	BREEDING SEASON
American Oystercatcher <i>Haematopus palliatus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8935</u>	Breeds Apr 15 to Aug 31
Audubon's Shearwater <i>Puffinus Iherminieri</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9635</u>	Breeds Mar 1 to Aug 5
Bachman's Sparrow <i>Peucaea aestivalis</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/6177</u>	Breeds May 1 to Sep 30
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/1626</u>	Breeds Sep 1 to Jul 31
Band-rumped Storm-petrel <i>Hydrobates castro</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/1226</u>	Breeds elsewhere
Black Scoter <i>Melanitta nigra</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10413</u>	Breeds elsewhere
Black Skimmer Rynchops niger This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/5234</u>	Breeds May 20 to Sep 15
Black-capped Petrel <i>Pterodroma hasitata</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/4748</u>	Breeds elsewhere
Black-legged Kittiwake <i>Rissa tridactyla</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10459</u>	Breeds elsewhere

NAME	BREEDING SEASON
Brown Pelican <i>Pelecanus occidentalis</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/6034	Breeds Jan 15 to Sep 30
Chimney Swift Chaetura pelagica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/9406	Breeds Mar 15 to Aug 25
Common Eider Somateria mollissima This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10457</u>	Breeds Jun 1 to Sep 30
Common Loon <i>gavia immer</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/4464</u>	Breeds Apr 15 to Oct 31
Common Murre Uria aalge This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10453</u>	Breeds Apr 15 to Aug 15
Cory's Shearwater <i>Calonectris diomedea</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/10452</u>	Breeds elsewhere
Double-crested Cormorant <i>phalacrocorax auritus</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/3478</u>	Breeds Apr 20 to Aug 31
Dovekie Alle alle This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/6041</u>	Breeds elsewhere
Florida Burrowing Owl Athene cunicularia floridana This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/11977</u>	Breeds Mar 15 to Aug 31

NAME	BREEDING SEASON
Great Blue Heron Ardea herodias occidentalis This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA https://ecos.fws.gov/ecp/species/10590	Breeds Jan 1 to Dec 31
Great Shearwater <i>Puffinus gravis</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/9634</u>	Breeds elsewhere
Gull-billed Tern <i>Gelochelidon nilotica</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9501</u>	Breeds May 1 to Jul 31
Henslow's Sparrow <i>Centronyx henslowii</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/3941</u>	Breeds elsewhere
King Rail <i>Rallus elegans</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8936</u>	Breeds May 1 to Sep 5
Least Tern Sternula antillarum antillarum This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/11919</u>	Breeds Apr 25 to Sep 5
Lesser Yellowlegs <i>Tringa flavipes</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9679</u>	Breeds elsewhere
Long-tailed Duck Clangula hyemalis This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/7238</u>	Breeds elsewhere
Magnificent Frigatebird <i>Fregata magnificens</i> This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9588</u>	Breeds Oct 1 to Apr 30
Mangrove Cuckoo Coccyzus minor This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9581</u>	Breeds Apr 20 to Aug 20

NAME	BREEDING SEASON
Manx Shearwater <i>Puffinus puffinus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/10465</u>	Breeds Apr 15 to Oct 31
Painted Bunting Passerina ciris This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9511</u>	Breeds Apr 25 to Aug 15
Pectoral Sandpiper <i>Calidris melanotos</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9561</u>	Breeds elsewhere
Pomarine Jaeger Stercorarius pomarinus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10458</u>	Breeds elsewhere
Prairie Warbler Setophaga discolor This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9513</u>	Breeds May 1 to Jul 31
Razorbill <i>Alca torda</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10461</u>	Breeds Jun 15 to Sep 10
Red Phalarope <i>Phalaropus fulicarius</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10469</u>	Breeds elsewhere
Red-breasted Merganser <i>Mergus serrator</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10693</u>	Breeds elsewhere
Red-headed Woodpecker <i>Melanerpes erythrocephalus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9398</u>	Breeds May 10 to Sep 10

NAME	BREEDING SEASON
Red-necked Phalarope Phalaropus lobatus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/10467	Breeds elsewhere
Red-throated Loon <i>Gavia stellata</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/9589</u>	Breeds elsewhere
Reddish Egret <i>Egretta rufescens</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/7617</u>	Breeds Mar 1 to Sep 15
Ring-billed Gull <i>Larus delawarensis</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10468</u>	Breeds elsewhere
Roseate Tern Sterna dougallii This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10661</u>	Breeds May 10 to Aug 31
Royal Tern <i>Thalasseus maximus</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10471</u>	Breeds Apr 15 to Aug 31
Ruddy Turnstone Arenaria interpres morinella This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/10633</u>	Breeds elsewhere
Saltmarsh Sparrow Ammospiza caudacuta This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9719</u>	Breeds May 15 to Sep 5
Semipalmated Sandpiper <i>Calidris pusilla</i> This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9603</u>	Breeds elsewhere

NAME	BREEDING SEASON
Short-billed Dowitcher <i>Limnodromus griseus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9480</u>	Breeds elsewhere
Sooty Shearwater Ardenna grisea This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/10417	Breeds elsewhere
Sooty Tern Onychoprion fuscatus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/10695	Breeds Mar 10 to Jul 31
Surf Scoter <i>Melanitta perspicillata</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/10463	Breeds elsewhere
Swallow-tailed Kite <i>Elanoides forficatus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8938</u>	Breeds Mar 10 to Jun 30
Thick-billed Murre Uria lomvia This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/10700	Breeds Apr 15 to Aug 15
Whimbrel Numenius phaeopus hudsonicus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA https://ecos.fws.gov/ecp/species/11991	Breeds elsewhere
White-crowned Pigeon Patagioenas leucocephala This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/4047	Breeds May 1 to Sep 30
White-winged Scoter <i>Melanitta fusca</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10462</u>	Breeds elsewhere

NAME	BREEDING SEASON
Willet <i>Tringa semipalmata</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/10669</u>	Breeds Apr 20 to Aug 5
Wilson's Plover <i>Charadrius wilsonia</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/9722	Breeds Apr 1 to Aug 20
Wilson's Storm-petrel Oceanites oceanicus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/10416</u>	Breeds elsewhere
Worthington's Marsh Wren <i>Cistothorus palustris griseus</i> This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9560</u>	Breeds Apr 10 to Aug 31
Yellow Rail <i>Coturnicops noveboracensis</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9476</u>	Breeds elsewhere

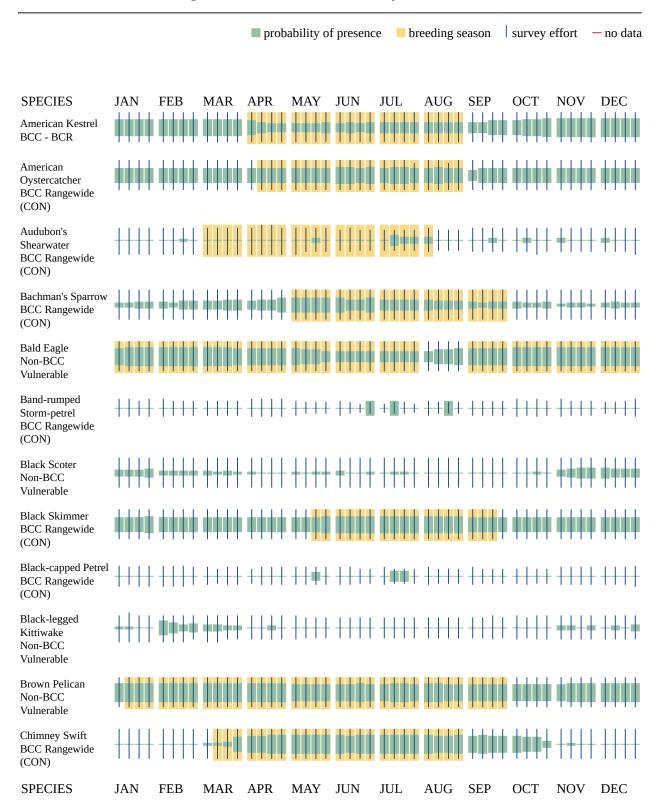
PROBABILITY OF PRESENCE SUMMARY

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read <u>"Supplemental Information on Migratory Birds and Eagles"</u>, specifically the FAQ section titled "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Green bars; the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during that week of the year.

Breeding Season (=)


Yellow bars; liberal estimate of the timeframe inside which the bird breeds across its entire range.

Survey Effort ()

Vertical black lines; the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

Common Eider Non-BCC Vulnerable	┿╪┿╪╺┿╪┿┽╶┼┽┽┿╶┼┿┼╪╶┼┿┿╴ <mark>╪╂╪╏╏╪╪╪</mark> ╏╏╪╪╪ <mark>╏╏╎╴</mark> ╎╎╎╎
Common Loon Non-BCC Vulnerable	****
Common Murre Non-BCC Vulnerable	* ++++ +++++ + +++ +++++ +++++ +++++ +++++ +++++ ++++++++
Cory's Shearwater BCC Rangewide (CON)	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
Double-crested Cormorant Non-BCC Vulnerable	**** **** **** ** <mark>**</mark> **** **** **** **** ****
Dovekie Non-BCC Vulnerable	+++ * +++++ +++++ +++++ +++++ ++++++++++
Florida Burrowing Owl BCC - BCR	++++ +++++++++++++++++++++++++++++++++
Great Blue Heron BCC - BCR	
Great Shearwater Non-BCC Vulnerable	\#\\ \\+\ \\+\ \\+\ \\+\+\ \+\+\ \+\+\
Gull-billed Tern BCC Rangewide (CON)	<u>+++++++++++++++++++++++++++++++++++++</u>
Henslow's Sparrow BCC Rangewide (CON)	<u>+</u> + ** + * + ** + * + * ++++++++++++
King Rail BCC Rangewide (CON)	++++ ++++ ++++ }}}
SPECIES Least Tern BCC Rangewide (CON)	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Lesser Yellowlegs BCC Rangewide (CON)	+***
Long-tailed Duck Non-BCC Vulnerable	**** +*+* ++++ ++++ ++++++++++++++++++

Magnificent Frigatebird BCC - BCR Mangrove Cuckoo BCC - BCR Manx Shearwater ┼┼┼┼ ┼┼┼┼ ┼┼┼┼ ┼<mark>┼┼</mark>┼ ++++++++++++∎∔+∔ +++++ ++ + +++BCC Rangewide (CON) Painted Bunting BCC - BCR Pectoral Sandpiper BCC Rangewide (CON) Pomarine Jaeger Non-BCC Vulnerable Prairie Warbler BCC Rangewide (CON) Razorbill Non-BCC Vulnerable Red Phalarope ┼┼┼┼╶┼┼┼┼╶┼┼┼┼╶┼┼┼┼╶┼┼┼╴┙╸╸╸╸╴╴╴╴╴╴╴ Non-BCC Vulnerable JUL SEP SPECIES JAN FEB MAR APR JUN AUG OCT NOV DEC MAY Red-breasted Merganser $\top | | |$ Non-BCC Vulnerable Red-headed **e**tatata Woodpecker BCC Rangewide (CON) Red-necked Phalarope Non-BCC Vulnerable Red-throated Loon Non-BCC Vulnerable Reddish Egret BCC Rangewide (CON) Ring-billed Gull Non-BCC Vulnerable

Roseate Tern Non-BCC Vulnerable	++++++++++++++++++++++++++++++++++++	
Royal Tern Non-BCC Vulnerable	**** **** **** * *** * *** **** **** **** **** ****	
Ruddy Turnstone BCC - BCR		
Saltmarsh Sparrow BCC Rangewide (CON)	<u></u>	
Semipalmated Sandpiper BCC - BCR	<u>+++++++++++++++++++++++++++++++++++++</u>	
Short-billed Dowitcher BCC Rangewide (CON)	++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++	
SPECIES	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	
Sooty Shearwater Non-BCC Vulnerable	++++++++++++++++++++++++++++++++++++++	
Sooty Tern Non-BCC Vulnerable	<u>+++++++++++++++++++++++++++++++++++++</u>	
Surf Scoter Non-BCC Vulnerable	* *** * + + + + + + + + + + + + + + + + + + +	
Swallow-tailed Kite BCC Rangewide (CON)	· · · · · · · · · · · · · · · · · · ·	
Thick-billed Murre Non-BCC Vulnerable	<u>+++++++++++++++++++++++++++++++++++++</u>	
Whimbrel BCC - BCR	+++++++++++++++++++++++++++++++++++++++	
White-crowned Pigeon BCC Rangewide (CON)	┿┼┼┼ ┿┼┼┼ ┼┼┼┽ <mark>┿╂╂╂</mark> <mark>╂╂╂╂</mark> ╂╂╂╂ <mark>╂╂╂╊</mark> ╂╂╂╂ ┿╋┿┼ ┼┼┼┼ ┼┼╇┿	
White-winged Scoter Non-BCC Vulnerable	<u>+++++++++++++++++++++++++++++++++++++</u>	
Willet BCC Rangewide (CON)	**** **** **** ** ** **** **** **** ****	

Wilson's Plover BCC Rangewide (CON)	+++++ +++++ 1888 8888 8888 8888 888 888 888 888
Wilson's Storm- petrel Non-BCC Vulnerable	<u>+++++++++++++++++++++++++++++++++++++</u>
Worthington's Marsh Wren BCC - BCR	<u>+++++++++++++++++++++++++++++++++++++</u>
SPECIES	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Yellow Rail BCC Rangewide (CON)	I +++++++++++++++++++++++++++++++++++

Additional information can be found using the following links:

- Eagle Management <u>https://www.fws.gov/program/eagle-management</u>
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/</u> <u>collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/</u> <u>documents/nationwide-standard-conservation-measures.pdf</u>
- Supplemental Information for Migratory Birds and Eagles in IPaC <u>https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action</u>

COASTAL BARRIERS

Projects within the John H. Chafee Coastal Barrier Resources System (CBRS) may be subject to the restrictions on Federal expenditures and financial assistance and the consultation requirements of the Coastal Barrier Resources Act (CBRA) (16 U.S.C. 3501 et seq.). For more information, please contact the local Ecological Services Field Office or visit the CBRA Consultations website. The CBRA website provides tools such as a flow chart to help determine whether consultation is required and a template to facilitate the consultation process.

SYSTEM UNIT (SU)

Most new Federal expenditures and financial assistance, including Federal flood insurance, are prohibited within System Units. **Federally-funded projects within System Units require consultation with the Service.** Consultation is not required for projects using private, state, or local funds.

OTHERWISE PROTECTED AREA (OPA)

OPAs are denoted with a "P" at the end of the unit number. The only prohibition within OPAs is on Federal flood insurance. **CBRA consultation is not required for projects within OPAs.** However, agencies providing disaster assistance that is contingent upon a requirement to purchase flood insurance after the fact are advised to disclose the OPA designation and information on the restrictions on Federal flood insurance to the recipient prior to the commitments of funds.

UNIT	NAME	TYPE	SYSTEM UNIT ESTABLISHMENT DATE	FLOOD INSURANCE PROHIBITION DATE
FL-78	Rattlesnake Key	SU	11/16/1990	11/16/1990
FL-78	Rattlesnake Key	SU	12/21/2018	11/16/1991
FL-78	Rattlesnake Key	SU	12/21/2018	12/21/2018
FL-82	Bishop Harbor	SU	11/16/1990	11/16/1990
FL-82	Bishop Harbor	SU	12/21/2018	12/21/2018
FL-83	Cockroach Bay	SU	11/16/1990	11/16/1990
FL-83	Cockroach Bay	SU	12/21/2018	12/21/2018
P08	Ponce Inlet	SU	10/18/1982	10/1/1983
P08	Ponce Inlet	SU	11/16/1990	11/16/1990
P08	Ponce Inlet	SU	12/21/2018	12/21/2018
P09A	Coconut Point	SU	10/18/1982	10/1/1983
P09A	Coconut Point	SU	11/16/1990	11/16/1990
P09A	Coconut Point	SU	12/21/2018	12/21/2018
P10	Vero Beach	SU	11/16/1990	11/16/1990
P22	Casey Key	SU	10/18/1982	10/1/1983
P22	Casey Key	SU	11/16/1990	11/16/1990
P22	Casey Key	SU	12/21/2018	12/21/2018
P23	Longboat Key	SU	10/18/1982	10/1/1983
P23	Longboat Key	SU	11/16/1990	11/16/1990
P24	The Reefs	SU	10/18/1982	10/1/1983
P24	The Reefs	SU	11/16/1990	11/16/1990
P24A	Mandalay Point	SU	10/18/1982	10/1/1983
P24A	Mandalay Point	SU	11/16/1990	11/16/1990

UNIT	NAME	TYPE	SYSTEM UNIT ESTABLISHMENT DATE	FLOOD INSURANCE PROHIBITION DATE
FL-07P	Canaveral	OPA	N/A	11/16/1991
FL-13P	Spessard Holland Park	OPA	N/A	11/16/1991
FL-13P	Spessard Holland Park	OPA	N/A	12/21/2018
FL-72P	Lido Key	OPA	N/A	11/16/1991
FL-72P	Lido Key	OPA	N/A	12/21/2018
FL-73P	De Soto	OPA	N/A	11/16/1991
FL-73P	De Soto	OPA	N/A	12/21/2018
FL-85P	Sand Key	OPA	N/A	11/16/1991
FL-85P	Sand Key	OPA	N/A	12/21/2018
FL-86P	Caladesi/Honeymoon Islands	OPA	N/A	11/16/1991
FL-87P	Anclote Key	OPA	N/A	11/16/1991
P08P	Ponce Inlet	OPA	N/A	10/1/1983
P08P	Ponce Inlet	OPA	N/A	12/21/2018
P09AP	Coconut Point	OPA	N/A	11/16/1990
P09AP	Coconut Point	OPA	N/A	12/21/2018
P10P	Vero Beach	OPA	N/A	10/1/1983
P10P	Vero Beach	OPA	N/A	11/16/1991
P23P	Longboat Key	OPA	N/A	11/16/1991
P24P	The Reefs	OPA	N/A	11/16/1991

MARINE MAMMALS

Marine mammals are protected under the <u>Marine Mammal Protection Act</u>. Some are also protected under the Endangered Species Act¹ and the Convention on International Trade in Endangered Species of Wild Fauna and Flora².

The responsibilities for the protection, conservation, and management of marine mammals are shared by the U.S. Fish and Wildlife Service [responsible for otters, walruses, polar bears, manatees, and dugongs] and NOAA Fisheries³ [responsible for seals, sea lions, whales, dolphins, and porpoises]. Marine mammals under the responsibility of NOAA Fisheries are **not** shown on this list; for additional information on those species please visit the <u>Marine Mammals</u> page of the NOAA Fisheries website.

The Marine Mammal Protection Act prohibits the take of marine mammals and further coordination may be necessary for project evaluation. Please contact the U.S. Fish and Wildlife Service Field Office shown.

- 1. The Endangered Species Act (ESA) of 1973.
- 2. The <u>Convention on International Trade in Endangered Species of Wild Fauna and Flora</u> (CITES) is a treaty to ensure that international trade in plants and animals does not threaten their survival in the wild.
- 3. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

NAME

West Indian Manatee *Trichechus manatus* Species profile: <u>https://ecos.fws.gov/ecp/species/4469</u>

WETLANDS

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

Due to your project's size, the list below may be incomplete, or the acreages reported may be inaccurate. For a full list, please contact the local U.S. Fish and Wildlife office or visit <u>https://www.fws.gov/wetlands/data/mapper.HTML</u>

ESTUARINE AND MARINE DEEPWATER

- E1ABL
- E1AB3L
- E1UBL
- E1ABLx

ESTUARINE AND MARINE WETLAND

• E2ABM

IPAC USER CONTACT INFORMATION

- Agency: Federal Aviation Administration
- Name: Robert Baldwin
- Address: 1902 Reston Metro Plaza
- City: Reston
- State: VA
- Zip: 20190
- Email robert.baldwin@icf.com
- Phone: 3123167050

TECHNICAL NOISE STUDY REPORT: HUMMINGBIRD 7000W-B AND 8000-A UNMANNED AIRCRAFT PACKAGE DELIVERY OPERATIONS

REPORT NO. 112024

PREPARED FOR:

Federal Aviation Administration Unmanned Aircraft Systems Integration Office (AUS) 950 L'Enfant Plaza SW, Suite 500 Washington, D.C. 20024

PREPARED BY:

ICF

November 2024

Contents

Page

				0
	List of T	Fable	es	iii
	List of F	igur	res	iv
	Acrony	ms a	and Abbreviations	iv
Cha	apter 1 I	ntro	oduction	1-1
	1.1	Pur	rpose	1-1
	1.2	Fur	ndamental Concepts	1-2
	1.3	Reg	gulatory Context	1-2
Cha	apter 2 I	Vetl	hods	2-1
	2.1	Soι	und Level Measurements	2-1
	2.1	.1	Wing Model 7000W-B Sound Level Measurements	2-1
	2.1	.2	Wing Model 8000-A Sound Level Measurements	2-2
	2.2	Ana	alysis Procedure Methodology	2-4
Cha	apter 3 1	「esti	ing Procedure for Wing Operations	3-1
	3.1	Ma	nual Load and Takeoff	3-1
	3.2	Del	livery	3-1
	3.2	.1	Landing	3-1
	3.2	.2	Offsite Package Autoload	3-2
	3.2	.3	Nearfield Launch and Autoload	3-2
	3.2	.4	Fitbit Operation	3-2
	3.2	.5	Geobit Operation	3-3
Cha	apter 4 S	Soun	nd Levels of UA Operations	4-1
	4.1	Soι	und Levels for Wing Model 7000W-B	4-1
	4.1	.1	Manual Loading, Delivery and Landing	4-1
	4.1	.2	Sound Levels for Wing Model 7000W-B Autoload Actions	4-2
	4.1	.3	Sound Levels for Wing Model 7000W-B FitBit and GeoBit Actions	4-3
	4.1	.4	En Route Sound Levels for Wing Model 7000W-B	4-4
	4.2	Soι	und Levels for Wing Model 8000-A	4-5
	4.2	.1	Manual Loading, Delivery and Landing	4-5
	4.2	.2	Sound Levels for Wing Model 8000-A Autoload Actions	4-6
	4.2	.3	Sound Levels for Wing Model 8000-A FitBit and GeoBit Actions	4-8
	4.2	.4	En Route Sound Levels for Wing Model 8000-A	4-9

Chapter 5 Noise Exposure from UA Operations		
5.1	Noise Exposure from a Nest	5-1
5.2	Noise Exposure from Offsite Package Autoloading	5-4
5.3	En Route Noise Exposure	5-5
5.4	Noise Exposure from a Delivery Site	5-5
5.5	Cumulative Noise Exposure	5-7
Chapter 6 I	References	6-1

List of Tables

Page

Table 1. Summary of Sound Level Testing, Model 7000W-B	2-2
Table 2. Summary of Sound Level Testing, Model 8000-A	2-3
Table 3. Model 7000W-B: Estimate of SEL for Manual Launch, Delivery and Landing at Nest	4-1
Table 4. Model 7000W-B: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload Actions	4-2
Table 5. Model 7000W-B: Estimate of SEL for FitBit and GeoBit Actions	4-3
Table 6. Model 8000-A: Estimate of SEL for Manual Launch, Delivery and Landing at Nest	4-5
Table 7. Model 8000-A: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload Actions	4-6
Table 8. Model 8000-A: Estimate of SEL for FitBit and GeoBit Actions	4-8
Table 9. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of Operation, Manual Launch Option	5-1
Table 10. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of Operation, Nearfield Launch Option	5-2
Table 11. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of Operation, Manual Launch Option	5-3
Table 12. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of Operation, Nearfield Launch Option	5-3
Table 13. DNL Noise Exposure Distances at an Offsite Package Autoloading Location forModel 7000W-B, for Different Scales of Operation	5-4
Table 14. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of Operation, Remote Launch Option	5-5
Table 15. DNL Noise Exposure Distances at a Delivery Point for Model 7000W-B for Different Scales of Operation	5-6
Table 16. DNL Noise Exposure Distances at a Delivery Point for Model 8000-A for Different Scales of Operation	5-6
Table 17. Cumulative Increase in DNL due to a Proposed Action	5-7

List of Figures

Page

Figure 1.	Hummingbird Wing Model 7000W-B	2-1
Figure 2.	Wing Hummingbird 8000-A UA	2-3

Acronyms and Abbreviations

AGL	above ground level
CONOPS	Concept of operations
dB	decibel
dBA	A-weighted decibel
DNL	day/night level
FAA	Federal Aviation Administration
Lmax	maximum sound level
SEL	sound exposure level
UA	unmanned aircraft

1.1 Purpose

The purpose of this report is to provide calculations of noise exposure for package delivery operations by Hummingbird unmanned aircraft (UA) developed by Wing Aviation LLC, a subsidiary of Alphabet, Inc. Noise exposure estimates are provided for two Hummingbird models: the Model 7000W-B and the Model 8000-A based on sound level testing data collected by AvEnviro Acoustics (2024a, 2024b).

The analysis in this report provides a methodology of estimating noise levels from UA operation that is limited to these specific UA models. Because the methods used in this report are based on collected measurements, they should not be applied to other UA models. The analysis does not include a geographic component, nor does it account for the presence of structures in urban areas.

Passby exposure levels at different distances from a nest or delivery point are based on as-tested conditions, which were intended to simulate all operation types for each UA model. Testing simulations consisted of the following operations:

- Manual package loading at a nest and takeoff toward delivery point
- Package offloading at a delivery point and departure back to nest
- Landing at a nest
- Remote launch, autoload of package at a nest, and takeoff
- Nearfield launch, autoload of package at a nest, and takeoff
- Hover in place
- En route (with and without a package)
- Preflight warmup (a.k.a. "Fitbit" operation)
- Nest homebase survey (a.k.a. "Geobit" operation)

Total DNL noise exposures are calculated based on various scales of package delivery and associated activities using passby exposure levels for the types of operation applicable to nests, delivery points and en route locations.

It is important to note that the results presented in this report shall supersede the results presented in the previous report, *Noise Assessment for Wing Aviation Proposed Package Delivery Operations with Hummingbird 7000W-B Unmanned Aircraft*, prepared March 17, 2023 by Harris Miller Miller and Hanson Inc (2023). The results in the previous Model 7000W-B report relied on certification measurements for en route and hover of a surrogate UA model. This is because sound level measurements had not yet been conducted for simulation of package delivery operations using the Model 7000W-B at the time the previous report was written. In contrast, the sound level measurements presented in this report are based closely on the concept of operations (CONOPS) for all modes of UA package delivery and associated operations.

1.2 Fundamental Concepts

Various noise descriptors or metrics have been developed to describe time-varying noise levels. The following metrics are used in this evaluation.

- Sound Exposure Level (SEL): SEL represents the total sound energy occurring over a specified period compressed into a one-second time interval. The SEL metric has broad utility in noise prediction and is a primary measurement collected for sound level testing of the two UA models.
- Day Night Average Sound Level (DNL): DNL is the energy average of A-weighted sound levels occurring over a 24-hour period, with a 10 decibel (dB) penalty applied to A-weighted sound levels occurring during nighttime hours between 10 p.m. and 7 a.m. The DNL is used in this analysis to describe noise exposure for daily operations from a nest, en route, or delivery point.
- Maximum Sound Level (Lmax): Lmax is the highest instantaneous sound level measured during a specified period.
- Community Noise Equivalent Level (CNEL): Similar to DNL, CNEL is the energy average of the Aweighted sound levels occurring over a 24-hour period, with a 10 dB penalty applied to Aweighted sound levels occurring during the nighttime hours between 10 p.m. and 7 a.m. and a 5 dB penalty applied to the A-weighted sound levels occurring during evening hours between 7 p.m. and 10 p.m.

1.3 Regulatory Context

The noise exposure estimates in this document are intended to be used for environmental assessments of operations involving the Models 7000W-B and 8000-A, for compliance with the National Environmental Policy Act and operational requirements for a commercial carrier under 14 Code of Federal Regulations Part 135. The analysis method used in this report does not apply standard models such as the Aviation Environmental Design Tool, but instead applies an estimation method based on collected noise measurements. As such the application of this method is only applicable to the Model 7000W-B and 8000-A UAs.

2.1 Sound Level Measurements

The analysis in this report used sound level testing data from two reports: *Noise Measurement Results: Wing Model 7000W-B Revision D*, dated November 4, 2024, prepared by AvEnviro Acoustics (2024a), and *Noise Measurement Results: Wing Model 8000-A Revision C*, dated October 28, 2024 also prepared by AvEnviro Acoustics (2024b).

2.1.1 Wing Model 7000W-B Sound Level Measurements

The Hummingbird 7000W-B is a hybrid UA featuring a multi-rotor design with sixteen round diameter propellers. This UA has fixed wing elements, including four motors for forward flight, while also using rotors to provide vertical lift and the capability to hover during packing loading and delivery operations. Packages are loaded or unloaded to the UA during hover by a retractable cord.

The 7000W-B UA weighs 14 pounds when combined with its maximum payload weight of 2.3 pounds. It has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of approximately 3 feet. Model 7000W-B is shown in Figure 1.

Figure 1. Hummingbird Wing Model 7000W-B.

Sound level testing was conducted at the Wing flight test center in Hollister, California in March 2024. The testing protocol followed FAA direction given in the document, *Measuring Drone Noise for Environmental Review Process*, dated October 2023 (FAA 2023). A brief summary of test results is shown in Table 1. The test results that include forward flight assume a nominal cruise speed of 50.5 knots (AvEnviro Acoustics 2024a).

Test Series	Altitude	Microphone Position	Average SEL (dBA)	Average Lmax (dBA)
En Route with Package	100 feet AGL	Under flight path	59.2	54.3
En Route without Package	100 feet AGL	Under flight path	55.5	50.3
Nest: Manual Loading and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	80.6	66.8
Delivery Point: Arrival, Delivery, Departure	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	83.4	71.9
Nest: Arrival, Landing	Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	78.1	68.2
Offsite Package Autoload	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	81.7	68.9
Nest: Nearfield launch, Autoload and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	82.1	68.6
Nest: Preflight warmup (a.k.a. "Fitbit")	7 feet AGL	50 feet away from nest	80.3	64.0
Nest: Homebase survey (a.k.a. "Geobit")	66 feet AGL	50 feet away from nest	81.0	66.2

Table 1. Summary of Sound Level Testing, Model 7000W-B

Source: AvEnviro Acoustics 2024a.

AGL = above ground level

dBA = A-weighted decibel

2.1.2 Wing Model 8000-A Sound Level Measurements

The Hummingbird 8000-A is a hybrid UA featuring a multi-rotor design with twelve round diameter propellers. This UA has fixed wing elements, including four motors for forward flight, while also using rotors to provide vertical lift and the capability to hover during packing loading and delivery operations. Packages are loaded or unloaded to the UA during hover by a retractable cord.

The 8000-A UA weighs 24.3 pounds when combined with its maximum payload weight of 6.6 pounds. It has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet. Model 8000-A is shown in Figure 2.

Figure 2. Wing Hummingbird 8000-A UA

Sound level testing was conducted at the Wing flight test center in Hollister, California in April 2024. The testing protocol followed FAA direction given in the document, *Measuring Drone Noise for Environmental Review Process*, dated October 2023 (FAA 2023). A brief summary of key test results is shown in Table 2. The test results that include forward flight assume a nominal cruise speed of 50.5 knots (AvEnviro Acoustics 2024b).

Test Series	Altitude	Microphone Position	Average SEL (dBA)	Average Lmax (dBA)
En Route with Package	100 feet AGL	Under flight path	64.7	58.7
En Route without Package ¹	100 feet AGL	Under flight path	62.7	55.5
Nest: Manual Loading and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	79.0	65.8
Delivery Point: Arrival, Delivery, Departure	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	83.6	71.5
Nest: Arrival, Landing	Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	77.7	66.3
Offsite Package Autoload	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	80.9	66.8
Nest: Nearfield launch, Autoload and Takeoff	Hover: 13 feet AGL, Flight: 165 feet AGL	Under flight path, 50 feet away from takeoff point	81.6	66.8
Nest: Preflight warmup (a.k.a. "Fitbit")	7 feet AGL	50 feet away from nest	77.1	63.2

Table 2. Summary of Sound Level Testing, Model 8000-A

Test Series	Altitude	Microphone Position	Average SEL (dBA)	Average Lmax (dBA)
Nest: Homebase survey (a.k.a. "Geobit")	66 feet AGL	50 feet away from nest	79.4	66.7

Source: AvEnviro Acoustics 2024b.

¹ Based on guidance from the test report, data for en route without a package is not used. This item uses the same sound level as en route with a package.

AGL = above ground level; dBA = A-weighted decibel

2.2 Analysis Procedure Methodology

To calculate SEL for receptors located near a nest or delivery point, a combination of actions are evaluated to define different types of operations, as a UA transitions between different operating modes of takeoff, hover, ascend, descend, and en route. The types of operations evaluated are the following:

- Manual package loading at nest
- Package delivery at a delivery point
- Landing at nest
- Package autoload at an offsite location
- Nearfield launch and package autoload at nest
- Preflight warmup (a.k.a. "Fitbit")
- Homebase survey (a.k.a. "Geobit")

The SEL calculation for each of these operation types involves the use of sound level data as measured by an array of microphones during simulation testing of each operation, as described in the noise measurement test reports (AvEnviro 2024a, AvEnviro 2024b). Microphones placed on a linear path relative to the UA launch point collected sound level data at distances of 25 feet, 50 feet, 100 feet , 200 feet, 400 feet and 800 feet. The incident SEL sound levels were used to determine attenuation rates between microphone positions, which were influenced by different degrees of en route and hover noise depending on the type of operation tested. However, as described in the noise measurement test reports, ambient noise from other sources heavily influenced data collected at the 400-foot and 800-foot positions is not used in this analysis. At 800 feet, the SEL is equivalent to en route noise as measured during testing. As such, for the distances greater than 200 feet from the UA launch point, attenuation would assume a falloff rate consistent with an en route SEL level at 800 feet. At distances greater than 800 feet, the en route level is used.

DNL values are calculated for four types of locations: 1) a nest, 2) a delivery point, 3) an offsite autoloader, and 4) directly under the en route path. The DNL values at a nest are calculated by summing the sound energy for a launch and package loading operation with a return to land at the nest to describe sound levels for a single delivery cycle. UA noise from FitBit and GeoBit operations are also accounted for in DNL values from a nest. The DNL value for a single delivery cycle at each of the four locations is scaled for multiple UA operations using a logarithmic multiplier (i.e., log of the number of events multiplied by 10). adjusted by a factor of 49.4 to convert from SEL to DNL.

Sound level testing included a simulation of different UA operations to account for different activities that would take place at nest and delivery points. Each operation type includes a specific sequence of actions, described in the following subsections.

3.1 Manual Load and Takeoff

Sequence of manual package loading and takeoff operation from the launch point (e.g., nest):

- 1. Ascend from launch pad until reaching 33 feet above ground level AGL, then descend slightly to 22 feet AGL (about 9 seconds for 7000W-B, 11 seconds for 8000-A)
- 2. Hover at 22 feet AGL during package pickup (about 20 seconds for both models)
- 3. Aircraft with package ascends from 22 feet AGL to 165 feet AGL (about 14 seconds for both models)
- 4. Begin horizontal flight at constant acceleration until a speed of 50.5 knots is reached (about 13 seconds for 7000W-B, 15 seconds for 8000-A)
- 5. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2 Delivery

Sequence of package delivery operation to a delivery point:

- 1. Aircraft with package approaches at 165 feet AGL above microphone array
- 2. Decelerate from 50.5 knots to zero (about 15 seconds for 7000W-B, 13 seconds for 8000-A)
- 3. Descend from 165 feet AGL to 22 feet AGL (about 20 seconds for 7000W-B, 28 seconds for 8000-A)
- 4. Hover at 22 feet AGL during package drop (about 12 seconds for both models)
- 5. Empty aircraft ascends from 22 feet AGL to 165 feet AGL (about 15 seconds for 7000W-B, 16 seconds for 8000-A)
- 6. Begin horizontal flight at constant acceleration until a speed of 50.5 knots (i.e., Vcruise) is reached (about 14 seconds for 7000W-B, 18 seconds for 8000-A)
- 7. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2.1 Landing

Sequence of landing operation at nest:

- 1. Empty aircraft approaches at 165 feet AGL above microphone array
- 2. Decelerate from 50.5 knots to zero (about 14 seconds for both models)

3. Descend from 165 feet AGL to ground (for 7000W-B, the UA descends to 20 feet AGL in about 15 seconds and from 20 feet AGL to ground in about 13 seconds; for 8000-A, the UA descends to 20 feet AGL in about 24 seconds and from 20 feet AGL to ground in about 12 seconds)

3.2.2 Offsite Package Autoload

For offsite package autoload operation, the UA takes off from a distant nest location and approaches the offsite package loading point.

- 1. Empty aircraft approaches at 165 feet AGL above microphone array
- 2. Decelerate from 50.5 knots to zero (about 17 seconds for both models)
- 3. Descend from 165 feet AGL to 22 feet AGL (about 15 seconds for 7000W-B, 25 seconds for 8000-A)
- 4. Hover at 22 feet AGL during package pickup (about 22 seconds for both models)
- 5. Aircraft with package ascends from 22 feet AGL to 165 feet AGL (about 15 seconds for both models) Begin horizontal flight at constant acceleration until a speed of 50.5 knots (i.e., V_{cruise}) is reached (about 14 seconds for both models)
- 6. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2.3 Nearfield Launch and Autoload

For nearfield launch, the UA takes off and approaches the package loading point from a nearby nest.

- 1. Empty aircraft ascends from nest 50 feet away to 165 feet AGL (about 15 seconds for 7000W-B, 16 seconds for 8000-A)
- 2. Transit to nearby autoloader (about 8 seconds for 7000W-B, 12 seconds for 8000-A)
- 3. Descend from 165 feet AGL to 14 feet AGL at constant velocity of (about 15 seconds for 7000W-B, 26 seconds for 8000-A)
- 4. Hover at 14 feet AGL during package pickup (about 22 seconds for both models)
- 5. Aircraft with package ascends from 14 feet AGL to 165 feet AGL (about 15 seconds for both models)
- 6. Begin horizontal flight at constant acceleration until a speed of 50.5 knots (i.e., Vcruise) is reached (about 14 seconds for both models)
- 7. Maintain horizontal flight at constant velocity of 50.5 knots over microphone array

3.2.4 Fitbit Operation

The Fitbit operation is a brief hover operation to warm up the battery and conduct preflight tests at the beginning of each day of flight operation. This would be done for each individual UA at the nest. Testing time varies but generally would be less than two minutes.

- 1. Climb to 7 feet AGL (about 3 seconds for both models)
- 2. Hover in place (assumes 118 seconds for 7000W-B, 49 seconds for 8000-A)

3. Descend from 7 feet AGL to ground (about 6 seconds for both models)

3.2.5 Geobit Operation

The Geobit operation is a brief hover operation above the nest to verify geolocation of ground-based infrastructure.

- 1. Climb to 66 feet AGL (about 8 seconds for both models)
- 2. Hover in place (about 25 seconds for both models)
- 3. Descend from 66 feet AGL to ground (about 40 seconds for both models)

This Page Intentionally Left Blank

4.1 Sound Levels for Wing Model 7000W-B

4.1.1 Manual Loading, Delivery and Landing

Calculated sound levels for Wing Model 7000W-B manual loading, delivery, and landing at the launch point are shown in Table 3.

Distance between			
Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
25	86.6	88.4	83.2
50	80.6	83.5	78.1
75	76.8	79.9	75.0
100	74.1	77.3	72.8
125	72.6	75.5	71.1
150	71.4	74.0	69.6
175	70.3	72.7	68.4
200	69.4	71.6	67.4
225	68.3	70.4	66.2
250	67.3	69.4	65.0
275	66.4	68.5	64.0
300	65.6	67.6	63.1
325	64.9	66.8	62.3
350	64.2	66.1	61.5
375	63.5	65.4	60.8
400	62.9	64.8	60.1
425	62.4	64.2	59.5
450	61.8	63.7	58.8
475	61.3	63.1	58.3
500	60.9	62.6	57.7
525	60.4	62.1	57.2
550	60.0	61.7	56.7
575	59.6	61.3	56.3
600	59.2	60.8	55.8
625	58.8	60.4	55.4
650	58.4	60.1	55.0
675	58.1	59.7	54.6
700	57.7	59.3	54.2

Table 3. Model 7000W-B: Estimate of SEL for Manual Launch, Delivery and Landing at Nest

Distance between Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
725	57.4	59.0	53.8
750	57.1	58.7	53.5
775	56.8	58.3	53.1
800	56.5	58.0	52.8
825	56.5	58.0	52.8
850	56.5	58.0	52.8
875	56.5	58.0	52.8
900	56.5	58.0	52.8
925	56.5	58.0	52.8
950	56.5	58.0	52.8
975	56.5	58.0	52.8
1000	56.5	58.0	52.8

Source: AvEnviro 2024a, ICF 2024.

¹ Assumes one en route trip with package on board.

² Assumes one en route trip with package on board plus one en route trip without a package.

³ Assumes one en route trip without a package.

dBA = A-weighted decibel; SEL = sound exposure level

4.1.2 Sound Levels for Wing Model 7000W-B Autoload Actions

Calculated sound levels for offsite autoload, and nearfield launch and autoload for Model 7000W-B are shown in Table 4.

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
25	87.1	87.1
50	81.7	82.1
75	78.7	79.2
100	76.6	77.1
125	75.0	75.3
150	73.6	73.9
175	72.5	72.7
200	71.5	71.6
225	70.4	70.3
250	69.3	69.2
275	68.4	68.1
300	67.6	67.2
325	66.8	66.3
350	66.1	65.5

 Table 4. Model 7000W-B: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload

 Actions

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
375	65.4	64.7
400	64.8	64.0
425	64.2	63.4
450	63.6	62.8
475	63.1	62.2
500	62.6	61.6
525	62.1	61.1
550	61.7	60.6
575	61.2	60.1
600	60.8	59.6
625	60.4	59.2
650	60.0	58.7
675	59.7	58.3
700	59.3	57.9
725	59.0	57.6
750	58.7	57.2
775	58.3	56.8
800	58.0	56.5
825	58.0	56.5
850	58.0	56.5
875	58.0	56.5
900	58.0	56.5
925	58.0	56.5
950	58.0	56.5
975	58.0	56.5
1000	58.0	56.5

Source: AvEnviro 2024a, ICF 2024.

¹ Assumes one incoming en route trip without a package plus one outgoing en route trip with package on board. dBA = A-weighted decibel; SEL = sound exposure level

4.1.3 Sound Levels for Wing Model 7000W-B FitBit and GeoBit Actions

Calculated sound levels for Fitbit and Geobit operations for Model 7000W-B are shown in Table 5.

Distance between Launch		
Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
25	87.3	85.3
50	80.3	81.0
75	76.5	78.0
100	73.8	75.9

Table 5. Model 7000W-B: Estimate of SEL for FitBit and GeoBit Actions

Distance between Launch Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
125	72.2	74.0
150	70.9	72.4
175	69.8	71.1
200	68.8	69.9
225	68.0	68.9
250	67.2	68.0
275	66.5	67.1
300	65.9	66.4
325	65.3	65.7
350	64.8	65.1
375	64.3	64.5
400	63.8	63.9
425	63.4	63.4
450	63.0	62.9
475	62.6	62.4
500	62.2	62.0
525	61.8	61.5
550	61.5	61.1
575	61.2	60.8
600	60.9	60.4
625	60.6	60.0
650	60.3	59.7
675	60.0	59.4
700	59.8	59.1
725	59.5	58.8
750	59.3	58.5
775	59.0	58.2
800	58.8	57.9
825	58.6	57.6
850	58.4	57.4
875	58.2	57.1
900	58.0	56.9
925	57.8	56.6
950	57.6	56.4
975	57.4	56.2
1000	57.2	56.0

Source: AvEnviro 2024a, ICF 2024.

dBA = A-weighted decibel; SEL = sound exposure level

4.1.4 En Route Sound Levels for Wing Model 7000W-B

The SEL for an en route overflight with a package loaded on the Model 7000W-B was measured to be 59.2 dBA. The en route overflight SEL for a Model 7000W-B with no package was measured to be 55.5 dBA (AvEnviro 2024a). During testing, en route measurements were taken with UA in forward

flight at an altitude of 100 feet AGL, which is lower than the expected operating altitude of 165 feet AGL. To adjust the measured en route sound level to the operating altitude of 165 feet AGL, a data correction factor using the logarithm of the ratio of altitudes multiplied by 12.5 was added to the en route SEL, consistent with procedures described in 14 CFR Part 36. The corrected SEL values were calculated to be 56.5 dBA with a package and 52.8 dBA without a package. These corrected en route sound levels were used for distances 800 feet or greater from the nest or delivery site.

4.2 Sound Levels for Wing Model 8000-A

4.2.1 Manual Loading, Delivery and Landing

Calculated sound levels for Wing Model 8000-A manual loading, delivery and landing at the launch point are shown in Table 6.

Distance between Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
25	84.4	87.3	81.8
50	79.0	83.6	77.7
75	76.9	80.7	75.4
100	75.4	78.6	73.7
125	74.4	77.0	71.6
150	73.6	75.7	70.0
175	72.9	74.6	68.5
200	72.3	73.7	67.3
225	71.4	72.9	66.7
250	70.6	72.2	66.1
275	69.9	71.5	65.6
300	69.3	70.9	65.2
325	68.7	70.3	64.7
350	68.1	69.8	64.3
375	67.6	69.3	64.0
400	67.1	68.9	63.6
425	66.7	68.5	63.3
450	66.3	68.1	63.0
475	65.9	67.7	62.7
500	65.5	67.4	62.5
525	65.1	67.0	62.2
550	64.8	66.7	62.0
575	64.4	66.4	61.7
600	64.1	66.1	61.5
625	63.8	65.8	61.3
650	63.5	65.5	61.1

Table 6. Model 8000-A: Estimate of SEL for Manual Launch, Delivery and Landing at Nest

Distance between Launch Point and Receiver	Manual Load and Takeoff, dBA SEL ¹	Delivery, dBA SEL ²	Return to Nest and Landing, dBA SEL ³
675	63.2	65.3	60.9
700	63.0	65.0	60.7
725	62.7	64.8	60.5
750	62.5	64.6	60.3
775	62.2	64.3	60.1
800	62.0	64.1	60.0
825	62.0	64.1	60.0
850	62.0	64.1	60.0
875	62.0	64.1	60.0
900	62.0	64.1	60.0
925	62.0	64.1	60.0
950	62.0	64.1	60.0
975	62.0	64.1	60.0
1000	62.0	64.1	60.0

Source: AvEnviro 2024b, ICF 2024.

¹ Assumes one en route trip with package on board.

² Assumes one en route trip with package on board plus one en route trip without a package.

³ Assumes one en route trip without a package.

dBA = A-weighted decibel; SEL = sound exposure level

4.2.2 Sound Levels for Wing Model 8000-A Autoload Actions

Calculated sound levels for offsite autoload, and nearfield launch and autoload for Model 8000-A are shown in Table 7.

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
25	85.2	85.4
50	80.9	81.6
75	78.6	79.1
100	77.0	77.4
125	75.9	76.0
150	75.0	74.9
175	74.2	73.9
200	73.5	73.1
225	72.7	72.2
250	72.0	71.3
275	71.3	70.5
300	70.8	69.8
325	70.2	69.2

Table 7. Model 8000-A: Estimate of SEL for Offsite Autoload and Nearfield Launch and Autoload Actions

Distance between Launch Point and Receiver	Offsite Autoload, dBA SEL ¹	Nearfield Launch and Autoload, dBA SEL ¹
350	69.7	68.6
375	69.2	68.1
400	68.8	67.5
425	68.4	67.1
450	68.0	66.6
475	67.6	66.2
500	67.3	65.8
525	67.0	65.4
550	66.6	65.0
575	66.3	64.6
600	66.1	64.3
625	65.8	64.0
650	65.5	63.6
675	65.3	63.3
700	65.0	63.1
725	64.8	62.8
750	64.5	62.5
775	64.3	62.2
800	64.1	62.0
825	64.1	62.0
850	64.1	62.0
875	64.1	62.0
900	64.1	62.0
925	64.1	62.0
950	64.1	62.0
975	64.1	62.0
1000	64.1	62.0

Source: AvEnviro 2024b, ICF 2024.

¹ Assumes one incoming en route trip without a package plus one outgoing en route trip with package on board. dBA = A-weighted decibel; SEL = sound exposure level

4.2.3 Sound Levels for Wing Model 8000-A FitBit and GeoBit Actions

Calculated sound levels for Fitbit and Geobit operations for Model 8000-A are shown in Table 8.

Distance between Launch Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
25	84.1	84.4
50	77.1	79.4
75	73.6	75.3
100	71.1 ¹	72.5 ¹
125	69.1	70.2
150	67.5	68.4
175	66.2	66.8
200	65.0	65.5
225	64.0	64.3
250	63.1	63.3
275	62.2	62.3
300	61.5	61.4
325	60.8	60.6
350	60.1	59.9
375	59.5	59.2
400	59.0	58.6
425	58.4	57.9
450	57.9	57.4
475	57.5	56.8
500	57.0	56.3
525	56.6	55.8
550	56.2	55.4
575	55.8	54.9
600	55.4	54.5
625	55.1	54.1
650	54.7	53.7
675	54.4	53.3
700	54.1	52.9
725	53.8	52.6
750	53.5	52.2
775	53.2	51.9
800	52.9	51.6
825	52.6	51.3
850	52.4	51.0
875	52.1	50.7
900	51.9	50.4

Table 8. Model 8000-A: Estimate of SE	EL for FitBit and GeoBit Actions
---------------------------------------	----------------------------------

Distance between Launch		
Point and Receiver	FitBit, dBA SEL	GeoBit, dBA SEL
925	51.6	50.1
950	51.4	49.9
975	51.2	49.6
1000	51.0	49.4

Source: AvEnviro 2024b, ICF 2024.

 1 The SEL value for FitBit and GeoBit operations at 100 feet was adjusted from the test report to use a falloff rate from the 50 foot to the 200 foot value due to no valid passes during testing.

dBA = A-weighted decibel; SEL = sound exposure level

4.2.4 En Route Sound Levels for Wing Model 8000-A

The SEL for an en route overflight with a package loaded on the Model 8000-A was measured to be 64.7 dBA. The en route overflight SEL for a Model 8000-A with no package was measured to be 62.7 dBA (AvEnviro 2024b). During testing, en route measurements were taken with UA in forward flight at an altitude of 100 feet AGL, which is lower than the expected operating altitude of 165 feet AGL. To adjust the measured en route sound level to the operating altitude of 165 feet AGL, a data correction factor using the logarithm of the ratio of altitudes multiplied by 12.5 was added to the en route SEL, consistent with procedures described in 14 CFR Part 36. The corrected SEL values were calculated to be 62.0 dBA with a package and 60.0 dBA without a package. These corrected en route sound levels were used for distances 800 feet or greater from the nest or delivery site.

This Page Intentionally Left Blank

This chapter presents estimated DNL values for package delivery operations assuming different rates of delivery for a nest. This analysis assumes all package deliveries would occur during daytime hours only (i.e., 7:00 a.m. to 10:00 p.m.), so no nighttime penalties are applied to package deliveries. Fitbit operations would be done before package delivery operations each day, and are assumed to be done before 7:00 a.m. As such nighttime penalties would apply to Fitbit operations. Geobit operations would be conducted on an intermittent basis at the rate of about one event per week. To simulate a loudest case, Geobit operations are included in the DNL analysis.

5.1 Noise Exposure from a Nest

A single delivery operation consists of launch, package load, departure, return and landing phases, and the full cycle of these actions are accounted for in noise exposure at a nest. In addition to package deliveries, the noise exposure values include up to 24 nighttime Fitbit operations and one Geobit operation. Therefore, the DNL value at a nest accounts for the following:

- Package loading operations: manual, offsite package autoload, or nearfield autoload (up to 400 events)
- Landings at nest post-delivery (up to 400 events)
- FitBit (240 DNL equivalent events)
- GeoBit (1 DNL equivalent event)

Estimated DNL noise exposure distances at a nest operating Model 7000W-B UAs are shown in Table 9 for Manual loading and Table 10 for Nearfield Autoloading. Noise exposure DNL values are shown at different scales: from 1 delivery per day to 400 deliveries per day. The noise exposure values assume a departure and return flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet from the nest. According to the calculations, package loading operations would exceed 65 DNL at 35 feet from a nest location, at a rate of 400 package loading operations per day for both loading scenarios.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	35	50	85	160
5	<25	35	50	90	165
10	<25	35	55	90	165
15	<25	35	55	90	170
20	<25	35	55	90	175
25	<25	35	55	95	175
50	<25	40	60	100	195

 Table 9. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of

 Operation, Manual Launch Option

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
75	<25	40	65	105	210
100	<25	40	65	115	220
150	<25	45	70	125	245
200	<25	45	75	140	265
300	30	50	85	165	295
400	35	55	95	185	325

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	35	50	85	160
5	<25	35	50	90	165
10	<25	35	55	90	170
15	<25	35	55	95	175
20	<25	35	55	95	180
25	<25	35	55	95	185
50	<25	40	60	105	205
75	<25	40	65	120	220
100	<25	40	70	125	235
150	<25	45	80	145	260
200	<25	50	85	160	285
300	30	55	100	190	320
400	35	65	115	215	350

 Table 10. DNL Noise Exposure Distances at Nest for Model 7000W-B for Different Scales of

 Operation, Nearfield Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

Estimated DNL noise exposure distances at a nest operating Model 8000-A UAs are shown in Table 11 for Manual loading and Table 12 for Nearfield Autoloading. Noise exposure DNL values are shown at different scales: from 1 delivery per day to 400 deliveries per day. The noise exposure values assume a departure and return flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet from the nest. According to the calculations, package loading operations would exceed 65 DNL at less than 25 feet from a nest location, at a rate of 400 package loading operations per day for both loading scenarios.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	40	65	110
5	<25	<25	40	65	115
10	<25	<25	40	65	120
15	<25	<25	40	70	125
20	<25	<25	45	70	130
25	<25	<25	45	75	135
50	<25	<25	45	85	160
75	<25	30	50	95	190
100	<25	30	50	105	215
150	<25	35	60	125	255
200	<25	40	70	145	300
300	<25	45	85	180	375
400	<25	45	100	215	440

 Table 11. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of

 Operation, Manual Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	40	65	110
5	<25	<25	40	65	115
10	<25	<25	40	70	120
15	<25	<25	45	70	130
20	<25	<25	45	75	135
25	<25	<25	45	75	140
50	<25	<25	50	90	170
75	<25	30	55	105	200
100	<25	35	60	115	225
150	<25	35	70	140	270
200	<25	40	80	160	315
300	<25	50	100	200	390
400	<25	55	120	235	455

 Table 12. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of

 Operation, Nearfield Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m. except for Fitbit, which would be done before 7:00 a.m. DNL = day/night average sound level

5.2 Noise Exposure from Offsite Package Autoloading

Estimated DNL noise exposure distances at an offsite package autoloader location for the Model 7000W-B are shown in Table 13. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package autoload, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at less than 25 feet from an offsite autoloading location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25
10	<25	<25	<25	<25	40
15	<25	<25	<25	<25	50
20	<25	<25	<25	30	55
25	<25	<25	<25	35	65
50	<25	<25	<25	50	95
75	<25	<25	35	60	115
100	<25	<25	40	70	140
150	<25	<25	50	90	175
200	<25	30	55	105	205
300	<25	40	70	135	245
400	<25	45	80	160	280

Table 13. DNL Noise Exposure Distances at an Offsite Package Autoloading Location for Model 7000W-B, for Different Scales of Operation

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

Estimated DNL noise exposure distances at an offsite package autoloader location for the Model 8000-A are shown in Table 14. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package autoload, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at less than 25 feet from an offsite autoloading location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries per Nest ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25
10	<25	<25	<25	<25	30
15	<25	<25	<25	<25	40
20	<25	<25	<25	<25	50
25	<25	<25	<25	<25	60
50	<25	<25	<25	45	95
75	<25	<25	<25	55	135
100	<25	<25	30	70	170
150	<25	<25	40	95	230
200	<25	<25	50	115	275
300	<25	30	65	165	355
400	<25	40	80	205	430

 Table 14. DNL Noise Exposure Distances at Nest for Model 8000-A for Different Scales of

 Operation, Remote Launch Option

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

5.3 En Route Noise Exposure

Noise exposure from UA en route trajectories would be loudest directly under the flight path. In practice, UAs would serve many delivery points from a given nest, however in areas where there is a high demand for deliveries, en route UA noise may be intermittently audible depending on the level of existing ambient noise. Based on calculations however, even if the louder of the two Hummingbird UA models (Model 8000-A) under en route conditions used the same en route trajectory for delivery service to surrounding areas, the noise exposure level accounting for both the delivery and return paths would be no higher than 40.7 DNL at a rate of up to 400 deliveries per day. Considering that en route UA noise would not exceed 45 DNL under any delivery scenarios, this was not quantified further.

5.4 Noise Exposure from a Delivery Site

Estimated DNL noise exposure distances at a delivery point for the Model 7000W-B are shown in Table 15. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package delivery, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at 30 feet from a nest location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries at Delivery Point ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	35
10	<25	<25	<25	<25	50
15	<25	<25	<25	30	60
20	<25	<25	<25	40	65
25	<25	<25	<25	45	75
50	<25	<25	35	60	100
75	<25	<25	40	70	125
100	<25	<25	50	80	145
150	<25	30	60	100	180
200	<25	40	65	115	205
300	<25	45	80	140	245
400	30	55	90	165	280

Table 15. DNL Noise Exposure Distances at a Delivery Point for Model 7000W-B for Different
Scales of Operation

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

Estimated DNL noise exposure distances at a delivery point for the Model 8000-A are shown in Table 16. The DNL exposures assume an arrival and departure flight path restricted to a single trajectory over a receiver array with distances of 25 to 1,000 feet. A single delivery operation consists of arrival, package delivery, and departure phases. According to calculations, package delivery operations would exceed 65 DNL at less than 25 feet from a nest location at a rate of 400 deliveries per day to a single delivery site.

Average Daily Deliveries at Delivery Point ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
1	<25	<25	<25	<25	<25
5	<25	<25	<25	<25	<25
10	<25	<25	<25	<25	45
15	<25	<25	<25	<25	60
20	<25	<25	<25	35	70
25	<25	<25	<25	40	80
50	<25	<25	<25	65	120
75	<25	<25	40	80	155
100	<25	<25	45	95	185
150	<25	<25	60	120	235

Table 16. DNL Noise Exposure Distances at a Delivery Point for Model 8000-A for Different Scales
of Operation

Average Daily Deliveries at Delivery Point ¹	65 DNL Distance, feet	60 DNL Distance, feet	55 DNL Distance, feet	50 DNL Distance, feet	45 DNL Distance, feet
200	<25	35	70	140	280
300	<25	45	90	180	365
400	<25	55	105	210	435

Note: ¹ Average daily deliveries are shown in terms of DNL equivalent. The CONOPS assumes all UA operations would be done between the hours of 7:00 a.m. and 10:00 p.m.

DNL = day/night average sound level

5.5 Cumulative Noise Exposure

Criteria for significance of impacts and changes in noise exposure are defined in FAA Order 1050.1F *Environmental Impacts: Policies and Procedures* (FAA 2015). Order 1050.1F Exhibit 4-1 states the following with respect to threshold of significance for a proposed action:

The action would increase noise by DNL 1.5 dB or more for a noise sensitive area that is exposed to noise at or above the DNL 65 dB noise exposure level, or that will be exposed at or above the DNL 65 dB level due to a DNL 1.5 dB or greater increase, when compared to the no action alternative for the same timeframe. For example, an increase from DNL 65.5 dB to 67 dB is considered a significant impact, as is an increase from DNL 63.5 dB to 65 dB.

A cumulative increase in noise from a proposed action can be calculated using the difference between the additional noise exposure introduced by a proposed action and the no action alternative. The cumulative DNL increase associated with different values of the proposed action is shown in Table 17.

Proposed Action minus No Action (x)	Cumulative Increase in DNL (∆)
x < -3.8 dB	Δ < 1.5 dB
-3.8 dB < x < 0.0 dB	$1.5 \text{ dB} < \Delta < 3 \text{ dB}$
0.0 dB < x < 3.3 dB	$3 dB < \Delta < 5 dB$
3.3 dB < x	$5 \text{ dB} < \Delta$

Table 17. Cumulative Increase in DNL due to a Proposed Action

For air traffic airspace and procedure actions where the study area is larger than the immediate vicinity of an airport, Order 1050.1F specifies the following change-of-exposure criteria to identify locations where noise exposure levels will increase by a magnitude considered reportable. An action that would increase noise exposure by 3 dB where no action is between 60 and 65 DNL, or by 5 dB where no action is between 45 and 60 DNL would be considered reportable.

This Page Intentionally Left Blank

AvEnviro Acoustics. 2024a. Environmental Noise Assessment: Wing Model 7000W-B Revision D.

AvEnviro Acoustics. 2024b. Environmental Noise Assessment: Wing Model 8000-A Revision C.

- Code of Federal Regulations (CFR). *Noise Standards: Aircraft Type and Airworthiness Certification.* Available: <u>https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-36.</u> Accessed: July 23, 2024.
- Federal Aviation Administration (FAA). 2015. Order 1050.1F. Environmental Impacts: Policies and Procedures. Appendix B. Available: <u>https://www.faa.gov/documentLibrary/media/Order/FAA_Order_1050_1F.pdf#page=113</u> Accessed: July 23, 2024.
- Federal Aviation Administration (FAA) Office of Environment and Energy. 2023. Drone Team, AEE-100. *Measuring Drone Noise for Environmental Review Process*. Draft Measurement Protocol for Applications for EA Noise Analysis V05, PowerPoint Presentation, October 2023.
- Harris Miller Miller and Hanson. 2023. *Noise Assessment for Wing Aviation Proposed Package Delivery Operations with Hummingbird 7000W-B Unmanned Aircraft*, prepared March 17, 2023.
- ICF International. 2024. *Noise Modeling for the Technical Noise Study Report: Hummingbird 7000W-B and 8000-A Unmanned Aircraft Package Delivery Operations.* Dallas-Fort Worth, TX. Prepared for the Federal Aviation Administration.
- Wing Aviation LLC. 2024. Description of Proposed Action and Alternatives, Supplemental EA for Package Delivery Operations for Dallas-Fort Worth Metro.

This Page Intentionally Left Blank

Appendix F Government-to-Government Consultation with Federally Recognized Tribes

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Chairman Jonathan Cernek Coushatta Tribe of Louisiana 1940 C.C. Bel Road Elton, LA 70532

June 11, 2024

Transmitted via mail and email to mbell@coushatta.org.

RE: Invitation for Government-to-Government Tribal Consultation for Drone Package Delivery Operations in Florida

Dear Chairman Cernek:

The purpose of this letter is to initiate formal government-to-government consultation regarding a proposal under consideration by the Federal Aviation Administration (FAA) to authorize commercial Unmanned Aircraft Systems (UAS) operators to deliver goods to customers (referred to as package delivery) using unmanned aircraft (also referred to as drones) in accordance with 14 Code of Federal Regulations Part 135 (Part 135) in the state of Florida. The FAA is the lead federal agency for government-to-government consultation for the proposed project. Wing Aviation LLC (Wing) is the proponent of the project. We wish to solicit your views regarding potential effects on Tribal interests in the area. In addition, the FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the National Historic Preservation Act (NHPA) concurrently with the NEPA process.

The primary purpose of government-to-government consultation is to ensure that Federally Recognized Tribes are given the opportunity to provide meaningful and timely input regarding proposed FAA actions that uniquely or significantly affect the Tribes. This policy is provided in Federal Executive Order 13175, *Consultation and Coordination with Indian Tribal Governments*; Presidential Memorandum, *Uniform Standards for Tribal Consultation*; DOT Order 5301.1A, *Department of Transportation Tribal Consultation Policy and Procedures*; and FAA Order 1210.20, *American Indian and Alaska Native Tribal Consultation Policy and Procedures*.

Consultation Initiation

With this letter, FAA is seeking input concerning any Tribal lands or sites of religious or cultural significance that may be affected by the proposed operations. Early identification of Tribal concerns, or known properties of traditional, religious, and cultural importance, will allow the FAA to consider ways to

avoid or minimize potential impacts to Tribal resources. We are available to discuss the details of the proposed project with you.

Proposed Activity Description

The FAA is preparing an Environmental Assessment to assess the potential environmental impacts of the FAA's actions of authorizing commercial package delivery operations using drones in the Orlando and Tampa metro areas under Part 135. Since 2019, the FAA has been issuing air carrier certificates to UAS operators in accordance with Part 135 so that operators can conduct package delivery flights. Generally, these approvals are associated with issuing a new or amended Part 135 air carrier Operations Specifications as the operative approval. For your reference, the project description used for consultation under Section 106 is enclosed with this letter (**Attachment A**).

Area of Potential Effects

In accordance with 36 CFR 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The APE would be approximately 14,168 square miles and is shown in greater detail in the enclosure.

Confidentiality

We understand that you may have concerns about the confidentiality of information on areas or resources of traditional, religious, and cultural importance to your Tribe. We are available to discuss these concerns and develop procedures to ensure the confidentiality of such information is maintained.

FAA Contact Information

Your timely response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. In addition, we respectfully request your response in the event that your Tribe would like to consult with the FAA in a government-to-government relationship about this proposal. Please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of the receipt of this letter to confirm your intent to participate in this government-to-government-to-government-to-

Sincerely,

DEREK W HUFTY

Digitally signed by DEREK W HUFTY Date: 2024.06.11 13:25:13 -04'00'

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

cc: Mrs. Kristian Poncho, Tribal Historic Preservation Officer Attachment A – NHPA Section 106 Consultation Letter

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Mrs. Kristian Poncho Tribal Historic Preservation Officer Coushatta Tribe of Louisiana P.O. Box 10 Elton, LA 70532

June 11, 2024

Transmitted via mail and email to kponcho@coushatta.org

The Federal Aviation Administration (FAA) is currently evaluating Wing's proposal to conduct delivery drone operations in the Central Florida metro and surrounding areas within Florida. Wing must obtain approval from the FAA prior to operating the Hummingbird 7000W-B and 8000-A drones in Orlando and Tampa. The FAA has determined that its proposed action, which would encompass all FAA approvals necessary to enable operations, is an undertaking as defined under the regulations implementing Section 106 of the National Historic Preservation Act (36 CFR § 800.16(y)). The purpose of this letter is to initiate Section 106 consultation with the Coushatta Tribe of Louisiana and to solicit your views regarding potential effects on tribal interests in the area. The FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the NHPA concurrently with the NEPA process.

Project Description

Wing is proposing to transport consumer goods via drone delivery in the Orlando and Tampa metro areas by using the new Hummingbird 7000W-B and 8000-A drones. The Hummingbird 7000W-B and 8000-A drones would take off from Wing's nest locations and quickly rise to a cruising altitude of 150 to 300 feet above ground level (AGL). The Hummingbird 7000W-B drone weighs under 15 pounds when combined with its maximum payload weight of 2.7 pounds while the 8000-A drone weighs under 25 pounds when combined with its maximum payload weight of 5 pounds. The Hummingbird 7000W-B and 8000-A drones have an approximate 6-mile service radius. Once at the delivery site, the Hummingbird 7000W-B and 8000-A drones hover in place at about 23 feet AGL and drop the package to the ground. Once the package has been delivered, the drone flies back to the launch/landing site at roughly the same altitude.

Wing is proposing up to 400 drone flights per day from each nest, with each flight taking a package to a customer delivery address before returning. There is variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly much fewer than 400 flights per

day from the launch/landing site and gradually ramp up to the proposed level as consumer demand increases. Delivery operations would occur from approximately 7:00 a.m. to 10:00 p.m., 7 days of the week, including holidays. Operating hours would also include in-nest checkout flights between 6:00 a.m. and 7:00 a.m.

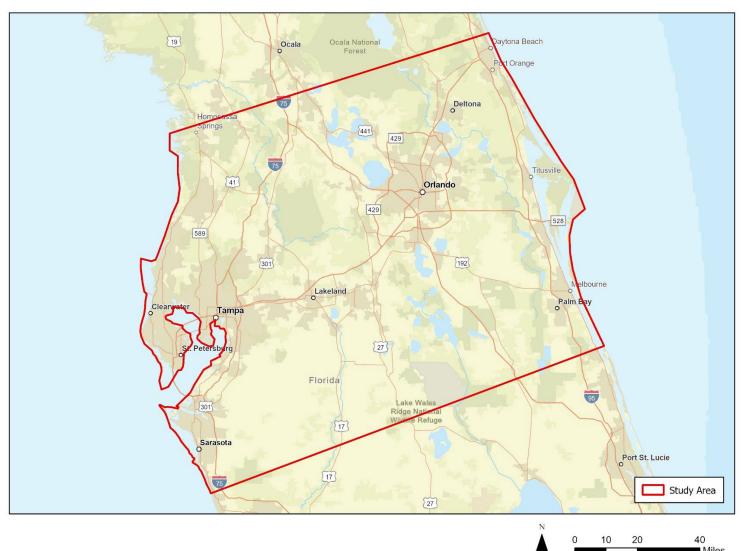
Area of Potential Effects

In accordance with 36 CFR § 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The proposed operation APE would be an approximately 14,168 square mile area around Orlando and Tampa. The enclosed map (**Attachment A**) shows the proposed APE in detail.

Identification of Historic Properties

The proposed undertaking does not have the potential to affect below ground or archeological resources because the undertaking will only result in disturbance to previously disturbed land but could result in auditory or visual effects. Therefore, the FAA is focusing its identification efforts on above-ground historic properties.

Consultation


The FAA is now soliciting the opinion of the Tribes concerning any Tribal lands, or sites of religious or cultural significance that may be affected by the proposed operations area. Your response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. If you have any questions or need additional information, please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of receipt of this letter.

Sincerely,

DEREK W Digitally signed by DEREK W HUFTY HUFTY Date: 2024.06.11 13:25:59 -04'00'

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Attachments: Attachment A – Proposed Area of Potential Effects

Attachment A. Area of Potential Effects

Miles 1:1,400,000

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Chairman Talbert Cypress Miccosukee Tribe of Indians U.S. 41 Mile Marker 70 Tamiami Trail Miami, FL 33194

June 11, 2024

Transmitted via mail and email to marlap@miccosukeetribe.com.

RE: Invitation for Government-to-Government Tribal Consultation for Drone Package Delivery Operations in Florida

Dear Chairman Cypress:

The purpose of this letter is to initiate formal government-to-government consultation regarding a proposal under consideration by the Federal Aviation Administration (FAA) to authorize commercial Unmanned Aircraft Systems (UAS) operators to deliver goods to customers (referred to as package delivery) using unmanned aircraft (also referred to as drones) in accordance with 14 Code of Federal Regulations Part 135 (Part 135) in the state of Florida. The FAA is the lead federal agency for government-to-government consultation for the proposed project. Wing Aviation LLC (Wing) is the proponent of the project. We wish to solicit your views regarding potential effects on Tribal interests in the area. In addition, the FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the National Historic Preservation Act (NHPA) concurrently with the NEPA process.

The primary purpose of government-to-government consultation is to ensure that Federally Recognized Tribes are given the opportunity to provide meaningful and timely input regarding proposed FAA actions that uniquely or significantly affect the Tribes. This policy is provided in Federal Executive Order 13175, *Consultation and Coordination with Indian Tribal Governments*; Presidential Memorandum, *Uniform Standards for Tribal Consultation*; DOT Order 5301.1A, *Department of Transportation Tribal Consultation Policy and Procedures*; and FAA Order 1210.20, *American Indian and Alaska Native Tribal Consultation Policy and Procedures*.

Consultation Initiation

With this letter, FAA is seeking input concerning any Tribal lands or sites of religious or cultural significance that may be affected by the proposed operations. Early identification of Tribal concerns, or known properties of traditional, religious, and cultural importance, will allow the FAA to consider ways to

avoid or minimize potential impacts to Tribal resources. We are available to discuss the details of the proposed project with you.

Proposed Activity Description

The FAA is preparing an Environmental Assessment to assess the potential environmental impacts of the FAA's actions of authorizing commercial package delivery operations using drones in the Orlando and Tampa metro areas under Part 135. Since 2019, the FAA has been issuing air carrier certificates to UAS operators in accordance with Part 135 so that operators can conduct package delivery flights. Generally, these approvals are associated with issuing a new or amended Part 135 air carrier Operations Specifications as the operative approval. For your reference, the project description used for consultation under Section 106 is enclosed with this letter (**Attachment A**).

Area of Potential Effects

In accordance with 36 CFR 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The APE would be approximately 14,168 square miles and is shown in greater detail in the enclosure.

Confidentiality

We understand that you may have concerns about the confidentiality of information on areas or resources of traditional, religious, and cultural importance to your Tribe. We are available to discuss these concerns and develop procedures to ensure the confidentiality of such information is maintained.

FAA Contact Information

Your timely response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. In addition, we respectfully request your response in the event that your Tribe would like to consult with the FAA in a government-to-government relationship about this proposal. Please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of the receipt of this letter to confirm your intent to participate in this government-to-government-to-government-to-

Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

cc: Mr. Jason Daniel, Tribal Historic Preservation Officer Attachment A – NHPA Section 106 Consultation Letter

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Mr. Jason Daniel Tribal Historic Preservation Officer Miccosukee Tribe of Indians P.O. Box 440021 Miami, FL 33144

June 11, 2024

Transmitted via mail and email to jasond@miccosukeetribe.com

The Federal Aviation Administration (FAA) is currently evaluating Wing's proposal to conduct delivery drone operations in the Central Florida metro and surrounding areas , Florida,. Wing must obtain approval from the FAA prior to operating the Hummingbird 7000W-B and 8000-A drones in Orlando and Tampa. The FAA has determined that its proposed action, which would encompass all FAA approvals necessary to enable operations, is an undertaking as defined under the regulations implementing Section 106 of the National Historic Preservation Act (36 CFR § 800.16(y)). The purpose of this letter is to initiate Section 106 consultation with the Miccosukee Tribe of Indians and to solicit your views regarding potential effects on tribal interests in the area. The FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the NHPA concurrently with the NEPA process.

Project Description

Wing is proposing to transport consumer goods via drone delivery in the Orlando and Tampa metro areas by using the new Hummingbird 7000W-B and 8000-A drones. The Hummingbird 7000W-B and 8000-A drones would take off from Wing's nest locations and quickly rise to a cruising altitude of 150 to 300 feet above ground level (AGL). The Hummingbird 7000W-B drone weighs under 15 pounds when combined with its maximum payload weight of 2.7 pounds while the 8000-A drone weighs under 25 pounds when combined with its maximum payload weight of 5 pounds. The Hummingbird 7000W-B and 8000-A drones have an approximate 6-mile service radius. Once at the delivery site, the Hummingbird 7000W-B and 8000-A drones hover in place at about 23 feet AGL and drop the package to the ground. Once the package has been delivered, the drone flies back to the launch/landing site at roughly the same altitude.

Wing is proposing up to 400 drone flights per day from each nest, with each flight taking a package to a customer delivery address before returning. There is variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly much fewer than 400 flights per

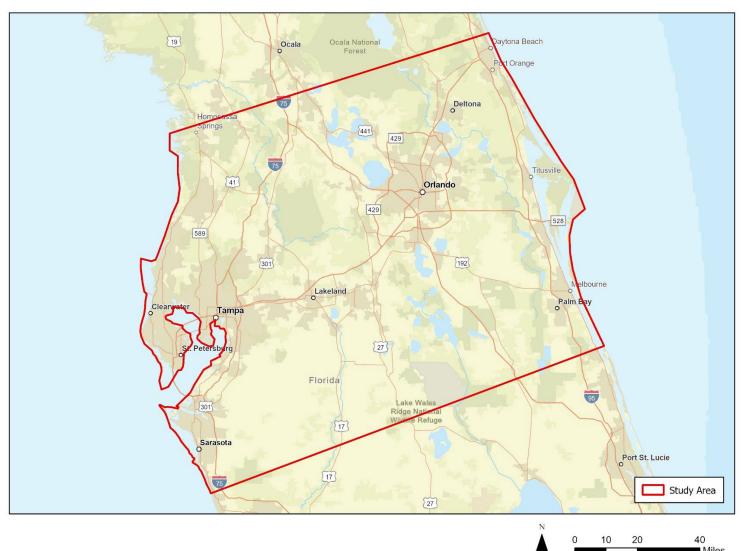
day from the launch/landing site and gradually ramp up to the proposed level as consumer demand increases. Delivery operations would occur from approximately 7:00 a.m. to 10:00 p.m., 7 days of the week, including holidays. Operating hours would also include in-nest checkout flights between 6:00 a.m. and 7:00 a.m.

Area of Potential Effects

In accordance with 36 CFR § 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The proposed operation APE would be an approximately 14,168 square mile area around Orlando and Tampa. The enclosed map (**Attachment A**) shows the proposed APE in detail.

Identification of Historic Properties

The proposed undertaking does not have the potential to affect below ground or archeological resources because the undertaking will only result in disturbance to previously disturbed land but could result in auditory or visual effects. Therefore, the FAA is focusing its identification efforts on above-ground historic properties.


Consultation

The FAA is now soliciting the opinion of the Tribes concerning any Tribal lands, or sites of religious or cultural significance that may be affected by the proposed operations area. Your response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. If you have any questions or need additional information, please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of receipt of this letter.

Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Attachments: Attachment A – Proposed Area of Potential Effects

Attachment A. Area of Potential Effects

Miles 1:1,400,000

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Principal Chief David Hill Muscogee (Creek) Nation 1007 East Eufaula Street Okmulgee, OK 74447

June 11, 2024

Transmitted via mail and email to <u>dhill@mcn-nsn.gov.</u>

RE: Invitation for Government-to-Government Tribal Consultation for Drone Package Delivery Operations in Florida

Dear Principal Chief Hill:

The purpose of this letter is to initiate formal government-to-government consultation regarding a proposal under consideration by the Federal Aviation Administration (FAA) to authorize commercial Unmanned Aircraft Systems (UAS) operators to deliver goods to customers (referred to as package delivery) using unmanned aircraft (also referred to as drones) in accordance with 14 Code of Federal Regulations Part 135 (Part 135) in the state of Florida. The FAA is the lead federal agency for government-to-government consultation for the proposed project. Wing Aviation LLC (Wing) is the proponent of the project. We wish to solicit your views regarding potential effects on Tribal interests in the area. In addition, the FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the National Historic Preservation Act (NHPA) concurrently with the NEPA process.

The primary purpose of government-to-government consultation is to ensure that Federally Recognized Tribes are given the opportunity to provide meaningful and timely input regarding proposed FAA actions that uniquely or significantly affect the Tribes. This policy is provided in Federal Executive Order 13175, *Consultation and Coordination with Indian Tribal Governments*; Presidential Memorandum, *Uniform Standards for Tribal Consultation*; DOT Order 5301.1A, *Department of Transportation Tribal Consultation Policy and Procedures*; and FAA Order 1210.20, *American Indian and Alaska Native Tribal Consultation Policy and Procedures*.

Consultation Initiation

With this letter, FAA is seeking input concerning any Tribal lands or sites of religious or cultural significance that may be affected by the proposed operations. Early identification of Tribal concerns, or known properties of traditional, religious, and cultural importance, will allow the FAA to consider ways to

avoid or minimize potential impacts to Tribal resources. We are available to discuss the details of the proposed project with you.

Proposed Activity Description

The FAA is preparing an Environmental Assessment to assess the potential environmental impacts of the FAA's actions of authorizing commercial package delivery operations using drones in the Orlando and Tampa metro areas under Part 135. Since 2019, the FAA has been issuing air carrier certificates to UAS operators in accordance with Part 135 so that operators can conduct package delivery flights. Generally, these approvals are associated with issuing a new or amended Part 135 air carrier Operations Specifications as the operative approval. For your reference, the project description used for consultation under Section 106 is enclosed with this letter (**Attachment A**).

Area of Potential Effects

In accordance with 36 CFR 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The APE would be approximately 14,168 square miles and is shown in greater detail in the enclosure.

Confidentiality

We understand that you may have concerns about the confidentiality of information on areas or resources of traditional, religious, and cultural importance to your Tribe. We are available to discuss these concerns and develop procedures to ensure the confidentiality of such information is maintained.

FAA Contact Information

Your timely response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. In addition, we respectfully request your response in the event that your Tribe would like to consult with the FAA in a government-to-government relationship about this proposal. Please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of the receipt of this letter to confirm your intent to participate in this government-to-government-to-government-to-

Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

cc: Mr. Turner Hunt, Tribal Historic Preservation Officer Attachment A – NHPA Section 106 Consultation Letter

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Mr. Turner Hunt Tribal Historic Preservation Officer Muscogee (Creek) Nation P.O. Box 580 Okmulgee, OK 74447

June 11, 2024

Transmitted via mail and email to thunt@muscogeenation.com

The Federal Aviation Administration (FAA) is currently evaluating Wing's proposal to conduct delivery drone operations in the Central Florida metropolitan and surrounding areas. Wing must obtain approval from the FAA prior to operating the Hummingbird 7000W-B and 8000-A drones in Orlando and Tampa. The FAA has determined that its proposed action, which would encompass all FAA approvals necessary to enable operations, is an undertaking as defined under the regulations implementing Section 106 of the National Historic Preservation Act (36 CFR § 800.16(y)). The purpose of this letter is to initiate Section 106 consultation with the Muscogee (Creek) Nation and to solicit your views regarding potential effects on tribal interests in the area. The FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the NHPA concurrently with the NEPA process.

Project Description

Wing is proposing to transport consumer goods via drone delivery in the Orlando and Tampa metro areas by using the new Hummingbird 7000W-B and 8000-A drones. The Hummingbird 7000W-B and 8000-A drones would take off from Wing's nest locations and quickly rise to a cruising altitude of 150 to 300 feet above ground level (AGL). The Hummingbird 7000W-B drone weighs under 15 pounds when combined with its maximum payload weight of 2.7 pounds while the 8000-A drone weighs under 25 pounds when combined with its maximum payload weight of 5 pounds. The Hummingbird 7000W-B and 8000-A drones have an approximate 6-mile service radius. Once at the delivery site, the Hummingbird 7000W-B and 8000-A drones hover in place at about 23 feet AGL and drop the package to the ground. Once the package has been delivered, the drone flies back to the launch/landing site at roughly the same altitude.

Wing is proposing up to 400 drone flights per day from each nest, with each flight taking a package to a customer delivery address before returning. There is variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly much fewer than 400 flights per

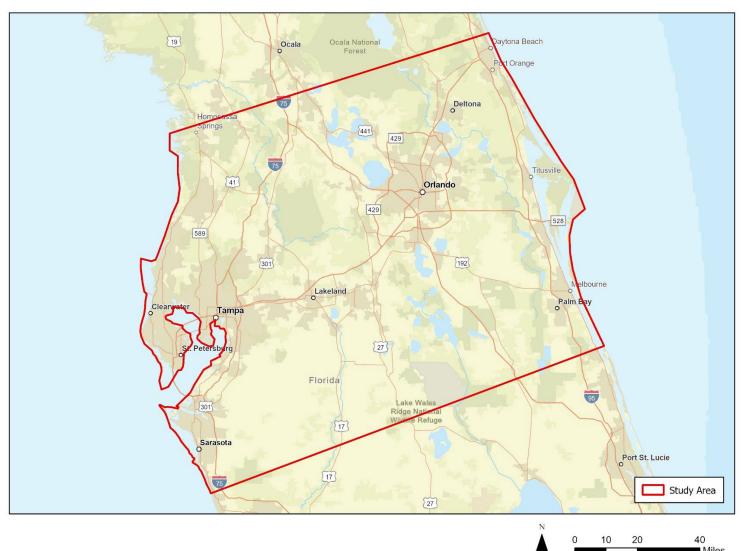
day from the launch/landing site and gradually ramp up to the proposed level as consumer demand increases. Delivery operations would occur from approximately 7:00 a.m. to 10:00 p.m., 7 days of the week, including holidays. Operating hours would also include in-nest checkout flights between 6:00 a.m. and 7:00 a.m.

Area of Potential Effects

In accordance with 36 CFR § 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The proposed operation APE would be an approximately 14,168 square mile area around Orlando and Tampa. The enclosed map (**Attachment A**) shows the proposed APE in detail.

Identification of Historic Properties

The proposed undertaking does not have the potential to affect below ground or archeological resources because the undertaking will only result in disturbance to previously disturbed land but could result in auditory or visual effects. Therefore, the FAA is focusing its identification efforts on above-ground historic properties.


Consultation

The FAA is now soliciting the opinion of the Tribes concerning any Tribal lands, or sites of religious or cultural significance that may be affected by the proposed operations area. Your response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. If you have any questions or need additional information, please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of receipt of this letter.

Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Attachments: Attachment A – Proposed Area of Potential Effects

Attachment A. Area of Potential Effects

Miles 1:1,400,000

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Chairman Marcellus W. Osceola Jr. Seminole Tribe of Florida 6300 Stirling Road Hollywood, Florida 33024

Transmitted via mail and email to Chairman@semtribe.com

RE: Invitation for Government-to-Government Tribal Consultation for Drone Package Delivery Operations in Florida

Dear Chairman Osceola:

The purpose of this letter is to initiate formal government-to-government consultation regarding a proposal under consideration by the Federal Aviation Administration (FAA) to authorize commercial Unmanned Aircraft Systems (UAS) operators to deliver goods to customers (referred to as package delivery) using unmanned aircraft (also referred to as drones) in accordance with 14 Code of Federal Regulations Part 135 (Part 135) in the state of Florida. The FAA is the lead federal agency for government-to-government consultation for the proposed project. Wing Aviation LLC (Wing) is the proponent of the project. We wish to solicit your views regarding potential effects on Tribal interests in the area. The FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the NHPA concurrently with the NEPA process.

The primary purpose of government-to-government consultation is to ensure that Federally Recognized Tribes are given the opportunity to provide meaningful and timely input regarding proposed FAA actions that uniquely or significantly affect the Tribes. This policy is provided in Federal Executive Order 13175, *Consultation and Coordination with Indian Tribal Governments*; Presidential Memorandum, *Uniform Standards for Tribal Consultation*; DOT Order 5301.1A, *Department of Transportation Tribal Consultation Policy and Procedures*; and FAA Order 1210.20, *American Indian and Alaska Native Tribal Consultation Policy and Procedures*.

Consultation Initiation

With this letter, FAA is seeking input concerning any Tribal lands or sites of religious or cultural significance that may be affected by the proposed operations. Early identification of Tribal concerns, or known properties of traditional, religious, and cultural importance, will allow the FAA to consider ways to avoid or minimize potential impacts to Tribal resources. We are available to discuss the details of the proposed project with you.

Proposed Activity Description

The FAA is preparing an Environmental Assessment to assess the potential environmental impacts of the FAA's actions of authorizing commercial package delivery operations using drones in the Orlando and Tampa metro areas under Part 135. Since 2019, the FAA has been issuing air carrier certificates to UAS operators in accordance with Part 135 so that operators can conduct package delivery flights. Generally, these approvals are associated with issuing a new or amended Part 135 air carrier Operations Specifications as the operative approval. For your reference, the project description used for consultation under Section 106 is enclosed with this letter.

Area of Potential Effects

In accordance with 36 CFR 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The APE would be approximately 14,168 square miles and is shown in greater detail in the enclosure.

Confidentiality

We understand that you may have concerns about the confidentiality of information on areas or resources of traditional, religious, and cultural importance to your Tribe. We are available to discuss these concerns and develop procedures to ensure the confidentiality of such information is maintained.

FAA Contact Information

Your timely response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. In addition, we respectfully request your response in the event that your Tribe would like to consult with the FAA in a government-to-government relationship about this proposal. Please contact Dr. Shelia Neumann via email <u>9-faa-drone-environmental@faa.gov</u> within 30 days of the receipt of this letter to confirm your intent to participate in this government-to-government-to-government-to-government-to-

Sincerely,

Joseph K. Hemler, Jr. Manager, General Aviation and Commercial Branch (AFS-752) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

cc: Dr. Paul Backhouse, Tribal Historic Preservation Officer

Attachment: NHPA Section 106 Consultation Letter

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Dr. Paul Backhouse

Seminole Tribe of Florida (Tampa Reservation) 30290 Josie Billie Highway PMB 1004 Clewiston Fl, 33440

Transmitted via mail and email to thpocompliance@semtribe.com

The Federal Aviation Administration (FAA) is currently evaluating Wing's proposal to conduct delivery drone operations in Central Florida. Wing must obtain approval from the FAA prior to operating the Hummingbird 7000W-B and 8000W-A drones in Central Florida. The FAA has determined that its proposed action, which would encompass all FAA approvals necessary to enable operations, is an undertaking as defined under the regulations implementing Section 106 of the National Historic Preservation Act (36 CFR § 800.16(y)). The purpose of this letter is to initiate Section 106 consultation with the Seminole Tribe of Florida (Tampa Reservation) and to solicit your views regarding potential effects on tribal interests in the area. The FAA has begun an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to analyze the proposed action. FAA intends to complete consultation for Section 106 of the NHPA concurrently with the NEPA process.

Project Description

Wing is proposing to transport consumer goods via drone delivery in Central Florida by using the new Hummingbird 7000W-B and 8000W-A drones. The Hummingbird 7000W-B and 8000W-A drones would take off from Wing's nest locations and quickly rise to a cruising altitude of 150 to 300 feet above ground level (AGL). The Hummingbird 7000W-B drone weighs under 15 pounds when combined with its maximum payload weight of 2.7 pounds while the 8000W-A drone weighs under 25 pounds when combined with its maximum payload weight of 5 pounds. The Hummingbird 7000W-B and 8000W-A drones have an approximate 6-mile service radius. Once at the delivery site, the Hummingbird 7000W-B and 8000W-A drones hover in place at about 23 feet AGL and drop the package to the ground. Once the package has been delivered, the drone flies back to the launch/landing site at roughly the same altitude.

Wing is proposing up to 400 drone flights per day from each nest, with each flight taking a package to a customer delivery address before returning. There is variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly much fewer than 400 flights per day from the launch/landing site and gradually ramp up to the proposed level as consumer demand increases. Delivery operations would occur from approximately 7:00 a.m. to 10:00 p.m., 7 days of the

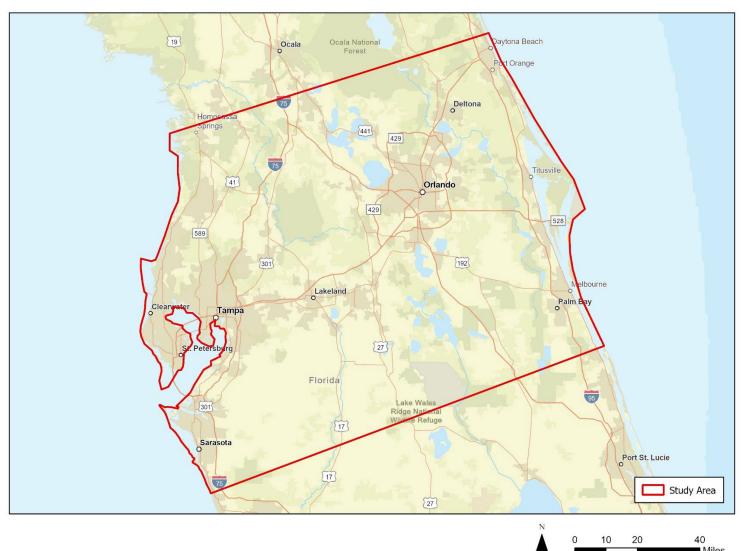
week, including holidays. Operating hours would also include in-nest checkout flights between 6:00 a.m. and 7:00 a.m.

Area of Potential Effects

In accordance with 36 CFR § 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The proposed operation APE would be an approximately 14,168 square mile area in Central Florida. The enclosed map (**Attachment A**) shows the proposed APE in detail.

Identification of Historic Properties

The proposed undertaking does not have the potential to affect below ground or archeological resources because the undertaking will only result in disturbance to previously disturbed land but could result in auditory or visual effects. Therefore, the FAA focused its identification efforts on above-ground historic properties.


Consultation

The FAA is now soliciting the opinion of the Tribes concerning any Tribal lands, or sites of religious or cultural significance that may be affected by the proposed operations area. Your response over the next 30 days will greatly assist us in incorporating your concerns into our environmental review of the operation. If you have any questions or need additional information, please contact Dr. Shelia Neumann via email at <u>9-faa-drone-environmental@faa.gov</u> within 30 days of receipt of this letter.

Sincerely,

Joseph K. Hemler Jr. Manager, General Aviation and Commercial Branch (AFS-752) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Attachment: Attachment A – Proposed Area of Potential Effects

Attachment A. Area of Potential Effects

Miles 1:1,400,000

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Scott Edwards State Historic Preservation Office Florida Department of State, Florida Division of Historical Resources R.A. Gray Building 500 South Bronough Street Tallahassee, Florida 32399-0250

<u>Via electronic submission to CompliancePermits@dos.myflorida.com and</u> <u>scott.edwards@dos.myflorida.com</u>

RE: Wing Drone Delivery Operations in Central Florida Project (DHR Project No.: 2024-3435)

Dear Mr. Edwards:

The Federal Aviation Administration (FAA) is currently evaluating a proposal from Wing Aviation, LLC (Wing) to conduct unmanned aircraft (UA; also referred to as a drone) retail package delivery operations in Central Florida (defined for the purpose of this consultation as all or part of the following 21 counties: Brevard, Citrus, DeSoto, Hardee, Hernando, Highlands, Hillsborough, Indian River, Lake, Manatee, Marion, Okeechobee, Orange, Osceola, Pasco, Pinellas, Polk, Sarasota, Seminole, Sumter, and Volusia). Wing must obtain approval from the FAA prior to conducting operations in Central Florida using its Hummingbird 7000W-B and 8000-A UAs. The FAA has determined the proposed action, which would encompass all FAA approvals necessary to enable operations, is an undertaking as defined under the regulations implementing Section 106 of the National Historic Preservation Act (36 CFR § 800.16(y)).

FAA previously provided the Florida State Historic Preservation Officer (SHPO) with a project summary and requested concurrence on the area of potential effects (APE) in a letter sent on June 11, 2024. FAA received your letter concurring with the proposed APE. The purpose of this letter is to continue Section 106 consultation with the SHPO, including providing the results of the preliminary identification of historic properties and finding of effect for this undertaking.

Project Description

Wing is proposing to conduct UA commercial delivery services in Central Florida. Wing has a Part 135 Air Carrier Operating Certificate from the FAA, which allows it to carry the property of another for compensation or hire beyond visual line of sight (BVLOS) using its Hummingbird Unmanned Aircraft System (UAS). The certificate contains a stipulation that operations must be conducted in accordance

with the provisions and limitations specified in the carrier's Operations Specifications (OpSpecs).¹ Wing is seeking to obtain an OpSpecs and other FAA approvals necessary to conduct UA commercial package delivery operations in Central Florida (**see Attachment A**).

Wing projects establishing up to 150 sites in Central Florida. Wing projects operating a maximum of 400 delivery flights per operating day per nest, with operating hours initially occurring between 7:00 am to 7:00 pm and then extending to 7:00 am to 10:00 pm, 7 days of the week, including holidays. In addition, operations would include low altitude (<8ft) in-nest hover checks, or Fitness Built in Tests (FitBITs) between 6:00 a.m. and 7:00 a.m. in preparation for the normal operational day which would begin no earlier than 7:00 a.m. Additional, higher hover flights (approximately 60 feet) may be performed up to 18 times per nest, per week, where the UA makes a separate hover flight to update the reference map of the nest; these flights are termed Geography Built In Test (GeoBITs) because of their similarity to the FitBIT stationary hover flight over the nest and would occur during normal operating hours (7:00 am - 10:00 pm). Wing is not proposing to conduct operations from 10:00 pm to 6:00 am.

The UA would be transporting consumer goods in partnership with merchants in the community. There would be variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly less than 400 flights per day from each nest and then gradually increase to 400 deliveries per day as consumer demand rises. Even in the locations where the service areas of nests overlap, deliveries would not exceed 400 per day.

For this consultation the project is divided into two components: installation of Wing Infrastructure, consisting of nests and autoloader locations; and Flight Operations, which details UA models, UA flight, and delivery. The effects of each component are different in degree and scale, with the effects of installation of Wing Infrastructure being more permanent but impacting a much smaller area, while Flight Operations will involve only very brief, temporary effects but would impact a much greater area.

Project Component: Wing Infrastructure

Wing is proposing to distribute nests throughout the operating area (see Attachment A). Wing's nests would be sited on paved landing areas established in pre-existing parking lots in commercially zoned areas, with use consistent with local zoning and land use requirements, such as shopping centers, large individual retailers, and shopping malls. Each nest would house up to two dozen (24) aircraft (UA) on launch pads and would be surrounded by fencing in some cases. One or more merchants will partner with Wing at each nest for UA deliveries. Nests would be distributed throughout Central Florida following a measured rollout plan to be developed with Wing's partners and continuing best practices from Wing's established community outreach program, and in compliance with state and local statutory and regulatory requirements. The only infrastructure erected for this project would be autoloaders, "Y"shaped passive stands designed for automated pick up of packages without landing (see Attachment B). Autoloaders would not require ground disturbance for installation and would be anchored through existing pavement, to existing poles, or ballasted for temporary use. The autoloaders would be controlled and operated by Wing and its partners. The autoloaders would be approximately 10 feet tall, 7 feet wide at the mouth, and 6 feet long, and would include a clear zone of approximately 2 parking spaces. Individual autoloader locations (either within a nest or offsite) would typically include up to three autoloaders within or in the vicinity of most nest sites, with a handful more distributed locations having up to 10 autoloaders, depending on market demand, for a total installation of 100-300 autoloaders distributed throughout the operating area.

¹ An Operations Specifications is a document that defines the scope of aircraft operations that the FAA has authorized.

Project Component: Flight Operations

Unmanned Aircraft

The primary UAs that would be used for the proposed operations are Wing's Hummingbird 7000W-B and 8000-A UAs. The Hummingbird 7000W-B features a multi-rotor design with sixteen (16) round diameter propellers and the 8000-A features a multi-rotor design with twelve (12) round diameter propellers (see Attachment B). The Hummingbird 7000W-B UA weighs under 15 pounds when combined with its maximum payload weight of 2.7 pounds. It has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of approximately 4 feet. The 8000-A UA weighs under 25 pounds when combined with its maximum payload weight of 5 pounds. It has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet. To avoid the potential for significant noise impacts, Wing would site its nests and autoloaders at least 120 feet away from a noisesensitive area when the nest is located within the controlled surface area of Class B, Class C, and Class D airspace and at least 65 feet away from a noise-sensitive area in all other areas within the study area, which is defined as Wing's proposed nest locations and service area. Remote pickups and pickup flight paths would not occur within 80 feet of noise-sensitive areas when located within the controlled surface area of Class B, Class C, and Class D airspace and at least 45 feet away from a noise-sensitive area in all other areas within the study area. All of Wing's aircraft use electric power from rechargeable lithium-ion batteries.

A typical flight profile can be broken into the following general flight phases: takeoff, en route outbound, delivery, en route inbound, and landing. This profile is described in more detail below.

Takeoff

Once the UA receives a mission and is cleared for takeoff from a launch pad, the UA takes off from the ground vertically to an altitude of 23 feet above ground level (AGL) and hovers for 30 seconds while the package is loaded. The UA then climbs to the en route altitude as described below.

En Route Outbound

The UA would fly a predefined flight path that is set prior to takeoff. Flight missions are automatically planned by Wing's flight planning software. A mission originates from a nest location, and Wing's software automatically assigns, deconflicts, and routes each flight to the delivery location and back to a nest. Each nest site would include a controlled area wherein UA flights are launched and recovered.

The UA would generally be operated at an altitude of 150 to 300 feet AGL and always below an altitude of 400 feet AGL while en route to and from delivery locations. The en route outbound phase is the part of flight in which the fully loaded UA transits from the nest or a remote pickup location to a delivery point on a predefined flight path. During this flight phase, the UA would typically operate at an altitude of 150–300 feet AGL and a typical airspeed of 59 miles per hour (mph). The UA has a single set cruise airspeed, which would not be exceeded.

Delivery

The delivery phase consists of descent from the en route altitude to a delivery point, such as a residential yard, driveway, parking lot, or common area. The UA descends vertically to 23 feet AGL and lowers a package to the ground by a retractable line for delivery while maintaining position over the delivery point. The UA hovers at 23 feet AGL for approximately 30 seconds while lowering its package. The minimum distance a human should be from the UA during delivery is a 6-foot radius from underneath the center of the UA. Once a package has been lowered to the ground, the UA would then

retract the line, ascend vertically to a cruise altitude, and depart the delivery area en route back to a nest.

En Route Inbound

The UA continues to fly at an altitude of 150 to 300 feet AGL and a speed of 59 mph towards the nest.

Landing

Upon reaching the nest, the UA slowly descends over its assigned landing pad and lands on the pad.

Remote Pickup Operations

Remote pickup operations from each nest would be supported at up to 12 partner establishments depending upon demand and nest capacity. Pickup operations would follow general flight phases and parameters identical to typical delivery operations and would include the addition of a pickup phase. The pickup phase is similar to the delivery phase. The UA descends from its close transit altitude (safe altitude above local terrain and obstacles) to 14.5 feet AGL and lowers the package hook. The UA then passes approximately 10 feet laterally over the autoloader. The autoloader's Y-shaped poles passively guide the package hook to a narrow slot that ensures secure attachment of the package. The package is then retracted to the UA before it proceeds to climb to the enroute altitude. Remote pickup operations from descent to finish are expected to take no longer than 1 minute and 30 seconds (90 seconds). Delivery, en route return, and landing operations would then occur as described above.

Project Effects

Wing Infrastructure

Nests would be located in commercially zoned areas within parking lots of shopping centers and large individual retailers. *Infrastructure for this project would consist almost entirely of pre-existing hardstand and would involve no ground disturbance.* The only aboveground structures would consist of autoloaders no more than 10 feet in height and seven feet wide. Therefore, it is possible that installation of Wing infrastructure could incur a minor visual effect on historic properties if those properties are within the viewshed of the autoloaders. Historic properties would be considered noise-sensitive areas requiring a standoff distance of 65 feet between nests and historic properties (120 feet if located within the controlled surface area of Class B, Class C, and Class D airspace) and 45 feet between autoloader locations and historic properties (80 feet if located within the controlled surface area of Class B, Class C, and Class D airspace), thus avoiding or minimizing potential visual and audible effects.

Flight Operations

Wing UAs would fly at altitudes of between 150 and 300 feet at a speed of 59 miles per hour; for comparison, the usual cruising speed for most birds ranges from 20 to 30 miles per hour. UA flights would be visible as small airborne objects flying at about twice the speed of bird flight. Therefore, visual effects of en route flight operations would be rapid, intermittent, and barely noticeable. Takeoff, loading, and delivery operations would involve UAs hovering close to the ground surface for approximately 30 seconds before ascending to flight altitude. UA takeoff and loading operations would occur at least 300 feet away from any historic properties based on required standoff distances from historic properties and other noise-sensitive locations. However, deliveries may occur at or adjacent to historic properties and would involve the UA hovering at 23 feet AGL for approximately 30 seconds.

FAA conducted a noise analysis using sound level measurement data for the UA Hummingbird 7000W-B and the 8000-A to determine potential audible effects from flight operations. **Table 1** provides noise data for both 7000W-B and 8000-A.

UAS	Estimated maximum SEL (dB) (takeoff, delivery, and landing) ¹	Average SEL (dBA) (en route with package)	Average SEL (dBA) (en route without package	Nominal cruise speed (knots)	Altitude (AGL)
7000W-B	83.4 dB	56.5 dBA	52.8 dBA	50.5	165 ft
8000-A	83.6 dB	62.0 dBA	60.0 dBA	50.5	165 ft

Table 1. Sound Level Test Results, Model 7000W-B and 8000-A

1) Takeoff, delivery, and landing SELs measured 50 ft from nest location. AGL = above ground level; dB = decibels; dBA = A-weighted decibels; ft = feet; SEL = Sound Exposure Level

As an explanation of this table, dBA stands for A-weighted decibels, a unit of measurement which approximates the sensitivity of the human ear. This is a logarithmic scale, meaning that a 10-dBA increase is the equivalent of doubling loudness of a noise. Noise for takeoff, delivery, and landing for both Wing UA types is less than 84 dB SEL for 30 seconds, approximating the noise level of a freight train at a 100-foot distance from an observer. Flight operations for the 7000W-B UA model at 165 feet AGL is 56.5 dBA SEL, approximating the noise level inside an average urban residence. The flight operations of the 8000-A model is 62.0 dBA, approximating the noise level of a conversation heard from a 3-foot distance. Predicted sound levels decrease as distances from the UA increase. Overall, audible effects of flight operations would be intermittent. Most operational noise levels would be non-intrusive except for takeoff and loading (which would be either 120 feet or 65 feet away from historic properties) and deliveries, which may occur at historic properties intermittently for 30 to 90 seconds per operation.

In conclusion, Wing flight operations would only incur intermittent and minor visual and audible effects on historic properties.

Area of Potential Effects

In accordance with 36 CFR § 800.4(a)(1), the FAA has defined the Area of Potential Effects (APE) in consideration of the undertaking's potential direct and indirect effects. The APE is the operating area outlined in red in **Attachment A**. The operating area would stretch from the west coast of Florida, along the Gulf of Mexico, to the east coast of Florida, along the Atlantic Ocean, and would be approximately 14,168 square miles.

Identification of Historic Properties

The proposed undertaking does not have the potential to affect below-ground or archaeological resources because the undertaking does not include ground disturbance. Therefore, the FAA focused its identification efforts on aboveground historic properties.

FAA is taking into account the magnitude and nature of the undertaking and the nature and extent of potential effects on historic properties in this identification effort pursuant to 36 CFR § 800.4(b)(1). Given the massive geographic area of the project (the entirety or portions of 21 counties in Florida), its light infrastructure footprint, and intermittent, short-term, minor visual and audible effects, FAA has determined that a reasonable and good faith effort for identification will consist of a review of existing information on historic properties within the APE utilizing the National Park Service (NPS) National Register of Historic Places (NRHP) online database. A review of this database identified 626 individual historic properties and 157 historic districts listed in the NRHP (mostly for architectural significance) and located in the APE (see **Attachment C**). Thirteen historic properties are National Historic Landmarks

(NHLs) and are denoted in the "Name" field of the table in Attachment C with an (NHL) after the resource name.

Most of the historic properties in the APE are residences and businesses, but also include churches, government buildings, schools, and courthouses. Additional historic properties include a steam locomotive, railway, two bridges, and a pump station.

Assessment of Effects

Pursuant to 36 CFR § 800.5(a), FAA applied the criteria of adverse effects to historic properties in the APE. Establishment of Wing nests would involve no ground disturbance and would have no effect on subsurface historic properties. The nests themselves will utilize extant parking areas. There are potential minor visual effects to aboveground historic properties through installation of autoloaders, but because historic properties, including NHLs, would be considered noise-sensitive areas, there would be a standoff distance of at least 45/80 feet between an autoloader and a historic property. With an autoloader height of 10 feet, this would incur only a minor visual effect should a historic property be within viewshed of an autoloader site.

Given the small size of the UA and predicted sound levels, UA operations would not produce vibrations that could affect the architectural structure or contents of any structure in the APE. While the UA is not expected to generate significant noise levels at or within any historic property, the FAA considered UA delivery noise and potential visual effects on historic properties where a quiet setting or visually unimpaired sky might be a key attribute of the property's significance. However, any visual or audible effects that may occur within a flight path would be negligible and temporary.

Taking into account the minimal infrastructure required for the project, consideration of historic properties in the OpSpecs as noise-sensitive areas, and the temporary nature of potential audible and visual effects, the FAA determined that the undertaking's effects do not meet the criteria in 36 CFR § 800.5(a)(1). Therefore, FAA has made a finding of **no adverse effect** to historic properties pending consultation with the SHPO and other consulting parties.

Consultation

In June 2024, FAA initiated government-to-government consultation regarding the proposed undertaking with the Coushatta Tribe of Louisiana, Miccosukee Tribe of Indians, Muscogee (Creek) Nation, and in September 2024 FAA initiated government-to-government consultation with the Seminole Tribe of Florida (Tampa Reservation) and the Seminole Nation of Oklahoma via hard copy letter and email. FAA invited the Tribes to provide input to inform the NEPA and Section 106 review and consultation processes, including information about any Tribal lands or sites of religious or cultural significance that may be affected by the proposed undertaking. As of December 18, 2024, no responses have been received.

FAA will utilize the NEPA process to invite comment from both the public and local governments within the APE on the FAA's Section 106 finding of *no adverse effect* for this project. FAA welcomes input from the SHPO on additional consulting parties that may be invited to consult under Section 106.

In accordance with 36 CFR § 800.10, should an undertaking incur direct and adverse effects on an NHL, the FAA must notify the National Park Service (NPS) of any consultation regarding an NHL, and request Advisory Council on Historic Preservation (Council) participation in consultation to resolve adverse

effects. However, because the FAA has determined that this project will result in no adverse effect to any NHLs, the FAA is not extending consultation invitations to either the NPS or the Council at this time.

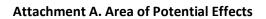
Conclusion

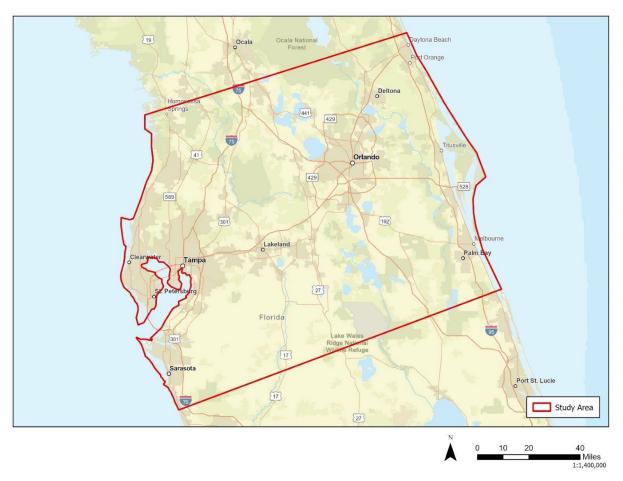
The FAA requests your concurrence on the definition of the APE and finding of *no adverse effect to historic properties.* Your response within the next 30 days will greatly assist us in our environmental review process.

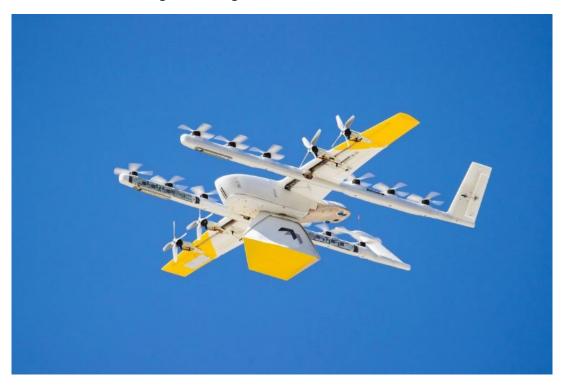
If you have any questions or need additional information, please contact Dr. Shelia Neumann or Christopher Hurst via email at <u>9-FAA-DRONE-Environnmental@faa.gov</u>.

Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service


Enclosures:


Attachment A. Area of Potential Effects


Attachment B. Wing's Hummingbird 7000W-B and 8000-A Unmanned Aircraft

Attachment C. Historic Properties

Attachment D. Historic Districts

Attachment B. Wing's Hummingbird 7000W-B and 8000-A Unmanned Aircraft

Figure 1. Wing Hummingbird 7000W-B UA

Figure 2. Wing Hummingbird 8000-A UA

Figure 3. Wing Hummingbird and Autoloader

Reference	Name	Address	City	County
Number			,	
91001541	Aladdin Theater	300 Brevard Ave.	Cocoa	Brevard
	Central Instrumentation	NASA, John F. Kennedy	Kennedy	
99001635	Facility	Space Center	Space Center	Brevard
	City Point Community			
95000731	Church	3783 N. Indian River Dr.	Cocoa	Brevard
100003581	Cocoa Junior High School	307 Blake Ave.	Cocoa	Brevard
100003582	Cocoa Post Office	435 Brevard Ave.	Cocoa	Brevard
	Community Chapel of		Melbourne	
92000505	Melbourne Beach	501 Ocean Ave.	Beach	Brevard
		NASA, John F. Kennedy	Kennedy	
99001641	Crawlerway	Space Center	Space Center	Brevard
97001121	Field, J.R., Homestead	750 Field Manor Dr.	Indianola	Brevard
	Florida Power and Light			
82001033	Company Ice Plant	1604 S. Harbor City Blvd.	Melbourne	Brevard
	Gleason, William H.,			
96001608	House	1736 Pineapple Ave.	Melbourne	Brevard
16000269	Green Gables	1501 South Harbor City	Melbourne	Brevard
		NASA, John F. Kennedy	Kennedy	
99001644	Headquarters Building	Space Center	Space Center	Brevard
93000819	Hill, Dr. George E., House	870 Indianola Dr.	Merritt Island	Brevard
95000913	Hotel Mims	3202 FL46	Mims	Brevard
	Imperial Towers	2825 South Washington		
100006776	Apartments	Ave.	Titusville	Brevard
94000358	Indian Fields	Address Restricted	Titusville	Brevard
99000711	Jorgensen's General Store	5390 US 1	Grant	Brevard
	La Grange Church and			
95001413	Cemetery	1575 Old Dixie Hwy.	Titusville	Brevard
73000568	Launch Complex 39	Kennedy Space Center	Titusville	Brevard
		NASA, John F. Kennedy	Kennedy	
99001645	Launch Control Center	Space Center	Space Center	Brevard
		Ocean Ave. and Riverside	Melbourne	
84000829	Melbourne Beach Pier	Dr.	Beach	Brevard
	Missile Crawler	NASA, John F. Kennedy	Kennedy	
99001643	Transporter Facilities	Space Center	Space Center	Brevard
78000262	Old Haulover Canal	Address Restricted	Merrit Island	Brevard
	Operations and Checkout	NASA, John F. Kennedy	Kennedy	
99001636	Building	Space Center	Space Center	Brevard
94000357	Persimmon Mound	Address Restricted	Rockledge	Brevard
86000023	Porcher House	434 Delannoy Ave.	Cocoa	Brevard
	Press Site-Clock and Flag	NASA, John F. Kennedy	Kennedy	
99001637	Pole	Space Center	Space Center	Brevard
89002167	Pritchard House	424 S. Washington Ave.	Titusville	Brevard

Attachment C. Historic Properties

Reference Number	Name	Address	City	County
	Robbins, Judge George,			
89002168	House	703 Indian River Ave.	Titusville	Brevard
	Rossetter, James			
05000734	Wadsworth, House	1328 Houston St.	Melbourne	Brevard
89002166	Spell House	1200 Riverside Dr.	Titusville	Brevard
	St. Gabriel's Episcopal			
72000302	Church	414 Palm Ave.	Titusville	Brevard
	St. Joseph's Catholic			
87000816	Church	Miller St., NE	Palm Bay	Brevard
	St. Luke's Episcopal			
	Church and Cemetery,			
90000848	Old	5555 N. Tropical Trail	Courteney	Brevard
	Vehicle Assembly			
	Building-High Bay and Low	NASA, John F. Kennedy	Kennedy	
99001642	Bay	Space Center	Space Center	Brevard
89002165	Wager House	621 Indian River Ave.	Titusville	Brevard
	Windover Archeological			
87000810	Site (8BR246) (NHL)	Address Restricted	Titusville	Brevard
13000163	Johnson-Smith House	1519 N Arcadia Ave.	Arcadia	De Soto
	Pine Level Acheological			
14000618	District (8DE14)	Address Restricted	Arcadia	De Soto
	Ralls, William Oswell,			
11000001	House	640 W. Whidden St.	Arcadia	De Soto
	Singleton, Micajah T.,			
13000578	House	711 W. Hickory St.	Arcadia	De Soto
	Payne's Creek Massacre-		Bowling	
78000944	Fort Chokonikla Site	Address Restricted	Green	Hardee
	Chinsegut Hill Manor			
03001171	House	22495 Chinsegut Hill Rd.	Brooksville	Hernando
	Jennings, William			
98001252	Sherman, House	48 Olive St.	Brooksville	Hernando
97000210	May-Stringer House	601 Museum Crt.	Brooksville	Hernando
	Richloam General Store	38219 Richloam Clay		
100001734	and Post Office	Sink Rd.	Webster	Hernando
	Russell, Judge Willis,			
99000046	House	201 S. Main St.	Brooksville	Hernando
98001321	Saxon, Frank, House	200 Saxon Ave.	Brooksville	Hernando
100005385	Sinclair Service Station	5299 Commercial Way	Spring Hill	Hernando
	Spring Lake Community			
09000843	Center	4184 Spring Lake Hwy.	Brooksville	Hernando
	Archbold Biological			
07000698	Station at Red Hill	123 Main Dr.	Venus	Highlands
89001009	Central Station	301 N. Mango St.	Sebring	Highlands
93001119	Haines, Elizabeth, House	605 Summit Dr.	Sebring	Highlands

89001010 Hainz, Edward, House 155 W. Center Ave. Sebring Highlands 90000341 Harder Hall 3300 Golfview Dr. Sebring Highlands 89001013 Courthouse 430 S. Commerce Ave. Sebring Highlands 89001013 Courthouse 430 S. Commerce Ave. Sebring Highlands 00000661 Kenilworth Lodge 836 South Lakeview Dr. Sebring Highlands 0200173 Railroad Depot, Old 19 Park Ave. W. Lake Placid Highlands 00000266 Pincerest Hotel, Old 1609 S. Lake Lotela Dr. Avon Park Highlands 00000257 Santa Rosa Hotel 509 N. Ridgewood Sebring Highlands 89001011 Vinson, Paul L, House 309 N. Lake View Dr. Sebring Highlands 82002375 Anderson-Frank House 341 Plant Ave. Tampa Hillsborough 82001009 Bing Rooming House 205 S. Allen St. Plant City Hillsborough 72000320 Circulo Cubano de Tampa 101 Nebraska Ave. Tampa Hillsborough	Reference Number	Name	Address	City	County
90000341Harder Hall3300 Golfview Dr.SebringHighlands89001013Courthouse430 S. Commerce Ave.SebringHighlands100005241Highvay Park CemeteryCrestmore Dr.Lake PlacidHighlands00000661Kenilworth Lodge836 South Lakeview Dr.SebringHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Axon ParkHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Axon ParkHighlands00000257Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle Commercial341 Plant Ave.TampaHillsborough92001709Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough73003579Cockroach KeyAddress RestrictedRuskinHillsborough78000976Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.Tampa		Hainz, Edward, House	155 W. Center Ave.	Sebring	Highlands
Highlands County Courthouse430 S. Commerce Ave.SebringHighlands100005241Highway Park Cemetery Crestmore Dr.Lake PlacidHighlands00000661Kenilworth Lodge836 South Lakeview Dr.SebringHighlands10000266Pinecrest Hotel, Old19 Park Ave. W.Lake PlacidHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Avon ParkHighlands100000257Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle Commercial Bay Isle Commercial205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough73000579Cockroach Key101 hAve. and 14th St.TampaHillsborough78000946Fgmont Keyto Tampa BayTampaHillsborough78000946Fgmont Keyto Tampa BayTampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough72000320Circulo Espanol de 	90000341		3300 Golfview Dr.	-	
202, 204, and 206100005241Highway Park CemeteryCrestmore Dr.Lake Placid00000661Kenilworth Lodge836 South Lakeview Dr.SebringHighlands1ake Placid A C. LRailroad Depot, Old19 Park Ave. W.Lake PlacidHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Avon ParkHighlands10000057Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsborough8y00971Building238 E. Davis Blvd.TampaHillsborough92001030Bing Rooming House205 S. Allen St.Plant CityHillsborough7400631Centro Asturiano1913 Nebraska Ave.TampaHillsborough7300579Cockroach KeyAddress RestrictedRuskinHillsborough87001424Curtis, William E, House808 E Curtis St.TampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough740006321El Centro Espanol of WestTampaTampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough740		Highlands County			
100005241Highway Park CemeteryCrestmore Dr.Iake PlacidHighlands00000661Kenilworth Lodge836 South Iakeview Dr.SebringHighlands1ake Placid A C. L.19 Park Ave. W.Iake PlacidHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Avon ParkHighlands100000957Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L., House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsborough82001009Bing Rooming House205 S. Allen St.Plant CityHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., House808 E. Curtis St.TampaHillsborough87001424Curtis, William E, House808 E. Curtis St.TampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000631E. Frank J., House120 Dickman Dr., SERuskinHillsborough7200320Cista, Dr. Frank J., House120 Dickman Dr., SERuskinHillsborough7200321E. Centro Espanol de15261536 E. Seventh	89001013	÷ .	430 S. Commerce Ave.	Sebring	Highlands
00000661Kenilworth Lodge836 South Lakeview Dr.SebringHighlands1ake Placid A C. LRailroad Depot, Old19 Park Ave. W.Lake PlacidHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Avon ParkHighlands100000957Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake Vew Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Lake Vew Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsborough8200971Building238 E. Davis Blvd.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough87001424Curtis, William E, House808 E. Curtis St.TampaHillsborough8801823Tampa (NHL)Ave.TampaHillsborough74000632Ecurto Espanol de1526–1536 E. SeventhHillsborough74000632Tampa (NHL)Ave.TampaHillsborough74000632Figmont Key2306 N. Howard St.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough74000632Harapa (NHL)Ave.TampaHillsborough74000632Tampa2306 N. How			202, 204, and 206		
Iake Placid A C. L19 Park Ave. W.Iake PlacidHighlands92001733Railroad Depot, Old19 Park Ave. W.Iake PlacidHighlands00000266Pinecrest Hotel, Old1609 S. Iake Lotela Dr.Avon ParkHighlands100000957Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Iake View Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Iake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle CommercialBay Isle CommercialBay Isle CommercialHillsborough89000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough87001424Curtis, William E, House808 E. Curtis St.TampaHillsborough78000946Egmont Keyto Tampa BayTampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Echtro Espanol de Tampa1526–1536 E. Seventh TampaHillsborough74000632TampaHillsboroughTampaHillsborough7200321El Centro Espanol of WestTampaHillsborough7200321El Centro Espanol of WestTampaHillsborough74000632Tampa1526–1536 E. S	100005241	Highway Park Cemetery		Lake Placid	Highlands
92001733Railroad Depot, Old19 Park Ave. W.Lake PlacidHighlands00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Avon ParkHighlands10000957Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle Commercial238 E. Davis Blvd.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J, House808 E. Curtis St.TampaHillsborough87001424Curtis, William E, House808 E. Curtis St.TampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Egmont Keyto Tampa BayTampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough7200321El Pasaje14th St.	00000661	Kenilworth Lodge	836 South Lakeview Dr.	Sebring	Highlands
00000266Pinecrest Hotel, Old1609 S. Lake Lotela Dr.Avon ParkHighlands100000957Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Is le Commercial </td <td></td> <td></td> <td></td> <td></td> <td></td>					
100000957Santa Rosa Hotel509 N. RidgewoodSebringHighlands89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L., House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle Commercial341 Plant Ave.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough87001424Curtis, William E, House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsborough88011823Tampa (NHL)Ave.TampaHillsborough7200321El Centro Espanol of WestTampaTampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough7200321Episcopal House of Prayer2708 Central Ave.TampaHillsborough7200321Episcopal House of Prayer2708 Central Ave.TampaHillsborough7200321Episcopal House of Prayer2708 Central Ave.TampaHillsborough	92001733	Railroad Depot, Old	19 Park Ave. W.	Lake Placid	Highlands
89001012Sebring, H. Orvel, House483 S. Lake View Dr.SebringHighlands89001011Vinson, Paul L, House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle Commercial341 Plant Ave.TampaHillsborough89000971Building238 E. Davis Blvd.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough7200320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough0000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa15261536 E. SeventhHillsborough7200321El Centro Espanol of WestTampaTampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough91000105Fpiscopal House of Prayer2708 Central Ave.TampaHillsborough	00000266	Pinecrest Hotel, Old	1609 S. Lake Lotela Dr.	Avon Park	Highlands
89001011Vinson, Paul L, House309 N. Lake View Dr.SebringHighlands82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle CommercialBay Isle CommercialTampaHillsborough9000971Building238 E. Davis Blvd.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J, HouseDr.TampaHillsborough87001424Curtis, William E, House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough72000321El Centro Espanol of WestTampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough91000105Fpiscopal House of Prayer2708 Central Ave.TampaHillsborough	100000957	Santa Rosa Hotel	509 N. Ridgewood	Sebring	Highlands
82002375Anderson-Frank House341 Plant Ave.TampaHillsboroughBay Isle CommercialBay Isle Commercial338 E. Davis Blvd.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough74000632Tampa (NHL)Ave.TampaHillsborough74000632Tampa15261536 E. SeventhHillsborough74000632Tampa14th St. and Palm Ave.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough7200321Episcopal House of Prayer2708 Central Ave.TampaHillsborough7200321Episcopal House of Prayer2708 Central Ave.TampaHillsborough	89001012	Sebring, H. Orvel, House	483 S. Lake View Dr.	Sebring	Highlands
Bay Isle CommercialBay Isle Commercial89000971Building238 E. Davis Blvd.Tampa02001009Bing Rooming House205 S. Allen St.Plant City74000631Centro Asturiano1913 Nebraska Ave.Tampa72000320Circulo Cubano de Tampa10th Ave. and 14th St.Tampa73000579Cockroach KeyAddress RestrictedRuskin100003022Costa, Dr. Frank J., HouseDr.Tampa100003022Costa, Dr. Frank J., House808 E. Curtis St.Tampa10000786Dickman, A.P., House120 Dickman Dr., SERuskin78000946Egmont Keyto Tampa BayTampa8801823Tampa (NHL)Ave.Tampa12000321El Centro Espanol de15261536 E. Seventh74000632Tampa2306 N. Howard St.Tampa7200321El Pasaje14th St. and Palm Ave.Tampa91000105Episcopal House of Prayer2708 Central Ave.Tampa91000105Episcopal House of Prayer2708 Central Ave.Tampa91000105Episcopal House of Prayer2708 Central Ave.Tampa	89001011	Vinson, Paul L, House	309 N. Lake View Dr.	Sebring	Highlands
89000971Building238 E. Davis Blvd.TampaHillsborough02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	82002375	Anderson-Frank House	341 Plant Ave.	Tampa	Hillsborough
02001009Bing Rooming House205 S. Allen St.Plant CityHillsborough74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsboroughEl Centro Espanol de15261536 E. SeventhHillsboroughHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough7200321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsboroughFederal Building, U.S.KeyKeyKeyKey		Bay Isle Commercial			
74000631Centro Asturiano1913 Nebraska Ave.TampaHillsborough72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough9100105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	89000971	Building	238 E. Davis Blvd.	Tampa	Hillsborough
72000320Circulo Cubano de Tampa10th Ave. and 14th St.TampaHillsborough73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough7800946Egmont Keyto Tampa BayTampaHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough91001105Federal Building, U.S.VS.VSVSVS	02001009	Bing Rooming House	205 S. Allen St.	Plant City	Hillsborough
73000579Cockroach KeyAddress RestrictedRuskinHillsborough100003022Costa, Dr. Frank J., House16116 Lake MagdaleneImage: TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough00000786Egmont Keyto Tampa BayTampaHillsborough88001823El Centro Espanol de15261536 E. SeventhHillsborough88001823Tampa (NHL)Ave.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsboroughFederal Building, U.S.Image: TampaHillsboroughImage: Tampa	74000631	Centro Asturiano	1913 Nebraska Ave.	Tampa	Hillsborough
100003022Costa, Dr. Frank J., House16116 Lake MagdaleneTampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsboroughEl Centro Espanol de15261536 E. SeventhHillsboroughHillsborough88001823Tampa (NHL)Ave.TampaHillsboroughFel Centro Espanol of West2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	72000320	Circulo Cubano de Tampa	10th Ave. and 14th St.	Tampa	Hillsborough
100003022Costa, Dr. Frank J., HouseDr.TampaHillsborough87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsboroughEl Centro Espanol de15261536 E. SeventhHillsborough88001823Tampa (NHL)Ave.TampaHillsboroughEl Centro Espanol of West2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	73000579	Cockroach Key	Address Restricted	Ruskin	Hillsborough
87001424Curtis, William E., House808 E. Curtis St.TampaHillsborough00000786Dickman, A.P., House120 Dickman Dr., SERuskinHillsborough78000946Egmont Keyto Tampa BayTampaHillsborough88001823El Centro Espanol de15261536 E. SeventhHillsborough88001823Tampa (NHL)Ave.TampaHillsborough12000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough			16116 Lake Magdalene		
00000786Dickman, AP., House120 Dickman Dr., SERuskinHillsborough78000946Egmont KeyWof Tampa at entranceHillsborough78000946Egmont Keyto Tampa BayTampaHillsboroughEl Centro Espanol de15261536 E. SeventhHillsborough88001823Tampa (NHL)Ave.TampaHillsboroughEl Centro Espanol of West2306 N. Howard St.TampaHillsborough74000632Tampa14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	100003022	Costa, Dr. Frank J., House	Dr.	Tampa	Hillsborough
78000946Egmont KeyW of Tampa at entrance to Tampa BayTampaHillsborough88001823El Centro Espanol de Tampa (NHL)15261536 E. Seventh Ave.TampaHillsboroughEl Centro Espanol of WestTampaIllsboroughHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	87001424	Curtis, William E., House	808 E. Curtis St.	Tampa	Hillsborough
78000946Egmont Keyto Tampa BayTampaHillsboroughEl Centro Espanol de15261536 E. Seventh88001823Tampa (NHL)Ave.TampaHillsboroughEl Centro Espanol of West74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsborough	00000786	Dickman, A.P., House	120 Dickman Dr., SE	Ruskin	Hillsborough
El Centro Espanol de 8800182315261536 E. Seventh Ave.TampaBil Centro Espanol of WestAve.TampaEl Centro Espanol of West2306 N. Howard St.Tampa74000632Tampa2306 N. Howard St.Tampa72000321El Pasaje14th St. and Palm Ave.Tampa91000105Episcopal House of Prayer2708 Central Ave.TampaFederal Building, U.S.ImageImage			Wof Tampa at entrance		
88001823Tampa (NHL)Ave.TampaHillsboroughEl Centro Espanol of West2306 N. Howard St.TampaHillsborough74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsboroughFederal Building, U.S.ImageImageImageImage	78000946		<u> </u>	Tampa	Hillsborough
El Centro Espanol of WestI74000632Tampa2306 N. Howard St.Tampa72000321El Pasaje14th St. and Palm Ave.Tampa91000105Episcopal House of Prayer2708 Central Ave.TampaFederal Building, U.S.II		1	15261536 E. Seventh		
74000632Tampa2306 N. Howard St.TampaHillsborough72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsboroughFederal Building, U.S.Federal Building, U.S.Federal Building, U.S.Federal Building, U.S.	88001823		Ave.	Tampa	Hillsborough
72000321El Pasaje14th St. and Palm Ave.TampaHillsborough91000105Episcopal House of Prayer2708 Central Ave.TampaHillsboroughFederal Building, U.S.Federal Building, U.S.Federal Building, U.S.Federal Building, U.S.	5 4000(2 0	_		T	TT'11 1 1
91000105Episcopal House of Prayer2708 Central Ave.TampaHillsboroughFederal Building, U.S. </td <td></td> <td>*</td> <td></td> <td></td> <td>Ũ</td>		*			Ũ
Federal Building, U.S.				Â	
e	91000105		2708 Central Ave.	Tampa	Hillsborough
Courthouse, Downtown		C			
	74000622		601 Florida Ara	Tamac	Uillaharayah
				Â	U U
100008119Federal Office Building500 East Zack St.TampaHillsboroughFirst Federal Savings and </td <td>100008119</td> <td></td> <td>JUU East Zack St.</td> <td>lampa</td> <td>Hillsborough</td>	100008119		JUU East Zack St.	lampa	Hillsborough
Loan Association of		•			
100003023 Tampa 220 East Madison St. Tampa Hillsborough	100003023		220 Fast Madison St	Tampa	Hillsborough
1000030231ampa111150104gff96000315Floridan Hotel905 N. Florida Ave.TampaHillsborough				Â	-
72000314Fort Foster9 mi. S of ZephyrhillsZephyrhillsHillsborough				Â	e e
Fort Homer W. Hesterly 9 Int. S of Zephyrinins Zephyrinins Hinsborough	12000324				Thisoolough
13000852 National Guard Armory 522 N. Howard Ave. Tampa Hillsborough	13000852	•	522 N Howard Ave	Tampa	Hillsborough

Reference Number	Name	Address	City	County
03001013	Gardner, Isaac Sr., House	209 W. Palm Ave.	Tampa	Hillsborough
		5110 Horton Rd.,		
01001307	Glover School	Bealsville	Plant City	Hillsborough
06000193	Guida, George, Sr., House	1516 N. Renfrew Ave.	Tampa	Hillsborough
	Hillsboro State Bank			
84000868	Building	121 N. Collins St.	Plant City	Hillsborough
	Hillsborough County High			
07000423	School, Old	2704 N. Highland Ave.	Tampa	Hillsborough
	House at 100 West Davis			
89000972	Boulevard	100 W. Davis Blvd.	Tampa	Hillsborough
	House at 116 West Davis		_	
89000973	Boulevard	116 W. Davis Blvd.	Tampa	Hillsborough
89000957	House at 124 Baltic Circle	124 Baltic Cir.	Tampa	Hillsborough
89000958	House at 125 Baltic Circle	125 Baltic Cir.	Tampa	Hillsborough
	House at 131 West Davis			
89002161	Boulevard	131 W. Davis Blvd.	Tampa	Hillsborough
89000959	House at 132 Baltic Circle	132 Baltic Cir.	Tampa	Hillsborough
	House at 161 Bosporous			
89000963	Avenue	161 Bosporous Ave.	Tampa	Hillsborough
	House at 190 Bosporous	100 5	_	
89000964	Avenue	190 Bosporous Ave.	Tampa	Hillsborough
2000007	House at 200 Corsica	200 0	T	TT'11 1 1
89000967	Avenue	200 Corsica Ave.	Tampa	Hillsborough
80000060	House at 202 Blanca	202 Blanca Ave.	T	I Ellah anan ah
89000960	Avenue House at 220 Blanca	202 Dianca Ave.	Tampa	Hillsborough
89000961	Avenue	220 Blanca Ave.	Tampa	Hillsborough
89000901	House at 301 Caspian	220 Dianea Ave.	lampa	Thilsbolough
89000965	Street	301 Caspian St.	Tampa	Hillsborough
0,000,00	House at 36 Aegean	501 Cuspilin St.	lumpu	Thilboorough
89001964	Avenue	36 Aegean Ave.	Tampa	Hillsborough
	House at 36 Columbia			6
89000966	Drive	36 Columbia Dr.	Tampa	Hillsborough
	House at 418 Blanca		^	
89000962	Avenue	418 Blanca Ave.	Tampa	Hillsborough
	House at 53 Aegean			
89000955	Avenue	53 Aegean Ave.	Tampa	Hillsborough
	House at 59 Aegean			
89000956	Avenue	59 Aegean Ave.	Tampa	Hillsborough
	House at 84 Adalia			
89000953	Avenue	84 Adalia Ave.	Tampa	Hillsborough
	House at 97 Adriatic			
89000954	Avenue	97 Adriatic Ave.	Tampa	Hillsborough
77000404	Hutchinson House	304 Plant Ave.	Tampa	Hillsborough

Reference Number	Name	Address	City	County
07000112	Jackson Rooming House	851 Zack St.	Tampa	Hillsborough
	Jackson, Capt. William			6
11000159	Parker, House	800 E Lambright St	Tampa	Hillsborough
74000634	Johnson-Wolff House	6823 S. DeSoto St.	Tampa	Hillsborough
	Kress, S.H., and Co.		^	
83001424	Building	811 N. Franklin St.	Tampa	Hillsborough
		Kennedy Blvd. &		
100002094	Lafayette Street Bridge	Hillsborough R.	Tampa	Hillsborough
07001049	Lamb, AM, House	2410 W Shell Rd.	Ruskin	Hillsborough
88001697	LeClaire Apartments	30133015 San Carlos	Tampa	Hillsborough
74000635	Leiman House	716 S. Newport St.	Tampa	Hillsborough
96000852	Lutz Elementary School, Old	18819 US 41, N.	Lutz	Hillsborough
86002415	Masonic Temple No. 25	508 E. Kennedy Blvd.	Tampa	Hillsborough
00002115	Meacham Elementary		lumpu	Thilsborough
05001041	School	1225 India St.	Tampa	Hillsborough
		Columbus Dr. over the	1	8
100001669	Michigan Avenue Bridge	Hillsborough R.	Tampa	Hillsborough
	Miller, George McA,		^	
74000630	House	508 Tamiami Trail	Ruskin	Hillsborough
85000159	Moseley Homestead	Address Restricted	Brandon	Hillsborough
00001198	Old People's Home	1203 E. 22nd Ave.	Tampa	Hillsborough
		Lafayette St., University		
74000636	Old School House	of Tampa campus	Tampa	Hillsborough
	Old Tampa Children's			
99000863	Home	3302 N. Tampa Ave.	Tampa	Hillsborough
1 4000001	Original Rogers Park Golf			TT'11 1 1
14000901	Course Site	7801 N. 30th St.	Tampa	Hillsborough
80000070	Palace of Florence	45 E Durin Direl	T	TT'11-11-
89000969	Apartments	45 E. Davis Blvd.	Tampa	Hillsborough
89000970	Palmerin Hotel	115 E. Davis Blvd.	Tampa	Hillsborough
13000811	Perry Harvey Sr. Park Skateboard Bowl	900 E. Scott St.	Tompo	Hillsborough
81000194	Plant City High School	N. Collins St.	Tampa Plant City	Hillsborough Hillsborough
75000558	Plant City High School Plant City Union Depot	E. North Drane St.	Plant City Plant City	Hillsborough
	Robles, Horace T., House		5	
06000091	Robles, Horace I., House Roosevelt Elementary	2604 E. Hanna Ave.	Tampa	Hillsborough
06000443	School	3205 S. Ferdinand Ave.	Tampa	Hillsborough
89000968	Spanish Apartments	16 E. Davis Blvd.	Tampa	Hillsborough
	SS AMERICAN VICTORY	705 Channelside Dr,		
01001533	(Victory ship)	Berth 271	Tampa	Hillsborough
09000200	St. Andrews Episcopal Church	505 N. Marion St.	Tampa	Hillsborough

Reference Number	Name	Address	City	County
Number	Standard Oil Service			
96000974	Station	1111 N. Wheeler St.	Plant City	Hillsborough
74000637	Stovall House	4621 Bayshore Blvd.	Tampa	Hillsborough
74000638	Taliaferro, T. C., House	305 S. Hyde Park	Tampa	Hillsborough
72000322	Tampa Bay Hotel (NHL)	401 W. Kennedy Blvd.	Tampa	Hillsborough
		315 John F. Kennedy		
74000639	Tampa City Hall	Blvd., E.	Tampa	Hillsborough
	Tampa Free Public Library,			
91000618	Old	102 E. Seventh Ave.	Tampa	Hillsborough
	Tampa Theater and Office			
78000945	Building	711 Franklin St.	Tampa	Hillsborough
85002178	Tampania House	4611 N. ASt.	Tampa	Hillsborough
	Temple Terrace Golf		Temple	
12000888	Course	200 Inverness Ave.	Terrace	Hillsborough
	Turkey Creek High School,			
01000177	Historic	5005 Turkey Creek Rd., S	Plant City	Hillsborough
	U.S.S. NARCISSUS	2.75 mi. NW of Egmont		
100003048	(tugboat) Shipwreck	Кеу	Crystal River	Hillsborough
00001228	Union Depot Hotel, Old	858 E. Zack St.	Tampa	Hillsborough
74000640	Union Railroad Station	601 N. Nebraska St.	Tampa	Hillsborough
		7th Ave. between 13th		
72000323	Ybor Factory Building	and 14th Sts.	Tampa	Hillsborough
	Driftwood Inn and			
94000751	Restaurant	3150 Ocean Dr.	Vero Beach	Indian River
96001059	Fell, Marian, Library	63 N. Cypress St.	Fellsmere	Indian River
96001368	Fellsmere Public School	22 S. Orange St.	Fellsmere	Indian River
	First Methodist Episcopal			
96001521	Church	39 N. Broadway	Fellsmere	Indian River
	Gregory, Judge Henry F.,			
94000540	House	2179 10th Ave.	Vero Beach	Indian River
0000005	TT 11 / TT	1723 SWOld Dixie	V D 1	T 1' D'
02000605	Hallstrom House	Highway	Vero Beach	Indian River
07000220	Hausmann, Theodore, Estate	4000 1 641 64	Vana Dara 1	L 1's piers a
97000230	Heiser, Frank and Stella,	4800 16th St.	Vero Beach	Indian River
100001862	House	11055 138th Ave.	Fellsmere	Indian River
100001802	Indian River County	11033 130til Ave.	Tensmere	
99000768	Courthouse	2145 14th Ave.	Vero Beach	Indian River
<i>yy</i> 000700	Courtilouse	Bet. Old Winter Bch Rd.		
		and FLA-1-Aon Orchid		
03000700	Jungle Trail	Island	Orchid	Indian River
22000700	Lawson, Bamma Vickers,			
90001116	House	1133 US 1	Sebastian	Indian River
94001274	Maher Building	1423 20th St.	Vero Beach	Indian River

Reference Number	Name	Address	City	County
97001636	McKee Jungle Gardens	350 US 1	Vero Beach	Indian River
91001650	Old Palmetto Hotel	1889 Old Dixie Hwy.	Vero Beach	Indian River
	Pelican Island National	E of Sebastian in the		
66000265	Wildlife Refuge (NHL)	Indian River	Sebastian	Indian River
97000211	Pueblo Arcade	2044 14th St.	Vero Beach	Indian River
98000925	Royal Park Arcade	1059 21st St.	Vero Beach	Indian River
100009460	Ryburn Apartments	1190 Royal Palm Blvd.	Vero Beach	Indian River
	Sebastian Grammar and	•		
01000889	Junior High School	1225 Main St.	Sebastian	Indian River
	Smith, Archie, Wholesale			
94001275	Fish Company	1740 Indian River Dr.	Sebastian	Indian River
	Spanish Fleet Survivors			
70000186	and Salvors Camp Site	Address Restricted	Sebastian	Indian River
	Treasure Hammock Ranch			
13000900	Farmstead	8005 37th St.	Vero Beach	Indian River
00001746	Vero Beach Community	0146141		T 1' D'
92001746	Building, Old	2146 14th Ave.	Vero Beach	Indian River
00000252	Vero Beach Diesel Power	1246 1041 04	V D 1	L 1's a D'ssa
99000252	Plant	1246 19th St.	Vero Beach	Indian River
95000051	Vero Beach Woman's Club	1534 21st St.	Vero Beach	Indian River
86003560	Vero Railroad Station	2336 Fourteenth Avenue	Vero Beach	Indian River
92000421	Vero Theatre	2036 14th Ave.	Vero Beach	Indian River
07001115	Blandford	28242 Lake Terry Dr.	Mount Dora	Lake
80000050	Bowers Bluff Middens			т 1
80000952	Archeological District	Address Restricted	Astor	Lake
99001298	Campbell House	3147 Co. Rd. 470	Okahumpka	Lake
92001747	Clermont Woman's Club	655 Broome St.	Clermont	Lake
75000559	Clifford House	536 N. Bay St.	Eustis	Lake
75000560	Donnelly House	Donnelly Ave.	Mount Dora	Lake
97000860	Duncan, Harry C., House	426 Lake Dora Dr.	Taveres	Lake
06000917	Edge House	1218 W. Broad St.	Groveland	Lake
	Ferran Park and the Alice			
04000605	McClelland Memorial	Jct. of Ferran Park Rd.	D	T 1
94000625	Bandshell	and Orange Ave.	Eustis	Lake
100004518	Ferran, Edgar L, House	310 E. Orange Ave.	Eustis	Lake
04000969	Harper House	17408 E. Porter Ave.	Montverde	Lake
15000783	Hill Crest	511 E. Mirror Lake Dr.	Fruitland Park	Lake
74000646	Holy Trinity Episcopal	Contra Laboration	E 41 1D 1	T - 1
74000646	Church	Spring Lake Rd.	Fruitland Park	Lake
82001426	Uoway Uouse	Citma St	Howey in the Hills	Laka
83001426	Howey House Kimball Island Midden	Citrus St.		Lake
I	Archeological Site	Address Restricted	Astor	Lake

Reference Number	Name	Address	City	County
98001199	Lake County Courthouse	315 W. Main St.	Tavares	Lake
87000481	Lakeside Inn	100 N. Alexander St.	Mount Dora	Lake
95000024	Lee School	207 N. Lee St.	Leesburg	Lake
	Methodist Episcopal		8	
99001707	Church, South, at Umatilla	100 W. Guerrant St.	Umatilla	Lake
74000647	Mote-Morris House	1021 N. Main St.	Leesburg	Lake
	Mount Dora A C. L		-	
92000099	Railroad Station, Old	341 Alexander St.	Mount Dora	Lake
	Norton, Gould Hyde,			
97000433	House	1390 E. Lakeview Dr.	Eustis	Lake
	Okahumpka Rosenwald			
100007365	School	27908 Virgil Hawkins Cir.	Okahumpka	Lake
	Pendleton, William			
83001427	Kimbrough, House	1208 Chesterfield Rd.	Eustis	Lake
04000143	Purdy Villa	3045 Eudora Rd.	Eustis	Lake
97000840	Taylor, Moses J., House	117 Diedrich St.	Eustis	Lake
	William Alfred Suggs			
100005206	Veterans of Foreign Wars	955 W (D (0)	C1 (т 1
100005386	Post 5277	855 West Desoto St.	Clermont	Lake
	Witherspoon Lodge No.			
09000346	111 Free and Accepted Masons (F&AM)	1410 N. Clayton St.	Mount Dora	Lake
91001006	Woman's Club of Eustis	227 N. Center St.	Eustis	Lake
98000062	Austin House	227 N. Center St. 227 Delmar Ave.	Sarasota	Manatee
96000358		7706 Westmoreland Dr.	1	Manatee
90000538	Beasley, John M, House Benjamin, Judah P.,	7700 westmoreland Dr.	Sarasota	Ivanatee
70000189	Memorial	3708 Patten Ave.	Ellenton	Manatee
70000107	Bradenton Carnegie	5700 Latten Ave.		Ivanatee
87000616	Library	1405 Fourth Ave. W	Bradenton	Manatee
100003409	Bradenton Woman's Club	1705 Manatee Ave. W	Bradenton	Manatee
100005105	Diddenton woman's chub	Bounded by Cortez Rd.,	Diudenton	Tranatoo
		119th St. W, Sarasota		
95000250	Cortez Historic District	Bay and 124th St. Ct. W	Cortez	Manatee
66000078	DeSoto National Memorial	5 mi. Wof Bradenton	Bradenton	Manatee
100002726	Duette School	40755 FL62	Parrish	Manatee
09000671	Helm, Johnson, House	2104 53rd St.	Bradenton	Manatee
05000844	Jordan, Rufus P., House	760 Broadway St.	Longboat Key	Manatee
96001370	Kreissle Forge	7947 Tamiami Trail	Sarasota	Manatee
,			Terra Ceia	
70000190	Madira Bickel Mounds	Address Restricted	Island	Manatee
	Manatee County			
98000676	Courthouse	1115 Manatee Ave. W	Bradenton	Manatee
	Manatee County	Manatee Ave. and 15th		
76000601	Courthouse (Original)	St.	Bradenton	Manatee

Reference Number	Name	Address	City	County
12000865	Palmetto Armory	810 6th St., W.	Palmetto	Manatee
94001475	Portavant Mound Site	Address Restricted	Palmetto	Manatee
95000555	Reasoner, Egbert, House	3004 53rd Ave. E.	Oneco	Manatee
	-	offshore of Bradenton	Bradenton	
05001355	Regina Shipwreck Site	Beach	Beach	Manatee
00001033	Reid-Woods House	373 Whitfield Ave.	Sarasota	Manatee
02001676	Richardson House	1603 1st Ave. W	Bradenton	Manatee
83001429	Seagate	6565 N. Tamiami Trail	Sarasota	Manatee
00001282	Souder, Paul M, House	242 Greenwood Ave.	Sarasota	Manatee
01000887	Stevens-Gilchrist House	235 Delmar Ave.	Sarasota	Manatee
03000942	Terra Ceia Village Improvement Association Hall	1505 Center Rd.	Terra Ceia	Manatee
00001172	Villa Serena Apartments	7014 Willow St.	Sarasota	Manatee
93001159	Whitfield Estates- Broughton Street Historic District	7207, 7211, 7215, 7219 and 7316 Broughton St.	Sarasota	Manatee
86000380	Woman's Club of Palmetto	910 Sixth St. W	Palmetto	Manatee
00000638	Armstrong House	18050 US 301 N.	Citra	Marion
93000590	Ayer, Alfred, House	US Alt. 27/441 Wof Oklawaha	Oklawaha	Marion
93000588	Ayer, Thomas R., House	11885 SE. 128th Pl.	Oklawaha	Marion
99000372	Belleview School	5343 SE Abshier Blvd.	Belleview	Marion
93000589	Bullock, Gen. Robert, House	Jct. of SE. 119th Ct. and SE. 128 Pl.	Oklawaha	Marion
100000683	Carr Family Cabin	Nicotoon Lake, Ocala NF, FS Tract #C-2233	Umatilla	Marion
98000177	Citra Methodist Episcopal Church-South	2010 NE 180th St.	Citra	Marion
79000682	Coca-Cola Bottling Plant	939 N. Magnolia Ave.	Ocala	Marion
95000924	East Hall	307 SE. 26th Terr.	Ocala	Marion
100008120	Federal Building, United States Post Office, and Court House Ferguson, Robert W.,	207 NW2nd St. OffCo. Rd. 326, Eofjet.	Ocala	Marion
95000288	House	with US 27	Emathla	Marion
04000320	Fort King Site (NHL)	Address Restricted	Ocala	Marion
93000591	Josselyn, James Riley, House	13845 Alt. US 27	East Lake Weir	Marion
93000319	Lake Weir Yacht Club	New York Ave.	Eastlake Weir	Marion
80000955	Marion Hotel	108 N. Magnolia Ave.	Ocala	Marion
13000794	Morgan-Townsend House	13535 N. FL19	Salt Springs	Marion

Reference Number	Name	Address	City	County
79000683	Mount Zion AME. Church	623 S. Magnolia Ave.	Ocala	Marion
97001557	Ocala Union Station	531 NE First Ave.	Ocala	Marion
88002805	Orange Springs Methodist Episcopal Church and Cemetery	SR 315 and Church St.	Orange Springs	Marion
95000289	Randall, T. W., House	11685 NE. Co. Hwy. C- 314	Silver Springs	Marion
86001722	Ritz Apartment, The	1205 E. Silver Springs Blvd.	Ocala	Marion
90000806	Smith, E. C., House	507 NE. 8th Ave.	Ocala	Marion
88001849	Townsend, James W., House	Main and Spring Sts.	Orange Springs	Marion
03000509	1890 Windermere School	113 W. Seventh Ave.	Windermere	Orange
99001647	All Saints Episcopal Church	338 E. Lyman Ave.	Winter Park	Orange
93000134	Apopka Seaboard Air Line Railway Depot	36 E. Station St.	Apopka	Orange
09000672	Atha, S. Howard, House	1101 W. Princeton St.	Orlando	Orange
100007973	Atlantic Coast Line Station	1400 Sligh Blvd.	Orlando	Orange
100007476	Baptist Terrace Apartments	414 East Pine St.	Orlando	Orange
08001244	Barbour, Robert Bruce, House	656 Park Ave. N.	Winter Park	Orange
82002378	Brewer, Edward Hill, House	240 Trismen Terrace	Winter Park	Orange
84000932	Bridges, J.J., House	704 S. Kuhl Ave.	Orlando	Orange
93000135	Carroll Building	407409 S. Park Ave.	Apopka	Orange
11000144	Church of the Good Shepherd	331 Lake Ave	Maitland	Orange
83001432	Comstock-Harris House	724 Bonita Dr.	Winter Park	Orange
80000956	First Church of Christ Scientist	24 N. Rosalind Ave.	Orlando	Orange
15000062	Gary-Morgan House	1041 Osceola Ave.	Winter Park	Orange
100003411	Goldman, Siegmund and Marilyn, House	1670 Huron Trail	Maitland	Orange
12001254	Kerouac, Jack, House	1418 Clouser Ave.	Orlando	Orange
97001448	Knowles Memorial Chapel	1000 Holt Ave.	Winter Park	Orange
16000423	Laughlin, James, House	5538 Sydonie Dr.	Mount Dora	Orange
82001036	Maitland Art Center	231 W. Packwood Ave.	Maitland	Orange
91001661	Mitchill-Tibbetts House	21 E. Orange St.	Apopka	Orange
97000277	Ocoee Christian Church	15 S. Bluford Ave.	Ocoee	Orange

Reference Number	Name	Address	City	County
	Old Orlando Railroad	Depot Pl. and W. Church		
76000604	Depot	St.	Orlando	Orange
	Orlando Utilities			
	Commission			
12000321	Administration Building	500 S. Orange St.	Orlando	Orange
00000982	Palm Cottage Gardens	2267 Hempel Ave.	Gotha	Orange
	Palmer, Cal, Memorial			
95001364	Building	502 Main St.	Windermere	Orange
79000685	Phillips, Dr. P., House	135 Lucerne Circle, NE.	Orlando	Orange
	Polasek, Albin, House and			
99000767	Studio	633 Osceola Ave.	Winter Park	Orange
83001433	Rogers Building	37-39 S. Magnolia Ave.	Orlando	Orange
98000863	Russell, Annie, Theatre	1000 Holt Ave.	Winter Park	Orange
0 0 0000 - .	Ryan & Company Lumber			
93000074	Yard	215 E. Fifth St.	Apopka	Orange
	The Research Studio			
14000920	(Maitland Art Center)	231 W. Packwood Ave.	Maitland	0
14000920	(NHL)	940 Tildenville School	Winter	Orange
96001337	Tilden, Luther F., House	Rd.	Garden	Orange
80000957	Tinker Building	1618 W. Pine St.	Orlando	Orange
04000456	Tinker Field	1610 W. Church St.	Orlando	Orange
90001127	Waite-Davis House	5 S. Central Ave.	Apopka	Orange
70001127	Warlow, Thomas Picton,	J. S. Central Ave.	Арорка	Orange
09000808	Sr., House	701 Driver Ave.	Winter Park	Orange
	Waterhouse, William H.,			6
83001434	House	820 S. Lake Lily Dr.	Maitland	Orange
00000006	Well'sbuilt Hotel	511 W. South St.	Orlando	Orange
94000539	Windermere Town Hall	520 Main St.	Windermere	Orange
	Winter Park Country Club			<u> </u>
99001148	and Golf Course	761 Old England Ave.	Winter Park	Orange
87000579	Withers-Maguire House	16 E. Oakland Ave.	Ocoee	Orange
11000002	Woman's Club of Ocoee	10 N. Lakewood Ave.	Ocoee	Orange
	Woman's Club of Winter			
95000537	Park	419 Interlachen Ave.	Winter Park	Orange
93001455	Colonial Estate	2450 Old Dixie Hwy.	Kissimmee	Osceola
			Yeehaw	
93001158	Desert Inn	5570 S. Kenansville Rd.	Junction	Osceola
	First United Methodist			
93001457	Church	215 E. Church St.	Kissimmee	Osceola
0700007	Grand Army of the	1101 Massachusetts		
97000097	Republic Memorial Hall	Ave.	St. Cloud	Osceola
15000962	Monument of States	E. Monument Ave. &	Vissimmaa	Osceola
15000862	Monument of States	Lakeview Dr.	Kissimmee	Osceola

Reference Number	Name	Address	City	County
	Old Holy Redeemer			
93001456	Catholic Church	120 N. Spoule Ave.	Kissimmee	Osceola
		Bounded by Emmett,		
	Osceola County	Bryan, Rose, and Vernon		
77000406	Courthouse	Sts.	Kissimmee	Osceola
100002728	St. Cloud Depot	915 New York Avenue	St. Cloud	Osceola
	Veterans Memorial Library			
	and Woman's Club of St.	1012-1014		
100005413	Cloud Auditorium	Massachusetts Ave.	St. Cloud	Osceola
	Anderson, Charles B.,			
96000467	House	5744 Moog Rd.	Holiday	Pasco
97000052	Baker, Samuel, House	5744 Moog Rd.	Elfers	Pasco
	Dade City Atlantic Coast	Lakeland Rd. Eside at		
94000706	Line Railroad Depot	jct. with E. Meridian Ave.	Dade City	Pasco
03001014	Dade City Woman's Club	37922 Palm Ave.	Dade City	Pasco
			New Port	
96001185	Hacienda Hotel	5621 Main St.	Richey	Pasco
	Jeffries, Capt. Howard B.,			
95001370	House	38537 5th Ave.	Zephyrhills	Pasco
	Oelsner Mound			
100005561	Archaeological Site	Address Restricted	Port Richey	Pasco
06000843	Pasco County Courthouse	37918 Meridian Ave.	Dade City	Pasco
	Abercrombie Site		St.	
100004520	Complex	Address Restricted	Petersburg	Pinellas
			St.	
84000200	Alexander Hotel	535 Central Ave.	Petersburg	Pinellas
		Southern end of Anclote	Anclote Key	
99000410	Anclote Key Lighthouse	Key Island	Island	Pinellas
		Buena Vista and San		
72000346	Andrews Memorial Chapel	Mateo	Dunedin	Pinellas
0.400.00.40			Tarpon	D: 11
84000943	Arcade Hotel	210 Pinellas Ave.	Springs	Pinellas
01000412	Arfaras, N. G., Sponge	OCHUR 1 C	Tarpon	D' 11
91000412	Packing House	26 W. Park St.	Springs	Pinellas
83001443	Bay Pines Site (8Pi64)	Address Restricted	BayPines	Pinellas
09000747	Blatchley, Willis S., House	232 Lee St.	Dunedin	Pinellas
			St.	
86001457	Boone House	601 Fifth Ave. N	Petersburg	Pinellas
000000			St.	D: 11
80000963	Casa Coe da Sol	510 Park St.	Petersburg	Pinellas
050001 50		1446 0 1 0 1	St.	D. 11
85000160	Casa De Muchas Flores	1446 Park St. N.	Petersburg	Pinellas
0.40000.47			St.	D: 11
84000946	Central High School	25015th Ave. N.	Petersburg	Pinellas

Reference Number	Name	Address	City	County
100006377	Civitan Beach House	18602-18604 Gulf Blvd.	Indian Shores	Pinellas
	Cleveland Street Post			
80000962	Office	650 Cleveland St.	Clearwater	Pinellas
			Tarpon	
100003522	Cycadia Cemetery	1105 E. Tarpon Ave.	Springs	Pinellas
			St.	
86000804	Dennis Hotel	326 First Ave. N	Petersburg	Pinellas
	Domestic Science and		St.	
99001250	Manual Training School	440-442 Second Ave. N	Petersburg	Pinellas
			St.	
			Petersburg	
75000563	Don Ce Sar Hotel	3400 Gulf Blvd.	Beach	Pinellas
79000691	Douglas, J. O., House	209 Scotland St	Dunedin	Pinellas
		Tarpon Springs Sponge		
00001100	DUCHESS (Sponge	Docks at Dodecanese	Tarpon	D' 11
90001133	Hooking Boat)	Blvd.	Springs	Pinellas
14000202	Dunedin Isles Golf Club	1050 D 1 DI 1		D' 11
14000283	Golf Course First Methodist Church of	1050 Palm Blvd.	Dunedin St.	Pinellas
90001433		212 Thind St. N		Pinellas
90001433	St. Petersburg	212 Third St., N 8 mi. S of St. Petersburg	Petersburg St.	Pinellas
77000407	Fort Desoto Batteries	on Mullet Key	Petersburg	Pinellas
//00040/	Ton Desolo Danenes	Tarpon Springs Sponge	Tetersburg	
	GEORGEN. CRETEKOS	Docks at Dodecanese	Tarpon	
90001135	(Sponge Diving Boat)	Blvd.	Springs	Pinellas
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Springs St.	
98000027	Green-Richman Arcade	689 Central Ave.	Petersburg	Pinellas
14000477	Gulfport Casino	5500 Shore Blvd.	Gulfport	Pinellas
			St.	
13000164	Henry, James, House	950 12th St., N	Petersburg	Pinellas
	House at 827 Mandalay	,		
100006118	Avenue	827 Mandalay Ave.	Clearwater	Pinellas
			St.	
100004348	Huggins-Stengel Field	1320 5th St. North	Petersburg	Pinellas
92000405	Ingleside	333 S. Bayshore Blvd.	Safety Harbor	Pinellas
87001632	Johnson, Louis, Building	161 First St., SW	Largo	Pinellas
			St.	
03000007	Jungle Prada Site	Address Restricted	Petersburg	Pinellas
			St.	
03000007	Jungle Prada Site	Address Restricted	Petersburg	Pinellas
	Kress, S.H., and Company		St.	
01001057	Building	475 Central Ave.	Petersburg	Pinellas
			St.	
100004521	Maximo Beach Site	Address Restricted	Petersburg	Pinellas

Reference Number	Name	Address	City	County
	McKeage, John &		St.	
13000145	Florence, House	209 Park St., S.	Petersburg	Pinellas
	Meres, E. R., Sponge		Tarpon	
91000411	Packing House	106 Read St.	Springs	Pinellas
	Mount Olive African		1 8	
	Methodist Episcopal			
99000802	Church	600 Jones St.	Clearwater	Pinellas
		Tarpon Springs Sponge		
	N.K. SYMI (Sponge Diving	Docks at Dodecanese	Tarpon	
90001132	Boat)	Blvd.	Springs	Pinellas
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		900 North Fort Harrison	~p.m.g.	1
100007057	North Ward School	Ave.	Clearwater	Pinellas
94000421	Old Belleair Town Hall	903 Ponce de Leon Blvd.	Belleair	Pinellas
71000121	Peninsular Fruit Company		St.	1 menus
100008871	Building	10000 Gandy Blvd. North	Petersburg	Pinellas
100000071	Pinellas County	Toobo Gandy Diva. North	Tetersburg	1 inclus
92000828	Courthouse, Old	315 Court St.	Clearwater	Pinellas
72000828	Courtilouse, Ok		St.	Tinenas
86001258	Potter House	577 Second St. S	Petersburg	Pinellas
80001238	rotter House	J// Second St. S	St.	rinchas
100004522	Princess Mound Site	Address Restricted	Petersburg	Pinellas
79000689			Clearwater	Pinellas
/9000689	Roebling, Donald, Estate	700 Orange Ave.		Pinellas
100000711	Dense U'll Constant		Tarpon	D'
100000711	Rose Hill Cemetery	0 Jasmine Ave.	Springs	Pinellas
12000024	Rothman, Maurice and	1010 D. J. Ct. N	Saint Determinent	D'
13000034	Thelma, House	1018 Park St., N.	Petersburg	Pinellas
66000270	Safety Harbor Site (NHL)	Phillipe Park	Safety Harbor	Pinellas
74000654	C (C 111		Tarpon	D' 11
74000654	Safford House	Parken Pl.	Springs	Pinellas
0000000			St.	D: 11
02000680	Sanitary Public Market	1825 4th St. N	Petersburg	Pinellas
0001007	G 11 A 1	405.0 1 1	St.	D: 11
82001037	Snell Arcade	405 Central Ave.	Petersburg	Pinellas
79000690	South Ward School	610 S. Fort Harrison Ave.	Clearwater	Pinellas
		Tarpon Springs Sponge		
	ST. NICHOLAS III (Sponge	Docks at Dodecanese	Tarpon	
90001136	Diving Boat)	Blvd.	Springs	Pinellas
		Tarpon Springs Sponge		
	ST. NICHOLAS VI (Sponge	Docks at Dodecanese	Tarpon	
90001134	Diving Boat)	Blvd.	Springs	Pinellas
	St. Petersburg Public		St.	
86001259	Library	280 Fifth St. N	Petersburg	Pinellas
	St. Petersburg Woman's		St.	
94000708	Club	40 Snell Isle Blvd.	Petersburg	Pinellas

Reference Number	Name	Address	City	County
			St.	
85001485	Studebaker Building	600 Fourth St. South	Petersburg	Pinellas
	6		St.	
14000952	Sunset Hotel	7401 Central Ave.	Petersburg	Pinellas
	Tarpon Springs City Hall,		Tarpon	
90001117	Old	101 S. Pinellas Ave.	Springs	Pinellas
	Tarpon Springs High		Tarpon	
90001538	School, Old	324 E. Pine St.	Springs	Pinellas
		SW corner of 1st Ave. N.	St.	
75000564	U.S. Post Office	and 4th St. N.	Petersburg	Pinellas
			St.	
82001038	Veillard House	262 N. 4th Ave.	Petersburg	Pinellas
			St.	
78000955	Vinoy Park Hotel	501 Fifth Ave. NE	Petersburg	Pinellas
			St.	
72000347	Weeden Island Site	Address Restricted	Petersburg	Pinellas
			St.	
75000565	Williams, John C., House	444 5th Ave. S.	Petersburg	Pinellas
	Atlantic Coast Line			
90001277	Railroad Depot	325 S. Scenic Hwy.	Lake Wales	Polk
	Auburndale Citrus			
	Growers Association			
97000794	Packing House	214 Orange St.	Auburndale	Polk
13000964	Auburndale CityHall	1 Bobby Green Plz.	Auburndale	Polk
	Babson Park Woman's			
97001229	Club	1300 N. Scenic Hwy	Babson Park	Polk
01001000	Baynard, Ephriam M,			D 11
01001208	House	208 W. Lake Ave.	Auburndale	Polk
	Bok Mountain Lake			
72000250	Sanctuary and Singing		T 1 XY 1	
72000350	Tower	3 mi. N of Lake Wales	Lake Wales	Polk
00001594	Brown, Lawrence, House	470 Second Ave.	Bartow	Polk
90001272	Bullard, B. K., House	644 S. Lakeshore Blvd.	Lake Wales	Polk
75000567		2 mi. SE of Lake Wales	T 1 337 1	D 11
75000567	Casa De Josefina	offU.S. 27	Lake Wales	Polk
99000865	Central Avenue School	604 S. Central Ave.	Lakeland	Polk
04000170	Central Grammar School,	0011 1 11		D 11
94000160	Old	801 Ledwith Ave.	Haines City	Polk
76000605	Christ Church	526 N. Oak	Fort Meade	Polk
90001271	Church of the Holy Spirit	1099 Hesperides Rd.	Lake Wales	Polk
99000862	Cleveland Court School	328 E. Edgewood Dr.	Lakeland	Polk
	Cox, John F., Grammar	1005 N. Massachusetts		
99000864	School	Ave.	Lakeland	Polk

Reference Number	Name	Address	City	County
	Craney Spec Houses	Drexel Ave. NE between		
100004349	Historic District	15th St. and 16th St.	Winter Haven	Polk
90001273	Dixie Walesbilt Hotel	115 N. First St.	Lake Wales	Polk
	Dundee ACLRailroad			
01000739	Depot, Old	103 Main St.	Dundee	Polk
85003331	El Retiro	Mountain Lake off FL17	Lake Wales	Polk
100008019	Evans, John H., House	730 Buena Vista Dr.	Lake Alfred	Polk
90001275	First Baptist Church	338 E. Central Ave.	Lake Wales	Polk
	Frostproof High School,			
97001420	Old	111 W. First St.	Frostproof	Polk
07000509	Griffin Grammar School	3315 Kathleen Rd.	Lakeland	Polk
	Haines City National			
94000158	Guard Armory, Old	226 S. 6th St.	Haines City	Polk
97000458	Henley Field Ball Park	1125 N. Florida Ave.	Lakeland	Polk
	Holland, Benjamin			
75000566	Franklin, House	590 E. Stanford St.	Bartow	Polk
0700001	Homeland School	249 Church Ave.	Homeland	Polk
96000254	Jenks, Holland, House	119 Raintree Ct.	Auburndale	Polk
89001481	Johnson, C. L., House	315 E. Sessoms Ave.	Lake Wales	Polk
		Between Lemon St. and		
83001437	Lake Mirror Promenade	Lake Mirror Dr.	Lakeland	Polk
	Lake of the Hills			
00000265	Community Club	41 E. Starr Ave.	Lake Wales	Polk
90001274	Lake Wales City Hall	152 E. Central Ave.	Lake Wales	Polk
93001027	Lakeland High School, Old	400 N. Florida Ave.	Lakeland	Polk
12000791	Lewis, W. Henry, House	424 N. Oak St.	Fort Meade	Polk
11000718	Mann Manor	325 W. Main St.	Bartow	Polk
	Mountain Lake Colony	EofFL17, on N shore of		
91000113	House	Mountain Lake	Lake Wales	Polk
03000006	Oak Hill Cemetery	West Parker St.	Bartow	Polk
95000925	Oates Building	230 S. Florida Ave.	Lakeland	Polk
100007366	Perry House	2208 Woodbine Ave.	Lakeland	Polk
	Polk County Courthouse,			
89001055	Old	100 E. Main St.	Bartow	Polk
94000151	Polk Hotel	800810 Hinson Ave.	Haines City	Polk
	Polk Theatre and Office			
93000446	Building	121 S. Florida Ave.	Lakeland	Polk
01000306	Roosevelt School	115 East St. N	Lake Wales	Polk
100004350	Shell Hammock Landing	3800 Shell Hammock	Lake Wales	Polk
72000349	South Florida Military College	1100 S. Broadway	Bartow	Polk

Reference Number	Name	Address	City	County
		North Wales Dr. between		
		Burns Ave. and Spook		
100003585	Spook Hill	Hill Elementary	Lake Wales	Polk
	St. Mark's Episcopal			
94000159	Church	102 N. 9th St.	Haines City	Polk
82002270	Swearingen, John J.,		D (D 11
82002379	House	690 E. Church St.	Bartow	Polk
02000838	Thompson and Company Cigar Factory	255 N. Third St.	Bartow	Polk
			Lake Wales	Polk
90001276	Tillman, G. V., House	301 E. Sessoms Ave.		
01001362	Winston School Woman's Club of Winter	3415 Swindell Rd.	Lakeland	Polk
98000927	Haven	660 Pope Ave., NW	Winter Haven	Polk
98000927	American National Bank	000 rope Ave., NW	winter naven	FOIK
98001154	Building	1330 Main St.	Sarasota	Sarasota
01000683	Appleby Building	501-513 Kumquat Court	Sarasota	Sarasota
01000003	Armistead, William Martin,	501-515 Kulliquat Coult	Salasota	Salasota
09000165	House	1510 Hyde Park St.	Sarasota	Sarasota
84003829	Bacon and Tomlin, Inc.	201 S. Palm Ave.	Sarasota	Sarasota
84003832	Bay Haven School	2901 W. Tamiami Circle	Sarasota	Sarasota
95000052	Bee Ridge Woman's Club	4919 Andrew Ave.	Sarasota	Sarasota
75000052	Binz, Frank and Matilda,	+)1) / Marc w / We.	Salasota	Salasola
94000736	House	5050 Bay Shore Rd.	Sarasota	Sarasota
		Blackburn Point Rd. at		
		GulfIntracoastal		
01000290	Blackburn Point Bridge	Waterway	Osprey	Sarasota
89000235	Blalock House	241 S. Harbor Dr.	Venice	Sarasota
05000501	Bryson-Crane House	5050 Brywill Cir.	Sarasota	Sarasota
	Burns Realty Company-			
87000196	Karl Bickel House	101 N. Tamiami Trail	Sarasota	Sarasota
97000248	Burns, William J., House	47 S. Washington Dr.	Sarasota	Sarasota
97000051	Casa Del Mar	25 S. Washington Dr.	Sarasota	Sarasota
11000241	Chidsey Library	701 N. Tamiami Trail	Sarasota	Sarasota
84003831	City Waterworks	1015 N. Orange Ave.	Sarasota	Sarasota
94000528	Corrigan House	463 Sapphire Dr.	Sarasota	Sarasota
00000388	Crisp Building	1970 Main St.	Sarasota	Sarasota
84003833	DeCanizares, F.A, House	1215 N. Palm Ave.	Sarasota	Sarasota
84003834	DeMarcay Hotel	27 S. Palm Ave.	Sarasota	Sarasota
93000908	Earle House	4521 Bayshore Rd.	Sarasota	Sarasota
84003835	Edwards Theatre	57 N. Pineapple Ave.	Sarasota	Sarasota
93000390	El Patio Apartments	500 N. Audubon Pl.	Sarasota	Sarasota
	El Vernona Apartments-			
84003836	Broadway Apartments	1133 4th St.	Sarasota	Sarasota

Reference Number	Name	Address	City	County
	El Vernona Hotel-John			
87000197	Ringling Hotel	111 N. Tamiami Trail	Sarasota	Sarasota
		Field Rd. and Camino		
86001238	Field Estate	Real	Sarasota	Sarasota
	Frances-Carlton			
84003837	Apartments	1221-1227 N. Palm Ave.	Sarasota	Sarasota
84003838	Halton, Dr. Joseph, House	308 Cocoanut Ave.	Sarasota	Sarasota
		Roughly, John Ringling		
	Harding Circle Historic	Blvd., St. Armands Cir.,	~	~
00001650	District	and Blvd. of Presidents	Sarasota	Sarasota
84000961	Hotel Venice	200 N. Nassau St.	Venice	Sarasota
00000000	House at 507 Jackson			
98000060	Drive	507 Jackson Drive	Sarasota	Sarasota
89001073	House at 710 Armada Road South	710 Arms de Dd C	Venice	Company
89001073	Johnson Chapel	710 Armada Rd. S.	venice	Sarasota
97001218	Missionary Baptist Church	506 Church St.	Laurel	Sarasota
77001210	Johnson-Schoolcrafy	500 Church St.		Salasota
96001522	Building	201-203 W. Venice Ave.	Venice	Sarasota
,0001022	Kennedy, Dr. Walter,			Surusotu
94000349	House	1876 Oak St.	Sarasota	Sarasota
84003839	Kress, S.H., Building	1442 Main St.	Sarasota	Sarasota
	Leech, Hilton, House and			
95000732	Amagansett Art School	1666 Hillview St.	Sarasota	Sarasota
100003412	Leigh, Charles E., House	139 S. Washington Dr.	Sarasota	Sarasota
88001150	Lemon Bay Woman's Club	51 N. Maple St.	Englewood	Sarasota
89000234	Levillain-Letton House	229 S. Harbor Dr.	Venice	Sarasota
			North Port	
79000692	Little Salt Springs	OffU.S. 41	Charlotte	Sarasota
		Bounded by Swift Rd.		
	Maine Colony Historic	Ashton Rd., Portland Wy.		
05001118	District	and Grafton St.	Sarasota	Sarasota
100007477	Markowitz House	1189 Center Pl.	Sarasota	Sarasota
86001458	Miakka School House	Miakka and Wilson Rds.	Miakka	Sarasota
	Municipal Auditorium-			
95000164	Recreation Club	801 N. Tamiani Trail	Sarasota	Sarasota
07000163	Nielsen, Lucienne, House	3730 Sandspur Ln.	Nokomis	Sarasota
13000320	Nokomis Beach Pavilion	100 Casey Key Rd.	Nokomis	Sarasota
	Osprey Archeological and			
75000569	Historic Site	Address Restricted	Osprey	Sarasota
04000707		337 N. Tamiami Trail (US		
94000707	Osprey School	41)	Osprey	Sarasota
94001276	Out of Door School	444 Reid St.	Sarasota	Sarasota
98001201	Payne, Christy, Mansion	800 S. Palm Ave.	Sarasota	Sarasota

Reference Number	Name	Address	City	County
84003840	Purdy, Capt. W. F., House	3315 Bayshore Rd.	Sarasota	Sarasota
84000111	Reagin, L.D., House	1213 N. Palm Ave.	Sarasota	Sarasota
02000780	Reid, Leonard, House	1435 7th St.	Sarasota	Sarasota
	Revere Quality Institute			
07001200	House	100 Ogden Ln.	Sarasota	Sarasota
03001143	Rosemary Cemetery	851 Central Ave.	Sarasota	Sarasota
84003841	Roth Cigar Factory	30 Mira Mar Court	Sarasota	Sarasota
12000365	Rudolph, Paul, Sarasota High School Addition	1000 School Ave., S.	Sarasota	Sarasota
94000618	Sanderling Beach Club	105 Beach Rd.	Sarasota	Sarasota
100005395	Sarasota County Chamber of Commerce Building	655 North Tamiami Trail	Sarasota	Sarasota
84003842	Sarasota County Courthouse	2000 Main St.	Sarasota	Sarasota
100007394	Sarasota Garden Center	1131 Boulevard of the Arts	Sarasota	Sarasota
84003843	Sarasota Herald Building	539 S. Orange Ave.	Sarasota	Sarasota
84003844	Sarasota High School	1001 S. Tamiami Trail	Sarasota	Sarasota
84003845	Sarasota Times Building	1214-12161st St.	Sarasota	Sarasota
85000087	Sarasota Woman's Club	1241 N. Palm Ave.	Sarasota	Sarasota
97001170	Schueler, George, House	76 S. Washington Dr.	Sarasota	Sarasota
	Scott Commercial			
14001116	Building	261-265 S. Orange Ave.	Sarasota	Sarasota
84003846	South Side School	1901 Webber St.	Sarasota	Sarasota
01001180	Southwick-Harmon House	1830 Lincoln Dr.	Sarasota	Sarasota
94000666	Thoms House	5030 Bay Shore Rd.	Sarastoa	Sarasota
96000175	Triangle Inn	351 S. Nassau St.	Venice	Sarasota
84003847	U.S. Post Office-Federal Building	111 S. Orange Ave.	Sarasota	Sarasota
100003417	Umbrella House	1300 Westway Dr.	Sarasota	Sarasota
94001303	Valencia Hotel and Arcade	229 W. Venice Ave.	Venice	Sarasota
89001072	Venice Depot	303 E. Venice Ave.	Venice	Sarasota
			CityofNorth	
77000408	Warm Mineral Springs	12200 San Servando Ave.	Port	Sarasota
100001	Warm Mineral Springs			
100004352	Building Complex	12220 San Servando Ave.	North Port	Sarasota
10001055	Warm Mineral Springs	12507 9 7	NL 41 D 4	Commente
12001255	Motel	12597 S. Tamiami Trail	North Port	Sarasota
85002177	Whitfield, J. G., Estate	2704 Bayshore Dr.	Sarasota	Sarasota
84003848	William, H.B., House	1509 S. Orange Ave.	Sarasota	Sarasota
84003849	Wilson, Dr. C. B., House	235 S. Orange Ave.	Sarasota	Sarasota
98000651	Worth's Block	1490 Main St.	Sarasota	Sarasota

Reference Number	Name	Address	City	County
	Dade Battlefield Historic	1 mi. Wof Bushnell off		
72000353	Memorial (NHL)	U.S. 301	Bushnell	Sumter
96000022	Pierce, Thomas R., House	202 W. Noble Ave.	Bushnell	Sumter
	Wild Cow Prairie			
100006119	Cemetery	5822 Cty. Rd. 673	Bushnell	Sumter
	5		Daytona	
87000615	Abbey, The	426 S. Beach St.	Beach	Volusia
	Airport Clear Zone		New Smyrna	
08000639	Archeological Site	Address Restricted	Beach	Volusia
00000000	All Saint's Episcopal	Corner of DeBary Ave.		
74000656	Church	NE. and Clark St.	Enterprise	Volusia
7 1000020	Anderson-Price Memorial		Ormond	volusiu
84000967	Library Building	42 N. Beach St.	Beach	Volusia
04000707	Barberville Central High			volusia
92001838	School	1776 Lightfoot Ln.	Barberville	Volusia
92001838		Bethune-Cookman		volusia
74000655	Bethune, Mary McLeod,		Daytona Beach	Valuaio
/4000633	Home (NHL)	College campus	Beach	Volusia
00000640	Blanchette Archeological		N	X7.1 ·
08000640	Site	Address Restricted	New Smyrna	Volusia
		404.011	Daytona	
93000724	Blodgett, Delos A, House	404 Ridgewood Ave.	Beach	Volusia
			Ormond	
88001720	Casements Annex	127 Riverside Dr.	Beach	Volusia
			Ormond	
72001536	Casements, The	15 E. Granada Ave.	Beach	Volusia
	Chief Master at Arms			
02000003	House	910 Biscayne Blvd.	DeLand	Volusia
		City Island, across from		
		Daytona Beach Business	Daytona	
98001253	City Island Ball Park	District	Beach	Volusia
	Cypress Street Elementary		Daytona	
96001333	School	900 Cypress St.	Beach	Volusia
		DeBary Mansion State		
72000354	DeBary Hall	Park	DeBary	Volusia
		Stetson University	, i	
83001441	DeLand Hall	Campus	DeLand	Volusia
	DeLand Memorial	1		
89002030	Hospital, Old	Stone St.	DeLand	Volusia
	DeLeon Springs Colored		DeLeon	
03000702	School	330 E. Retta St.	Springs	Volusia
0000102	Dickinson Memorial	550 L. 10000 Dt.	Springs	.010010
95000020	Library and Park	148 S. Volusia Ave.	Orange City	Volusia
75000020		170 D. VOIUSIA AVE.	Ormond	volusia
88001721	Div House	179 N Deach St		Valuaia
88001721	Dix House	178 N. Beach St.	Beach	Volusia

Reference Number	Name	Address	City	County
	Donnelly, Bartholomew J.,		Daytona	
93000726	House	801 N. Peninsula Dr.	Beach	Volusia
	Dunlawton Plantation-	WofPort Orange off		
73000606	Sugar Mill Ruins	Nova Rd.	Port Orange	Volusia
100003586	Eastwood Terrace Hotel	442 E. New York Ave.	Deland	Volusia
		636 N. Riverside Dr. &	New Smyrna	
87001557	El Real Retiro	647 Faulkner St.	Beach	Volusia
	First Presbyterian Church		New Smyrna	
08000635	Archeological Site	Address Restricted	Beach	Volusia
03000005	French, Seth, House	319 E. French Ave.	Orange City	Volusia
	Grace Episcopal Church			
98000058	and Guild Hall	4100 Ridgewood Ave.	Port Orange	Volusia
00000601			New Smyrna	
08000631	Grange Archeological Site	Address Restricted	Beach	Volusia
100005243	Green Mound	4400 South Peninsula Dr.	Ponce Inlet	Volusia
00001=10	· · · · · · · · · · · · · · · · · · ·		Ormond	
88001719	Hammocks, The	311 John Anderson Hwy.	Beach	Volusia
08000636	Hawks Archeological Site	Address Restricted	Edgewater	Volusia
95001070	Haynes, Alexander, House	128 W. Howry Ave.	DeLand	Volusia
0000005	Holly Hill Municipal	10(5)1 14	TT 11 TT'11	TT1 '
93000285	Building	1065 Ridgewood Ave.	Holly Hill	Volusia
02000620	Towatta Analasia la sia al Cita	Addus as Destricted	New Smyrna	Volusia
08000630	Janet's Archeological Site	Address Restricted	Beach	
97001216	Kilkoff House	1145 W. New York Ave.	Deland	Volusia
93001353	Ving Amos House	220 222 Magnalia Ara	Daytona Beach	Volusia
93001333	Kling, Amos, House Kress, S.H., and Co.	220222 Magnolia Ave.	Daytona	volusia
83001442	Building	140 S. Beach St.	Beach	Volusia
83001442	Dunuing	1/2 mi. south of Eldora	New Smyrna	volusia
100005857	Leeper, Doris, House	Rd., Canaveral NS	Beach	Volusia
100005057	Leeper, Dons, nouse		Ormond	volubiu
85000304	Lippincott Mansion	150 S. Beach St.	Beach	Volusia
	11		Daytona	
86000025	Merchants Bank Building	252 S. Beach St.	Beach	Volusia
	Meyer-Davis House-Hasty			
15000786	Cottage	143 Beach St.	Ponce Inlet	Volusia
		Wof Eldora Rd.,		
		Canaveral National	New Smyrna	
01001247	Moulton-Wells House	Seashore	Beach	Volusia
			Volusia/Delo	
97001219	Mount Taylor	Address Restricted	n Springs	Volusia
	New Smyrna Sugar Mill	1 mi. Wof New Smyrna	New Smyrna	
70000192	Ruins	Beach	Beach	Volusia
			Ormond	
73000605	Nocoroco	2 mi. N of Ormond Beach	Beach	Volusia

Reference Number	Name	Address	City	County
	Old Fort Park	200 Block of Sams	New Smyrna	
08000629	Archeological Site	Avenue	Beach	Volusia
	Old Stone Wharf		New Smyrna	
08000638	Archeological Site	Address Restricted	Beach	Volusia
00001000			Daytona	
93001003	Olds Hall	340 S. Ridgewood Ave.	Beach	Volusia
03000703	Orange City Colored School	200 E. Blue Springs Ave.	Orange City	Volusia
02000493	Orange City Town Hall	205 E. Graves Ave.	Orange City	Volusia
02000493			Ormond	volusia
10001033	Ormond Fire House	160 E Granada Blvd	Beach	Volusia
10001055			Ormond	volusia
80000964	Ormond Hotel	15 E. Granada Blvd.	Beach	Volusia
00000701			Ormond	(Old Shi
05000310	Ormond Yacht Club	63 N. Beach St.	Beach	Volusia
100005822	Pacetti Hotel	4928 South Peninsula Dr.	Ponce Inlet	Volusia
		4931 S. Peninsula Dr.,		
	Ponce De Leon Inlet	U.S. Coast Guard	Ponce de	
72000355	Lightstation (NHL)	Reservation	Leon Inlet	Volusia
			Ormond	
88001715	Porches, The	176 S. Beach St.	Beach	Volusia
	Port Orange Florida East			
	Coast Railway Freight			
98000057	Depot	415C Herbert St.	Port Orange	Volusia
			Daytona	
86002407	Rogers House	436 N. Beach St.	Beach	Volusia
81000083	Ross Hammock Site	Address Restricted	Oak Hill	Volusia
			Ormond	
88001724	Rowallan	253 John Anderson Hwy.	Beach	Volusia
		EofFL5, western shore		
		of Mosquito Lagoon,		
97000231	Seminole Rest	Canaveral National Seashore	Oak Hill	Volusia
97000231	Seybold Baking Company	Seasilole	Daytona	volusia
97001283	Factory	800 Orange Ave.	Beach	Volusia
51001205	SleepyHollow		New Smyrna	, orabla
08000637	Archeological Site	Address Restricted	Beach	Volusia
	South Ridgewood		Daytona	
11000436	Elementary School	747 S. Ridgewood Ave.	Beach	Volusia
	Spruce Creek Mound	Ŭ		
90001761	Complex	Address Restricted	Port Orange	Volusia
	St. Rita's Colored Catholic		New Smyna	
07000280	Mission	314 Duss St.	Beach	Volusia
78000957	Stetson, John B., House	1031 Camphor Lane	DeLand	Volusia
93000734	Stevens, Ann, House	201 E. Kicklighter Rd.	Lake Helen	Volusia

Reference Number	Name	Address	City	County
04000626	Stockton-Lindquist House	244 E. Beres ford Ave.	DeLand	Volusia
			Ormond	
88001716	Talahloka	19 Orchard Ln.	Beach	Volusia
		Tarragona Way and		
		International Speedway		
05000368	Tarragona Tower	Blvd.	Dayton Beach	Volusia
	Three Chimneys		Ormond	
10000757	Archaeological Site	715 W Granada Blvd	Beach	Volusia
			Daytona	
90000100	Thurman, Howard, House	614 Whitehall St.	Beach	Volusia
		Located inside Blue		
00000468	Thursby, Louis P., House	Spring State Park	Orange City	Volusia
	Tomoka Mound and		Ormond	
100005821	Midden Complex	Address Restricted	Beach	Volusia
95001139	Tourist Church	501 N. Wild Olive Ave.	Daytona	Volusia
			New Smyrna	
07000840	Turnbull Canal System	Linear resource	Beach	Volusia
	Turnbull Colonists' House		New Smyrna	
08000632	Archeological Site	Address Restricted	Beach	Volusia
	Turnbull Colonists' House		New Smyrna	
08000633	No. 2 Archeological Site	Address Restricted	Beach	Volusia
			New Smyrna	
70000193	Turtle Mound	Address Restricted	Beach	Volusia
			Daytona	
88000974	US Post Office	220 N. Beach St.	Beach	Volusia
	Village Improvement			
100008277	Association Hall	126 East Halifax Ave.	Oak Hill	Volusia
			Daytona	
92000849	White Hall	640 Second Ave.	Beach	Volusia
	White-Fox House		New Smyrna	
08000634	Archeological Site	Address Restricted	Beach	Volusia
	Woman's Club of New		New Smyrna	
89000410	Smyrna	403 Magnolia St.	Beach	Volusia
100006120	Wright, James W., Building	258 West Voorhis Ave.	DeLand	Volusia
	Young, S. Cornelia,			
92000823	Memorial Library	302 Vermont Ave.	Daytona	Volusia

Reference	Name	Address	City	County
Number				
0001046	Barton Avenue		5 11 1	
92001046	Residential District	1159 Barton Ave.	Rockledge	Brevard
		Launch Pads 5, 6, 13,		
	Cape Canaveral Air Force	14, 19, 26, 34 and	~	
84003872	Station (NHL)	Mission Control Center	Cocoa	Brevard
	Launch Complex 39-Pad	NASA, John F. Kennedy	Kennedy Space	
99001638	A	Space Center	Center	Brevard
	Launch Complex 39-Pad	NASA, John F. Kennedy	Kennedy Space	
99001639	В	Space Center	Center	Brevard
		1523 Rockledge Ave.,		
		2191361 Rockledge		
	Rockledge Drive	Dr. and 1-11 Orange		
92001045	Residential District	Ave.	Rockledge	Brevard
		Roughly bounded by		
		Julia St., Hopkins Ave.,		
	Titusville Commercial	Main St., and Indian		
89002164	District	River Ave.	Titusville	Brevard
		14140 Valencia Rd.,		
	Valencia Subdivision	825827 Osceola Dr.		
92001047	Residential District	and 2428 Orange Ave.	Rockledge	Brevard
		Roughly bounded by Lee		
		and Miles Aves.,		
		Imogene, Cypress, Pine,		
84000842	Arcadia Historic District	and Magnolia Sts.	Arcadia	De Soto
91000893	Carlton, Albert, Estate	302 E. Bay St.	Wauchula	Hardee
		Roughly bounded by W		
		Palmetto &WOrange		
	Downtown Wauchula	Sts., N4th &NFlorida		
100002568	Historic District	Aves.	Wauchula	Hardee
		Roughly along S.		
	South Brooks ville Avenue	Brooksville Ave., from		
98001203	Historic District	Liberty St. to Early Ave.	Brooksville	Hernando
100004890	Weeki Wachee Springs	6131 Commercial Way	Spring Hill	Hernando
	Avon Park Historic	Main St. from S. Delaney	1 0	
90000486	District	Ave. to US 27	Avon Park	Highlands
	Highlands Hammock			6
	State Park and Florida			
	Botanical Gardens and			
100003021	Arboretum	5931 Hammock Rd.	Sebring	Highlands
100003021	Seaboard Air Line Depot,			
90000425	Old-Sebring	E. Center Ave.	Sebring	Highlands
20000120	Sebring Downtown	Circle Dr. and		Inginanas
	Historic District	Ridgewood Dr. from	Sebring	Highlands

Attachment D. Historic Districts

Reference Number	Name	Address	City	County
		Mango St. to Magnolia Ave.		
		Bounded by Baker and		
		Wheeler Sts. and the		
	Downtown Plant City	Seaboard Coast Line RR		
93000478	Commercial District	tracks	Plant City	Hillsborough
	Downtown Plant City	Bounded by N. Drane,		
	Historic Residential	Thomas, W. Tever,		
98000965	District	Franklin, and Carey Sts.	Plant City	Hillsborough
		Roughly bounded by		
		Hanna Ave., 15th St.,		
	Hampton Terrace Historic	Hillsborough Ave., and	-	
99000045	District	Nebraska Ave.	Tampa	Hillsborough
		Roughly bounded by		
		Hillsborough River and		
95000454	Hyde Park Historic	Bay, Howard Ave., and	Terrer	TT:11.1 1.
85000454	Districts	Kennedy Blvd.	Tampa	Hillsborough
		Roughlybounded by		
	North Franklin Street	Florida Ave., E. Fortune,		
02000264	Historic District	Tampa, Franklin and E. Harrison Sts.	Tampa	Hillsborough
02000204		Bounded by Herring,	Tampa	Thiisbolough
	North Plant City	Wheeler, Tever and		
93000436	Residential District	Palmer Sts.	Plant City	Hillsborough
75000450	Oaklawn and St. Louis		T tant City	Thiisborough
	Cemeteries Historic			
100001668	District	606 E. Harriston St.	Tampa	Hillsborough
100001000		Roughly bounded by	Tumpu	Thistocrough
	Palmetto Beach Historic	Durham, 28th, Thrace, &		
12000496	District	22nd Sts.	Tampa	Hillsborough
		Roughly bounded by	*	Ŭ
		Osborne, Florida,		
	Seminole Heights	Hanna, and Cherokee		
93000751	Residential District	Aves.	Tampa	Hillsborough
		Roughly bounded by		
	Tampa Heights Historic	Adalee St., I-275, 7th		
95000979	District	Ave. and N. Tampa Ave.	Tampa	Hillsborough
	Upper North Franklin	Bounded by E Oak Ave,		
	Street Commercial	N Florida Ave, Kay St, &		
10000344	District	N Tampa St	Tampa	Hillsborough
	Upper Tampa Bay			
85003330	Archeological District	Address Restricted	Tampa	Hillsborough
	West Tampa Historic	Roughly bounded by		
83003539	District	Cypress and Ivy Sts.,	Tampa	Hillsborough

Reference Number	Name	Address	City	County
		Fremont and Habana		
		Aves.		
		Roughly bounded by 6th		
		Ave., 13th St., 10th Ave.		
		and 22nd St., E.		
	Ybor City Historic District	Broadway between 13th		
74000641	(NHL)	and 22nd Sts.	Tampa	Hillsborough
		North Myrtle St, South		
100006270	Fellsmere Historic	Carolina Ave, North Oak	F 11	T 1' D'
100006378	District	St., and Virginia Ave	Fellsmere	Indian River
		Main and Washington		
02000720	Old Town Sebastian	Sts., Riverside Dr., FEC	Cala atta	Latin Dimen
03000728	Historic District East Old Town Sebastian	Railroad	Sebastian	Indian River
03001364		Bounded by Palmetto	Sebastian	Indian River
03001304	Historic District, West Osceola Park Historic	Ave, Lake and Main Sts. Bounded by 20th &18th	Sebastian	indian Kiver
12001196	Residential District	Sts., 20th &23rd Aves.	Vero Beach	Indian River
12001190	Residential District	Roughly Lake Eustis,	Velo Deach	
	Eustis Commercial	McDonald Ave., Grove		
05000654	Historic District	St., Orange Ave.	Eustis	Lake
05000051	Laroe Family Homestead	3430 W. Co. Rd. 44 &	LASTIS	Пике
09000493	Historic District	2891 E. Orange Ave.	Eustis	Lake
0,000.75		Roughly 3rd Ave., 11	200000	
	Mount Dora Historic	Ave., Clayton St., Helen		
09000777	District	St.	Mount Dora	Lake
		Roughly bounded by the		
		Manatee and Braden		
	Braden Castle Park	Rivers, Ponce DeLeon		
83001428	Historic District	St. and Pelot Ave.	Bradenton	Manatee
	Curry Houses Historic	4th Ave. E. between 12th		
15000571	District	&14th Sts. E.	Bradenton	Manatee
	Midway Subdivision			
98000587	Historic District	7201 15th St. E	Sarasota	Manatee
		Roughly bounded by		
		Twenty-first Ave.,		
		Seventh St., Fifth Ave.,		
86003166	Palmetto Historic District	and the Manatee River	Palmetto	Manatee
01000342	Shaw's Point			
	Archeological District	Address Restricted	Bradenton	Manatee
07000000	Whitfield Estates Lantana		Comment.	
97000209	Avenue Historic District	332336 Lantana Ave.	Sarasota	Manatee
		Roughly bounded by		
	Dunnallan Deserves	McKinney Ave., Illinois		
0000007	Dunnellon Boomtown	St., Pennsylvania Ave.,	Dunnallan	Marian
88002807	Historic District	and Cedar St.	Dunnellon	Marion

Reference Number	Name	Address	City	County
	Fessenden Academy			
94001141	Historic District, Old	4200 NW. 90th St.	Ocala	Marion
		S of Co. Rd. 316, N of		
95001150	Kerr City Historic District	Lake Kerr	Fort McCoy	Marion
		Roughly bounded by		
		Lillian Cir., SE Stetson		
	Lake Lillian	Rd., SE Mimosa Rd., SE		
	Neighborhood Historic	Earp Rd. and CSXRR		
99001012	District	tracks	Belleview	Marion
		Roughly bounded by RR		
02002550	M.L.t. 1 Hat and Distant	Right-of-Way, 10th St.,	M. L. C. al.	Marian
83003550	McIntosh Historic District	Aves. C and H	McIntosh	Marion
	Ocala Historic	Roughly bounded by 1st St. NW, 1st Ave. SE, 2nd		
99000656	Commercial District	St. NW, 1st Ave. SE, 2nd St. SW, and 1st Ave. SW	Ocala	Marion
22000020		Roughly bounded by		
		Broadway, SE 8th St.,		
		Silver Springs Pl.,SE3rd,		
84000912	Ocala Historic District	13th, and Watula Aves.	Ocala	Marion
		5656 East Silver Springs		
100004353	Silver Springs	Blvd.	Silver Springs	Marion
		NE Fourth St., Sanchez		
		Ave., Second St.,		
	Tuscawilla Park Historic	Tuscawilla Ave., and		
87002015	District	Watula St.	Ocala	Marion
		Roughly NW4th St., W.		
	West Ocala Historic	Silver Springs Blvd., NW		
02000682	District	12 Ave.	Ocala	Marion
		Roughly Canton Ave,		
11000150	Downtown Winter Park	Center St, Comstock	W7 (D 1	
11000158	Historic District	Ave, New York Ave	Winter Park	Orange
		Roughly bounded by		
	Eatonville Historic	Wymore Rd., Eaton St., Fords, and East Aves.,		
97001214	District	Ruffel, and Clark Sts.	Eatonville	Orange
77001217		Roughly bounded by		Oralige
	Griffin Park Historic	Avondale and S. Division		
96000784	District	Aves., Carter St., and I-4	Orlando	Orange
30000784		Bounded by W. Church		8-
		St., S. Division Ave.,		
	Holden-Parramore	Long St., McFall Ave., &		
09000746	Historic District	S. Parramore Av.	Orlando	Orange
91001776	Huttig, John N., Estate	435 Peachtree Rd.	Orlando	Orange
	Interlachen Avenue	Roughly bounded by S.		
11000861	Historic District	Knowles, E. New	Winter Park	Orange

Reference Number	Name	Address	City	County
		England, S. Interlachen		
		Aves., E. Morse Blvd.,		
		Lincoln &E. Canton		
		Aves.		
		Roughly Golfview St.,		
11000050	Lake Adair-Lake Concord	Edgewater Ct., Alameda	0.1 1	
11000958	Historic District	St., &Peachtree Rd.	Orlando	Orange
		Roughly bounded by		
	Lake Eola Heights	Hillcrest St., N. Hyer Ave., Ridgewood St. and		
91001912	Historic District	N. Magnolia Ave.	Orlando	Orange
91001912		Roughly Orlando St,	Ollalido	Olalige
	Lake Ivanhoe Historic	Interstate 4, Lakeview		
10001042	Residential District	St, Edgewater Dr	Orlando	Orange
100010.2		Bounded by South &		
		Robinson Sts.,		
	Lake Lawsona Historic	Summerlin & Hampton		
100003410	District	Aves.	Orlando	Orange
	Mizell-Leu House Historic			
94001495	District	1730 N. Forest Ave.	Orlando	Orange
		Roughly by E. Harvard		
		St., N. Orange Ave.,		
	Rosemere Historic	Cornell Ave. &E.		
09000844	District	Vanderbilt St.	Orlando	Orange
	Twin Mounds			
91001957	Archeological District	Address Restricted	Sorrento	Orange
		Roughly bounded by		
	Wester Carl Derectory	Woodland, Tremaine,		
96000850	Winter Garden Downtown Historic District	Henderson, and Lake View Sts.	Winter Garden	Omanga
90000830	Historic District		winter Garden	Orange
	Winter Garden Historic	Roughly bounded by Plant, Boyd, Tilden, and		
96000849	Residential District	Central Sts.	Winter Garden	Orange
20000012		Roughly bounded by	Winter Gurden	olunge
		Aultman St., Monument		
	Kissimmee Historic	Ave., Penfield St. and		
93001454	District	Randolph Ave.	Kissimmee	Osceola
		Roughly bounded by 9th		
	St. Cloud Downtown	St., Wisconsin Ave.,		
100009031	Historic District	Ohio Ave., and US 192	St. Cloud	Osceola
		Along Church St.,		
	Church Street Historic	between 9th and 17th		
97000910	District	Sts.	Dade City	Pasco
	St Leo Abbey Historic			
97001637	District	33701 FL52	St. Leo	Pasco

Reference Number	Name	Address City		County	
		Roughly bounded by			
	Zephyrhills Downtown	South Ave., 9th Ave., 7th			
01001058	Historic District	St. and 11th St.	Zephyrhills	Pasco	
	Bay Pines Veterans				
	Administration Home and				
12000363	Hospital Historic District	10000 Bay Pines Blvd.	BayPines	Pinellas	
		Bounded by 5th Ave. N,			
04000264	Downtown St. Petersburg	Beach Dr. NE, Central	Ct. D. t	D'	
04000364	Historic District	Ave., 9th St. N	St. Petersburg	Pinellas	
		Roughly bounded by Druid Rd., S. Fort			
		Harrison Ave., Lotus			
	Harbor Oaks Residential	Path, &Clearwater			
87002133	District	Harbor	Clearwater	Pinellas	
		Roughly bounded by 9th			
		Ave. N, 19th St. N, 1st			
		Ave. N, 31st St. N, 5th			
03000729	Kenwood Historic District	Ave N, and 34th St. N	St. Petersburg	Pinellas	
		Bounded by 4th St. N,			
	North Shore Historic	5th Ave. N, Tampa Bay,			
03000040	District	and 30th Ave N	St. Petersburg	Pinellas	
		Roughly bounded by			
	Pass-a-Grille Historic	12th Ave., Gulf Blvd., 4th	St. Petersburg		
89001734	District	Ave., and Gulf Ave.	Beach	Pinellas	
	Pass-A-Grille Historic	Pass-a-Grille Way, 1st			
02000042	District (Boundary	Ave., Gulf Way, Sunset	St. Data Dagah	Din alla a	
03000943	Increase)	Way, 32 Ave. Roughly bounded by 5th	St. Pete Beach	Pinellas	
	Roser Park Historic	and 9th Sts. S, and 6th			
98000295	District	and 11th Aves. S	St. Petersburg	Pinellas	
90000295		Roughly 5th Ave. N, 9th	St. Tetelsburg	1 menus	
	Round Lake Historic	St. N, 13th Ave. N, and			
03000824	District	4th St. N	St. Petersburg	Pinellas	
	St. Petersburg Lawn				
80004602	Bowling Club	536 4th Ave., N.	St. Petersburg	Pinellas	
		Bounded by			
		Dodecanese &			
	Tarpon Springs	Roosevelt Blvds., W.			
1 40000000	Greektown Historic	Tarpon &N. Pinellas	— ~ ·	D: 11	
14000321	District	Aves.	Tarpon Springs	Pinellas	
		Roughly bounded by			
		Read St., Hibiscus St.,			
	Tomon Saminas Historia	Orange St., Levis Ave.,			
90001762	Tarpon Springs Historic District	Lemon St. and Spring	Tarpon Springs	Pinellas	
20001/02	District	Bayou	rarpon springs	rmenas	

Reference Name Number		Address	City	County
		Roughly bounded by		
		Davidson and		
		Summerlin Sts. and		
	Bartow Downtown	Broadway and Florida		
93000393	Commercial District	Aves.	Bartow	Polk
		Roughly bounded by S.		
		Florida Ave., W. Beacon		
	Beacon Hill-Alta Vista	Rd., W. Belvedere St.		
93000130	Residential District	and Cherokee Trail	Lakeland	Polk
		Roughly Bounded by S.		
		Ingraham Ave., E. Lime		
		St., Bartow Rd.,		
	Biltmore-Cumberland	Hollingsworth Rd., and		
04000565	Historic District	McDonald Place	Lakeland	Polk
		3800 Chalet Suzanne		
90001085	Chalet Suzanne	Dr.	Lake Wales	Polk
14000152	Cypress Gardens	1 Legoland Way	Winter Haven	Polk
		Roughly bounded by		
		Suwannee and Orange		
	Davenport Historic	Aves., Palmento St., and		
97000894	District	West Blvd.	Davenport	Polk
		Roughly bounded by		
		Walnut St., Florida Ave.,		
		Lake Hunter, Hartsell		
94001479	Dixieland Historic District	Ave. and Belvedere St.	Lakeland	Polk
		Roughly bounded by		
		Hinson and Ingraham		
	Downtown Haines City	Aves., and 4th and 7th		
94000150	Commercial District	Sts.	Haines City	Polk
		Roughly Avenue ANW,		
	Downtown Winter Haven	Avenue ASW, 3rd and		
01001414	Historic District	5th Sts.	Winter Haven	Polk
		Roughly bounded by		
		Orange St., Ingraham		
		Ave., Palmetto St., Lake		
	East Lake Morton	Morton Dr. and		
93000621	Residential District	Massachusetts Ave.	Lakeland	Polk
	Florida Southern College			
	Architectural District	111 Lake Hollingsworth		
75000568	(NHL)	Dr.	Lakeland	Polk
		Roughly bounded by N.		
		3rd St., Orange Ave., S.		
	Fort Meade Historic	3rd St. and Sand		
94000781	District	Mountain Rd.	Fort Meade	Polk

Reference Name Address Number Address		Address	City	County	
		Roughlybounded by N.			
		Shore Lake Howard, SW.			
	Interlaken Historic	Shore Lake Mirror and			
02000266	Residential District	Cannon-Howard Canal	Winter Haven	Polk	
		Roughly Central Ave.,			
	Lake Hunter Terrace	Greenwood St., Ruby			
02001536	Historic District	St., and Sikes Blvd.	Lakeland	Polk	
		Roughly bounded by			
		Scenic Hwy., Central			
	Lake Wales Commercial	Ave., Market St., and			
90000732	Historic District	Orange Ave.	Lake Wales	Polk	
		Roughly bounded by the			
		Seaboard Airline RR			
		grade, CSXRR tracks, E.			
	Lake Wales Historic	Polk Ave., S. and N. Lake			
97000858	Residental District	Shore Blvds.	Lake Wales	Polk	
	Mountain Lake Estates				
93000871	Historic District	US 27AN of Lake Wales	Lake Wales	Polk	
		Roughly bounded by E.			
		Bay St., N. Florida Ave.,			
	Munn Park Historic	E. Orange St., and E.			
97001228	District	Main St.	Lakeland	Polk	
	North Avenue Historic				
01001086	District	100 Blk. of North Ave.	Lake Wales	Polk	
		Roughly bounded by			
		Jackson and First Aves.			
	Northeast Bartow	and by Church and			
93000392	Residential District	Boulevard Sts.	Bartow	Polk	
		Roughly Avenue ANW,			
	Pope Avenue Historic	Pope Avenue NW, 6th			
01001337	District	and 7th Sts NW	Winter Haven	Polk	
		Roughly bounded by			
	South Bartow Residential	Floral and First Aves.			
93000394	District	and Main and Vine Sts.	Bartow	Polk	
		Bounded by Lake			
		Morton Dr. and Palmetto			
		St., Ingraham and			
		Johnson Aves.,			
		McDonald and Balmar			
	South Lake Morton	Sts., and Tennessee			
85002900	Historic District	Ave.	Lakeland	Polk	
	Winter Haven Heights	Roughly Lake Martha,			
	Historic Residential	2nd St. NE, 5th St. NE,			
00000660				Polk	
00000660	District			Polk	

Reference Name Number		Address	City	County
		Roughly bounded by		
		Granada Ave., Harbor		
	Armada Road Multi-	Dr. S., Armada Rd. S.,		
89002049	Family District	and Park Blvd. S.	Venice	Sarasota
	Bacheller-Brewer Model			
91002034	Home Estate	1903 Lincoln Dr.	Sarasota	Sarasota
02001010	Bispham-Wilson Historic District	4613 S. Tamiami Trail	Sarasota	Sarasota
		400-446 Burns Court		
	Burns Court Historic	and 418, 426, and 446		
84003830	District	S. Pineapple Ave.	Sarasota	Sarasota
	Burrows, Waters and			
11001077	Elsa, Historic District	400 Palmetto Ave.	Osprey	Sarasota
		Roughly bounded by Sarasota Bay, US 41,		
00001000	Caples'-Ringlings' Estates	Parkview and N. Shore		
82001039	Historic District	Ave.	Sarasota	Sarasota
05000500	Central-Cocoanut	11th St., Tamiami Tr.,	Gammata	C t.
05000599	Historic District	22nd Dt. and RR tracks	Sarasota	Sarasota
		Bound by 1st St., Orange		
	Downtown Sarasota	Ave., State St., Gulf Stream Ave. and N.		
09000183	Historic District	Pineapple Ave.	Sarasota	Sarasota
09000185	Downtown Sarasota	Tilleapple Ave.	Salasola	Salasola
	Historic District Boundary			
10000815	Decrease	1400 block of Main St	Sarasota	Sarasota
10000015	Eagle Point Historic		Balasota	Salasota
91001448	District	759 N. Tamiami Trail	Venice	Sarasota
		Roughly bounded by		
		School St., Myrtle Ave.,		
	Edgewood Historic	Venice-By-Way, and		
89002048	District	Groveland Ave.	Venice	Sarasota
	Hermitage-Whitney			
02001261	Historic District	6660 Manasota Key Rd.	Englewood	Sarasota
		Laguna Dr on N, Home		
		Park Rd on E, the Corso		
	John Nolen Plan of Venice	on S, The Esplanade on		
10000840	Historic District	W	Venice	Sarasota
91000282	82 Keith, Edson, Estate 5500 S. Tamiami Trail		Sarasota	Sarasota
		Bounded by Morrill		
		St.,Orange Ave.,Brother		
	Laurel Park Historic	Geenen Wy.,Julia Pl.,&		
08000164	District	Lafayette Ct.	Sarasota	Sarasota
	Manasota Beach Club			
100008818	Historic District	7660 Manasota Key Rd.	Englewood	Sarasota

Reference Name Number		Address	City	County	
		Roughly along Central			
		and Cohen Aves., bet.			
02000781	Overtown Historic District	9th and 4th Sts.	Sarasota	Sarasota	
		10021038 S. Osprey			
		Ave., 1744 and 1776			
	Rigby's La Plaza Historic	Alta Vista St. and 1777	~	~	
94000373	District	Irving Ave.	Sarasota	Sarasota	
		Roughly bounded by			
	Venezia Park Historic	Palermo St., Sorrento			
89002047	District	St., S. Harbor Dr., and Salerno St.	Venice	Sarasota	
89002047	Bethune-Cookman	620 Dr. Mary McLeod	venice	Salasola	
96000298	College Historic District	Bethune Blvd.	Daytona Beach	Volusia	
90000298	CityIsland	108 E. Orange Ave.	Daytona Beach	Volusia	
990010 4 0		Roughlybounded by		volusia	
		Columbus, Due E., and			
	Coronado Historic	Pine Aves., and the	New Smyrna		
97000098	District	Indian River	Beach	Volusia	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Daytona Beach Bandshell				
	and Oceanfront Park	Ocean Ave., Nofjct. of			
99000159	Complex	Main St. and Atlantic	Daytona Beach	Volusia	
		Roughly bounded by			
		Auditorium Blvd., the			
	Daytona Beach Surfside	Atlantic Ocean, US 92,			
96000851	Historic District	and the Halifax River	Daytona Beach	Volusia	
		Roughly bounded by			
		Florida & Rich Aves.,			
	Downtown DeLand	Woodland Blvd., &			
87001796	Historic District	Howry Ave.	DeLand	Volusia	
		Roughlyalong			
		Dunlawton Ave. to			
		Lafayette Ave., and			
0000055	Dunlawton Avenue	Orange Ave. and Wellman St.	De et Oren e en	Valuatio	
98000055	Historic District		Port Orange	Volusia	
93000318	El Pino Parque Historic District	14121604 N. Halifax Dr.	Daytona	Volusia	
93000318	Gamble Place Historic	DI.	Daytolla	volusia	
93000563	District	1819 Taylor Rd.	Port Orange	Volusia	
22000202		Roughly bounded by W.		1014514	
	Lake Helen Historic	New York, Lakeview,			
93000981	District	Park and Euclid Aves.	Lake Helen	Volusia	
		Roughly bounded by			
		Riverside Dr., US 1,			
	New Smyrna Beach	Ronnoc Ln., and Smith	New Smyrna		
90000714	Historic District	St.	Beach	Volusia	

Reference Name Number		Address	City	County	
		Roughly Banana,			
	Orange City Historic	Carpenter, French and			
04000265	District	Orange Aves.	Orange City	Volusia	
		Roughly bounded by			
		University Blvd., Halifax			
	Seabreeze Historic	R., Auditorium Blvd.,			
98001131	District	and N. Atlantic Ave.	Daytona Beach	Volusia	
		Roughly bounded by			
	South Beach Street	Volusia Ave., S. Beach			
88001597	Historic District	St., South St., and US 1	Daytona Beach	Volusia	
		Roughly the Daytona			
		Beach Pennisula			
	South Peninsula Historic	between the Atlantic			
98001379	District	Ocean and Halifax R.	Daytona Beach	Volusia	
70001577		Roughly bounded by	Daytona Deach	volusiu	
	Southern Cassadaga	Cassadaga Rd. and			
	Spiritualist Camp Historic	Marion, Stevens, Lake			
91000249	District	and Chauncey Sts.	Cassadaga	Volusia	
91000249	District		Cassauaga	volusia	
		Roughly bounded by			
		Foote Court, South St.,			
	Southwest Daytona	Dr. Martin Luther King			
07000457	Beach Black Heritage	Blvd., and the FEC RR		X7.1 ·	
97000457	District	tracks.	Daytona Beach	Volusia	
		Roughly bounded by			
		Michigan Ave., N.			
		Florida Ave., W.			
		University Ave. and a			
	Stetson University	line S from N. Hayden			
91000244	Campus Historic District	Ave.	DeLand	Volusia	
		Bounded by Broderick			
		and Retta Sts. and by			
	Strawn Historic	Central and Dundee			
93000929	Agricultural District	Aves.	DeLeon Springs	Volusia	
	Strawn Historic Citrus				
93000931	Packing House District	5707 Lake Winona Rd.	DeLeon Springs	Volusia	
	Strawn Historic Sawmill				
93000930	District	5710 Lake Winona Rd.	DeLeon Springs	Volusia	
		Roughly bounded by			
	West DeLand Residential	University, Florida, New			
92001617	District	York and Orange Aves. DeLand Volusia			

Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

of Transportation Federal Aviation Administration

State Historic Preservation Office Florida Department of State, Florida Division of Historical Resources R.A. Gray Building 500 South Bronough Street Tallahassee, Florida 32399-0250

June 11, 2024

Via electronic submission to CompliancePermits@dos.myflorida.com.

Re: Concurrence with Proposed Area of Potential Effects for Drone Delivery Operations in Central Florida metropolitan and surrounding areas

State Historic Preservation Officer:

The Federal Aviation Administration (FAA) is currently evaluating a proposal from Wing Aviation, LLC doing business as Wing, to introduce drone package delivery operations in Central Florida metropolitan and surrounding areas. The FAA has determined the proposed action, which requires FAA approvals to enable operations, is an undertaking as defined under the regulations implementing Section 106 of the National Historic Preservation Act (36 CFR § 800.16(y)). The purpose of this letter is to coordinate with the State Historic Preservation Officer (SHPO) and request concurrence on the definition of the Area of Potential Effects (APE).

Proposed Undertaking

Unmanned Aircraft

Two Unmanned Aircraft (UA) would be primarily used for package deliveries: Wing's Hummingbird 7000W-B and 8000-A as described below and shown in Attachment A.

- Hummingbird 7000W-B.
 - Multi-rotor design with 16 round diameter propellers.
 - Weight under 15 pounds when combined with its maximum payload weight of 2.7 pounds.
 - Has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of 4 feet.
- 8000-A.
 - Multi-rotor design with 12 round diameter propellers.

- Weight under 25 pounds when combined with its maximum payload weight of 5 pounds.
- Has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet.

All Wing aircraft use electric power from rechargeable lithium-ion batteries.

Wing anticipates the Orlando-Tampa fleet makeup would be comprised of 70 to 80 percent 7000W-B aircraft and 20 to 30 percent 8000-A aircraft. The fleet mix of individual nests would be variable based on payload, route, and demand characteristics; nests with a wider range of offerings are anticipated to carry higher proportions of 7000W-B Aircraft.

Flight Operations

The UA would generally be operated at an altitude of 150–300 feet above ground level (AGL) and always below an altitude of 400 feet AGL while en route to and from delivery locations. At a delivery location, the UA would descend vertically to a stationary hover at 23 feet AGL and lower a package to the ground by a retractable line for delivery. Once a package has been lowered to the ground, the UA would then retract the line, ascend vertically to a cruise altitude, and depart the delivery area enroute back to a nest.

The UA would fly a predefined flight path that is set prior to takeoff. Flight missions are automatically planned by Wing's flight planning software. A mission originates from a nest location, and Wing's software automatically assigns, deconflicts, and routes each flight to the delivery location and back to a nest. Each nest site would include a controlled area wherein UA flights are launched and recovered.

A typical flight profile can be broken into the following general flight phases: takeoff, enroute outbound, delivery, enroute inbound, and landing.

Takeoff

Once the UA receives a mission and is cleared for takeoff from a launch pad, the UA takes off from the ground vertically to an altitude of 23 feet AGL and hovers for 30 seconds while the package is loaded. The UA then climbs to the en route altitude (150–300 feet AGL).

En Route Outbound

The en route outbound phase is the part of flight in which the fully loaded UA transits from the nest or a remote pickup location to a delivery point on a predefined flight path. During this flight phase, the UA would typically operate at an altitude of 150–300 feet AGL and a typical airspeed of 59 miles per hour (mph). The UA has a single set cruise airspeed, which would not be exceeded.

Delivery

The delivery phase consists of descent from the en route altitude to a delivery point, such as a residential yard, driveway, parking lot, or common area. The UA descends vertically to 23 feet AGL while maintaining position over the delivery point. The UA hovers at 23 feet AGL for approximately 30 seconds while lowering its package and then proceeds to climb vertically back to enroute altitude. The minimum

distance a human should be from the UA during delivery is a 6-foot radius from underneath the center of the UA.

En Route Inbound

The UA continues to fly at an altitude of 150–300 feet AGL and a speed of 59 mph towards the nest.

Landing

Upon reaching the nest, the UA slowly descends over its assigned landing pad and lands on the pad.

Remote Pickup Operations

Remote pickup operations from each nest would be supported at up to 12 partner establishments depending upon demand and nest capacity. Pickup operations would follow general flight phases and parameters identical to typical delivery operations and would include the addition of a pickup phase. The pickup phase is similar to the delivery phase. The UA descends from its close transit altitude (safe altitude above local terrain and obstacles) to 14.5 feet AGL and lowers the package hook. The UA then passes approximately 10 feet laterally over the autoloader. The autoloader's Y-shaped poles passively guide the package hook to a narrow slot that ensures secure attachment of the package. The package is then retracted to the UA before it proceeds to climb to the enroute altitude. Remote pickup operations from descent to finish are expected to take no longer than 1 minute and 30 seconds (90 seconds). Delivery, en route return, and landing operations would then occur as described above.

Area of Potential Effects

In accordance with 36 CFR § 800.4(a)(1), the FAA has defined the APE in consideration of the undertaking's potential direct and indirect effects. The proposed APE is the drone operating area outlined in red in **Attachment B**. The operating area would stretch from the west coast of Florida, along the Gulf of Mexico, to the east coast of Florida, along the Atlantic Ocean, and would be approximately 14,168 square miles.

Conclusion

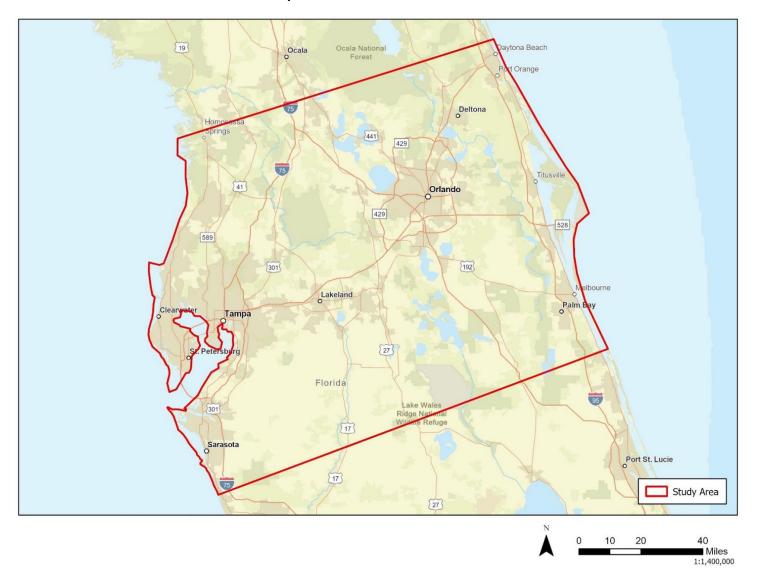
The FAA requests your concurrence on the definition of the proposed APE. Your response within the next 30 days will greatly assist us in our environmental review process. If you would like to consult with the FAA about the proposed APE, please contact Dr. Shelia Neumann via email at 9-faa-drone-environmental@faa.gov.

Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Enclosures: Attachment A – UAS Images Attachment B – Proposed Area of Potential Effects

Attachment A


Wing Hummingbird 7000W-B UA

Wing Hummingbird 8000-A UA

Attachment B Proposed Area of Potential Effects

FLORIDA DEPARTMENT Of STATE

RON DESANTIS

Governor

CORD BYRD Secretary of State

Mr. Derek W. Hufty Manager, General Aviation and Commercial Branch (AFS-750) Federal Aviation Administration Aviation Safety 800 Independence Ave., S.W. Washington, D.C. 20591 September 17, 2024

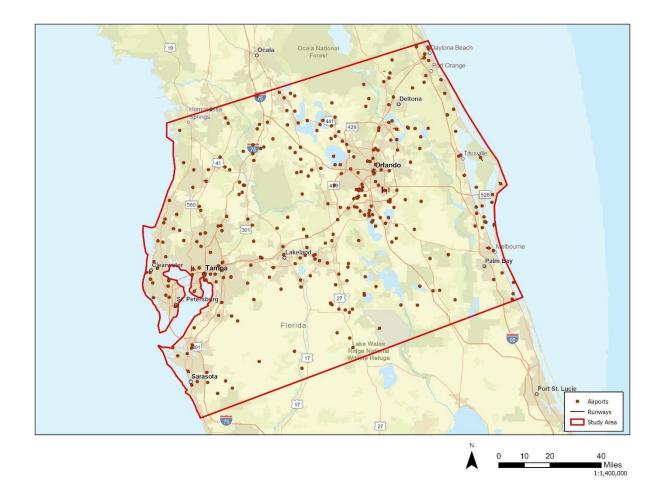
Re: DHR Project No.: 2024-3435 Requested Concurrence with Proposed Area of Potential Effects for Drone Delivery Operations in Central Florida Metropolitan and Surrounding Areas

Dear Mr. Hufty:

This office reviewed the referenced project for possible impact to historic properties listed, or eligible for listing, in the *National Register of Historic Places*. The review was conducted in accordance with Section 106 of the *National Historic Preservation Act of 1966*, as amended and *36 CFR Part 800: Protection of Historic Properties*.

Based on the information provided, we find the proposed area of potential effect acceptable. We look forward to continuing consultation with your agency on the potential effects form this undertaking.

If you have any questions concerning our comments, please contact Scott Edwards, Historic Preservationist, by electronic mail *scott.edwards@dos.myflorida.com*, or at 850.245.6333 or 800.847.7278.


Sincerely,

ely L Chase For

Alissa Slade Lotane Director, Division of Historical Resources and State Historic Preservation Officer

Appendix H Central Florida Metropolitan and Surrounding Areas Airports

Appendix I Community Engagement Plan

Community Integration Best Practices

At Wing our community engagement efforts fall into three pillars: educate, listen, and respond. These three components support an outreach strategy for a successful integration with the community when launching a new technology.

Educate

Education starts with sharing about the concept of drone delivery not only to community members, but also to the state & local government. The concept of drone operations with certain preconceptions, some of which may be negative, and apply those thoughts to any and all drone operations without recognizing that drone platforms vary widely in how they operate and for which applications they are used.

State & Local Government

It is important to conduct these meetings early in the process of beginning a drone operation for several reasons:

- To ensure that local decision-makers are equipped with early knowledge of the situation so they can be an informed voice with their constituents.
- To get to key stakeholders early so that they are hearing accurate information directly from the drone operator rather than potential misinformation from other sources that would require effort.
- To provide an opportunity to begin two-way conversations and build relationships with stakeholders, allowing ample time for them to approach us after an initial meeting with further questions and to provide us time to follow up with responses on any concerns.

Holding these conversations early allows ample time for the outcome of these meetings to inform future outreach, so that insights gleaned from stakeholders can help the company tailor their outreach approach and their service more effectively to the specific needs and priorities of the community. The purpose of these initial meetings is to introduce your company to local officials, describe to them your plans and goals, expand on the benefits of your services, provide the officials with an opportunity to ask questions or express concerns, and to solicit advice from local officials on other important stakeholders to talk to and any particular actions that should be taken in becoming a member of the community.

Listen

Capturing Public Sentiment

While engaging with a community, it is important to be able to track the extent and nature of the feedback provided. Being able to quantify the number of community members we spoke to can be important information for federal regulators, local leadership, and internal discussions that can shape the future direction of the company. Capturing information regarding the sentiment of community members and if they feel positively or negatively towards drone delivery is important. Understanding the overall sentiment can be extremely important in analyzing success in a market and gauging how to grow and adapt.

Outreach Events

Apart from participating in broader community festivals or events, our outreach events will often fall into two categories: a community booth, or a community demonstration. At Wing, booths will involve a table where staff can display the drone, a representative package used in our deliveries, and accompanying materials that help demonstrate how the technology works. The display drone is very effective in attracting the attention of community members. It is also a good way of introducing people, particularly children, to the aircraft in a way that is not intimidating and allows them to examine the components up close.

Respond

Community members may approach the concept of drone operations with certain preconceptions, some of which may be negative, and apply those thoughts to any and all drone operations without recognizing that drone platforms vary widely in how they operate and for which applications they are used. It is important to respond to questions, comments, concerns, and feedback that the community is providing us.

Community Engagement: Best Practices for Drone Operators

The Wing-MAAP team's guide to working with communities

TABLE OF CONTENTS

3	Introduction	
4	Overall Strategy	
	4 Educate5 Listen6 Respond	
7	State & Local Government	
9	Additional Stakeholders/Partners	
9	Identifying Outreach Opportunities	
10	Capturing Public Sentiment	
11	Guidelines for Community Outreach Events	
12	Outreach Experience for the Wing-MAAP Team in Virginia	

- 12 Targeted Outreach with Government Officials and Local Stakeholders
- 13 Presence at Widely-Attended Community Events
- 16 Hosting Information Sessions and Flight Demonstrations

INTRODUCTION

This document contains information and background that Wing and Virginia Tech's Mid-Atlantic Aviation Partnership (MAAP) have found to be helpful in engaging with a community prior to and during operation of a drone package delivery service. The information has been collected through engagement during multiple launches of Wing's delivery service - in Australia, Finland and the United States - and ranges from providing briefings to high-level public officials to direct conversations with community members at public events. It does not include discussion of engagement through media or social media, but is instead focused on our attempts to engage directly with community members in person.

With most new and emerging technologies, adoption depends on customers and communities seeing the value of the new service provided and embracing rather than resisting new ways to receive products. Wing and MAAP recognize that the only way for a drone platform to be successful is to provide a service that customers find useful, and that the larger community deems acceptable. Without community acceptance, the service simply won't work. To that end, Wing and MAAP make it a priority to engage with and assimilate into a community prior to introducing our drone delivery service. And whenever possible, we act on community feedback to adopt changes and improvements to our service.

Humility is an essential quality when launching a drone delivery service in a new market. Each community has its own needs and sensitivities; its own history and way of life. While we may know our technology better than anyone else, community members know best the kind of service they require. Approaching community engagement with an understanding that the community itself has some of the answers to a successful drone operation is an important principle.

It is also important to note that different applications of drone technology involve different levels of engagement with members of a community. A package delivery service like what Wing provides is inherently a high-visibility application that involves a great deal of direct interaction with customers as well as noncustomers. For that reason, Wing and MAAP used an intensive, high-touch approach of engaging community members prior to launching the service. Other drone applications may involve less interaction with community members, and therefore each and every element of the strategy discussed below may not apply.

OVERALL STRATEGY

For our community engagement efforts, Wing and MAAP incorporated three overarching principles in our approach: educate, listen and respond. These three components support an outreach strategy that furthers our broader goal of launching a service that best meets the community's needs and minimizes impacts that may be perceived as negative.

A Note About COVID-19:

As noted throughout this document, a key to effective outreach is to have direct, in-person conversations with community members to convey information and elicit feedback. During the COVID-19 pandemic, those opportunities are extremely limited or simply not available at all. Instead, Wing and MAAP have pursued engagement opportunities online and in the form of virtual meetings. Phone calls and video conference presentations to local groups and organizations have taken the place of booths at festivals and in-person meetings. These events still allow Wing and MAAP to continue conversations with community members and highlight new developments with the drone delivery service, which is particularly relevant given the surge in demand for our services during the pandemic. Having already established strong community connections through outreach efforts prior to launching service, Wing and MAAP were able to draw from those relationships to understand and respond effectively to the community's changing needs. Additional strategies include highlighting service updates through local media channels and supporting local fundraising efforts for frontline workers during the pandemic.

Educate

Perhaps the most important component of gaining community acceptance is educating community members on what your particular drone platform is, as well as what it is not. Community members may approach the concept of drone operations with certain preconceptions, some of which may be negative, and apply those thoughts to any and all drone operations without recognizing that drone platforms vary widely in how they operate and for which applications they are used. At Wing, as with many other drone companies, an enormous amount of effort went into customizing our drone service and package delivery system to meet particular performance requirements while sacrificing other capabilities that are not essential to our operations and, in some cases, could engender public concerns (e.g. we do not employ a camera with images viewable by the pilot). As part of that process, we have also worked to address key concerns that we hear frequently about UAS technology.

When speaking with community members, concerns are generally raised around recurring themes; particularly safety, privacy and noise. Those concerns could be developed through personal experience, but are often based on news reports or general background about drones that don't necessarily apply to all of the various different platforms that now exist.

Being present in a community before your drone service has begun provides the opportunity to educate community members about how your service operates, what benefits it provides and how you plan to establish appropriate channels for continued community interaction. It also allows you to hear about particular concerns, explain how you have addressed or plan to address those concerns, and to clear up any misconceptions about how your particular drone platform operates.

For example, many people share concerns about drones taking video footage of their homes or activities. When we have community events, we explain that Wing drones have a downward-facing, low resolution, grayscale camera that is used for navigational purposes. Community members who have expressed concerns appreciate the information about Wing and our operations.

Bringing an understanding to the general public of the benefits of drone services, while noting the ways in which recurring concerns have been taken into account, can be one of the most challenging yet effective efforts in developing public acceptance.

Listen

Direct in-person presence allows for dialogue: helping the drone operator get crucial feedback from potential customers while allowing people to share their thoughts and concerns in a way that reassures them they are being heard by the drone operator. These interactions can also provide key insight for the drone operator on how to make meaningful improvements to its service.

It can be helpful in both the short- and long-term to develop a system to collect data on public sentiment that will allow you to track general trends and reactions

(detailed below in the "Capturing Public Sentiment" section). Conversations at a community festival booth can sometimes be brief, but providing contact information so that individuals can follow up with real people has proven to be helpful in continuing those conversations and building relationships.

Listening to the views of community members and extending these conversations means community members feel they are being heard and are part of the process of developing a new service. Because sentiment towards drone delivery and drone operations in general will vary widely in a diverse community, it will likely be impossible to address or resolve every individual's potential concerns. However, providing an avenue for community members to directly voice their opinions can be constructive and contribute to the success of a drone service in the community.

For larger operations, listening to community members also involves conveying relevant input to the appropriate department or team. To ensure the experience is effective from a community member's perspective, that means that the staff member taking feedback must see that feedback is delivered to the appropriate staff who can address it. Failure to follow up on a question raised by a community member, particularly if part of a broader trend, can spoil the outreach efforts and poison the well for your company's longer-term relationship with that community.

Respond

An important component to listening involves the ability to respond to whatever feedback is provided. First, consistency in responses provided is important so developing a common script that all team members can work from ensures that community members are receiving the consistent responses to common questions. Team members working at outreach events could come from varied backgrounds or have varied levels of expertise, so working from a standardized set of responses to commonly asked questions will help to avoid any confusion for community members who could otherwise come away from an interaction having received discordant or conflicting information.

When well-founded complaints or concerns are voiced, it is important to respond with concrete action in an attempt to resolve the issue. In the case of Wing's engagement, much of the feedback has involved the provision of service itself: Can we provide service to an address or neighborhood? Can we provide additional services - deliveries over a longer time period or provide additional items for delivery?

In many ways, this can be viewed as positive feedback, as it shows that community members and customers enjoy the current service and would like to see it expanded. When possible and when it makes sense from the perspective of growing the service long-term, Wing attempts to accommodate these requests. For example, we have expanded our merchant offerings on the app in Australia to include additional merchants who offer a much larger selection of goods for delivery to our customers and we continue to explore ways to expand our delivery area.

Other feedback could involve complaints about a drone operation: when and where the operation takes place, proximity to certain areas or homes, the noise or other disturbance associated with operations, etc. As an example, in its early operations Wing received feedback related to the noise emitted by our drone operations. In response, Wing addressed those concerns by taking measures such as redesigning our hover propellers to reduce both the volume and pitch of noise generated by our drones. Another example is that Wing has designed its route planning software to randomize routes in a way that distinct "drone highways" or specific routes are not taken for each and every flight in an effort to minimize repeatedly flying over any given land parcel when making deliveries. In addition, locating the base of operations in a commercial district rather than in close proximity to quiet residential areas can ensure that the highest concentration of flight activity is localized in a part of town already busy with commercial activity.

Being able to demonstrate that a drone operator can and will take action to address community concerns is effective when talking to community members to show that drone industry participants value the feedback they receive and take concrete actions to do something about it. Not every concern can be addressed with a direct solution, but experience has shown that community members value efforts taken to listen and address issues raised within the communities being served.

STATE & LOCAL GOVERNMENT

Well in advance of the date scheduled for operations to begin, a drone operator may want to set up meetings with the relevant state and local government officials, as well as other important stakeholders who are known within the community. Local government officials include the Mayor and City Manager, members of the Town or City Council, County Board of Supervisors and key staff, local economic development officials and others that may be identified as being important. State officials would include key members of the governor's team and cabinet, department of aviation officials, local members of the state General Assembly as well as their staff.

It is important to conduct these meetings early in the process of beginning a drone operation for several reasons:

- » To ensure that local decision-makers are equipped with early knowledge of the situation so they can be an informed voice with their constituents.
- » To get to key stakeholders early so that they are hearing accurate information directly from the drone operator rather than potential misinformation from other sources that would require effort.
- » To provide an opportunity to begin two-way conversations and build relationships with stakeholders, allowing ample time for them to approach us after an initial meeting with further questions and to provide us time to follow up with responses on any concerns.

Holding these conversations early allows ample time for the outcome of these meetings to inform future outreach, so that insights gleaned from stakeholders can help the company tailor their outreach approach and their service more effectively to the specific needs and priorities of the community.

The purpose of these initial meetings is to introduce your company to local officials, describe to them your plans and goals, expand on the benefits of your services, provide the officials with an opportunity to ask questions or express concerns, and to solicit advice from local officials on other important stakeholders to talk to and any particular actions that should be taken in becoming a member of the community. Perhaps most importantly, these meetings help with forging important relationships with key stakeholders in a friendly, introductory environment.

This initial set of meetings with local elected and state officials can be followed by additional meetings with important stakeholders in the community, which can include potential supporters who can speak positively of your presence to other community members as well as potential groups who may be cautious about embracing drone delivery services.

ADDITIONAL STAKEHOLDERS/PARTNERS

Stakeholders include the local chamber of commerce, leaders at local educational institutions, leading voices in various different local communities or groups (e.g. particular cultural associations, active technology/robotics or environmental groups, local AARP chapter, etc.). Given that drone technology must safely share the skies with other types of aircraft, it is also important to have your company's drone pilots and technical experts meet with members of the local aviation community to explain your concept of operations and provide lines of communication to ensure any and all questions can be answered.

Experience has shown that conducting these meetings with a respected local partner, if possible, can be very effective in allaying concerns and driving support. As an example, in launching its Virginia operations, Wing's partnership with MAAP, a division within Virginia Tech, carried with it the valuable affiliation with the university. Including representatives from MAAP in meetings reinforced with the local community that Wing had the support of a trusted local partner.

IDENTIFYING OUTREACH OPPORTUNITIES

Every community presents opportunities for a drone company to engage with community members simply through participating in the large-scale, public events that are hosted within a community each year. These can range from farmers' markets to street fairs, health & wellness events to music or food festivals. Some events won't be appropriate for engaging in discussions about providing drone services. However, events that attract a good cross-section of the community and that allow you to rent out or set up a booth can provide a great opportunity to engage with the community. Something as simple as scanning community event calendars can be helpful in identifying good options. If you are unfamiliar with a community, local elected officials or other community leaders are often happy to suggest good options.

It can be worthwhile to think creatively about outreach opportunities. Consider securing a presence at events that may not traditionally be associated with a new and emerging technology like drone operations. As an example, Wing and MAAP have had success by identifying outreach opportunities such as home shows, aging conferences and AARP chapter meetings to start conversations with community members about the benefits of drone package delivery. Thinking about drone operations as a way of improving people's everyday lives rather than just an exciting new technology can change people's perspectives and helps to re-frame the way that a community views the role of drone operations. This perspective can also be helpful in identifying outreach events and framing your message as you engage with community members at those events.

CAPTURING PUBLIC SENTIMENT

While engaging with a community about your company's drone operations, it is important to be able to track the extent and nature of the feedback provided. Being able to quantify the number of community members that you spoke to can be important information for federal regulators, local leadership and internal discussions that can shape the future direction of the company. In addition, capturing information about whether community members feel positively or negatively towards your operations and what specific factors weigh into those feelings can be extremely important in analyzing your success in a market and gauging how to grow and adapt.

In a common situation, a drone company team member will find herself staffing a booth at a community festival or other public place and engaging in one-on-one (or group) conversations with community members in somewhat crowded environments. Those situations are not always conducive to taking timely and specific notes about particular questions or concerns that a community member may voice. To address that challenge, one possible solution is to incorporate a system of tracking public sentiment by using tablets during events and minimizing the amount of work an employee would have to do at the event to provide an accurate sense of a community member's feedback. Using a document with predetermined categories that generally describe the nature of positive or negative sentiments can quickly provide information about the number of people sharing feedback, and what specific type of concern it is. Staff can also take notes after the interaction if more specificity is needed. For particularly crowded and chaotic events, it can be effective to designate one person on staff to focus on collecting feedback with the tablet rather than engaging in conversations with community members.

Feedback collected at community events is valuable to ascertain information about broader trends. By having direct contacts with thousands of community members, it allows you to get a good cross section of community views about your service. In the case of the Wing-MAAP team, for example, these direct, organic conversations inform us about how a particular community values the convenience, product offerings or environmental benefits of our service, and allow us to hear questions or concerns. In addition, collecting feedback through the use of a document with predetermined categories allows for collection of standardized data across multiple markets with the ability to run comparative analysis between those markets.

During community outreach events, there is the potential for uncomfortable or tense conversations with members of the public who may disagree with the service or have more general concerns about new technology. This could involve someone using offensive or derogatory language, acting physically aggressive, or using a cell phone to record an awkward exchange. In Wing's experience having hosted over 100 information booths across three countries, uncomfortable situations have been extremely limited and relatively mild in nature. Nonetheless, it is important to remain prepared in case a situation arises.

If such a situation arises, it is advisable to use conflict resolution practices such as maintaining eye contact, actively listening, and keeping a friendly rapport while also making a note of any action items. Actions items could include tracking down follow up information that a team member doesn't have at the ready in order to share with the community member at a later date. For public events, always consider security arrangements, including taking note of any law enforcement presence. Consider adopting a policy of requiring at least two team members present in order to avoid leaving one employee to handle a situation by him or herself. Developing and talking through an action plan beforehand is also important so that team members are confident in what steps to take if such a situation arises.

GUIDELINES FOR COMMUNITY OUTREACH EVENTS

Apart from participating in broader community festivals or events, your drone operation's outreach events will often fall into two categories: a community stall/ booth, or a community demonstration. At Wing, stalls/booths will involve a table where staff can display the drone, a representative package used in our deliveries, and accompanying materials that help demonstrate how the technology works. We have found that simply having the drone itself on display is very effective in attracting the attention of community members. It is also a good way of introducing people, particularly children, to the aircraft in a way that is not intimidating and allows them to examine the components up close. Flight demonstrations can be even more effective in allowing community members to see how the technology actually works. Staff can identify suitable plots of land in a community that can host members of the public while also being able to provide for a safe demonstration of the drone technology. During a flight demonstration event, it is advisable to space out the flights so that community members can filter in and out of the event and still witness how the system works. At flight demonstrations, staff should also have a stall or booth to help with providing informational materials, answering questions, and helping people sign up to use the service.

OUTREACH EXPERIENCE FOR THE WING-MAAP TEAM IN VIRGINIA

Wing began its drone delivery operations in Christiansburg, Virginia in October, 2019 in partnership with Virginia Tech's MAAP and the Virginia Center for Innovative Technology under the U.S. Department of Transportation's Integration Pilot Program. Leading up to the launch of service, Wing and MAAP jointly executed a comprehensive community outreach strategy that closely followed the principles laid out above.

Targeted Outreach with Government Officials and Local Stakeholders

In the summer and early fall of 2019, Wing and MAAP scheduled meetings with Town Council members for the Town of Christiansburg, members of the Montgomery County Board of Supervisors, the Governor's office, and federal and state legislators who represent the region. In these meetings, we briefed officials on the background of Wing, our plans for operations in Christiansburg and our strategy to engage local community members about the upcoming service. In each meeting, we also solicited feedback from the officials in an effort to gauge their level of support, understand any advice they had for us to maximize our success, and learn of additional stakeholders in the community we should meet with directly. These initial meetings also served as friendly introductions to lay the groundwork for constructive longer-term relationships going forward.

In addition to elected leaders, the Wing-MAAP team also met with prominent local stakeholders and members of key groups. These groups ranged from the local chamber of commerce to law enforcement and first responders, including the local police and fire departments as well as the county sheriff.

Wing and MAAP team members with Christiansburg Mayor Michael Barber

We also scheduled meetings with key aviation stakeholders to ensure coordination with other groups who would be using shared or neighboring airspace. These groups included the manager of the local airport, leaders in the local medivac and helicopter community as well as members of the local drone hobbyist community. We were careful to include our pilots and technical staff in these meetings in order to engage in discussions that could delve into specific and technical aviation issues.

Presence at Widely-Attended Community Events

Wing and MAAP worked to identify community festivals in the region that would be suitable for securing a Wing-MAAP booth where we could provide flyers and background materials to distribute, display a drone and our delivery mechanism to demonstrate our technology in-person, and have staff on hand to explain our plans and answer questions.

MAAP and Wing team members at Christiansburg's Touch-A-Truck festival

The events ranged from the largest regional street festival to much smaller and more intimate gatherings that attracted more modest foot traffic. As an example, Wing and MAAP team members staffed a booth at Steppin' Out Blacksburg, a two day festival that generally attracts roughly 40,000 attendees. Other events included the Kiwanis Wilderness Festival, the Christiansburg Food Truck Rodeo, and multiple appearances at the local farmers market and a kiosk in the indoor mall.

Attending these events allowed Wing and MAAP to interact with a large number of community members, educating them about our drone delivery service while also getting important feedback from potential customers. Having a presence at a range of different events also allowed us to build awareness with a wide variety of community members from different neighborhoods and income brackets.

Importantly, Wing and MAAP continued to have a presence at community events and local gathering places after the initial launch of our delivery service. This continued presence helped demonstrate a commitment to the community and allowed community members to continue dialogue with us. Discussions changed over time as well, with initial conversations focused on educating the public about who we are and what we do and later conversations focused on troubleshooting how people can sign up for the service and taking suggestions for how the service could be improved.

The Wing-MAAP team has also found ways to expand our outreach once the delivery service was up and running. We have invited several groups of community members, including entire classes of middle and high school students, to Wing's base of operations in Christiansburg to provide background on the drone delivery operation and educate more generally on drone technology and safe operation. The Wing-MAAP team has found these opportunities to be very well received by student groups and an effective tool to help generate enthusiasm among local students to pursue careers in the field.

Tour of Wing's Christiansburg operation

Hosting Information Sessions and Flight Demonstrations

Wing and MAAP hosted multiple events that allowed for community members to witness the drone delivery system in person prior to Wing's service officially beginning.

Wing organized a widely-attended gathering, held at a large centrally-located outdoor space. Wing sent invitations by mail to a large majority of the residences within the delivery footprint, inviting community members and local leaders to attend a picnic event on a Saturday afternoon. At the event, Wing, MAAP and other partners each had booths staffed by employees to provide information and materials with details about how the service would work. Most importantly, over the course of the event Wing made drone deliveries to the event every 15 minutes to allow attendees to witness how the technology works up close. Exhibiting the delivery system in person prompted constructive questions from attendees and potential customers. It also served to build a comfort level in, as well as excitement about, the upcoming service that we would offer.

In addition to the picnic-style event, Wing and MAAP hosted smaller scale demonstrations at other venues around town. These events were announced beforehand on local media and, although they did not include the enticement of free food, also provided the opportunity for attendees to witness deliveries firsthand. At each event, Wing and MAAP had staff and background materials on hand to provide helpful information and answer questions between deliveries.

Hosting multiple flight demonstration events provided different opportunities for community members to view the delivery system prior to launch in case one particular date wasn't suitable for everyone. Varied venues around town helped us expose a cross section of the community to the service. We have found that witnessing the experience in person was an extremely effective tool in educating the community about drone delivery and helped create local excitement about its benefits.

Taken as a whole, Wing and MAAP found the strategy described above to be successful in creating an overwhelmingly positive community response to the drone delivery service. Engaging early and establishing constructive relationships with leaders and community members helped pave the way for a successful launch of the delivery service and began a constructive dialogue with the community from which we continue to benefit as we work to modify and improve the service.

Federal Aviation Administration Aviation Safety

800 Independence Ave., SW. Washington, DC 20591

Florida State Clearinghouse Florida Department of Environmental Protection 3900 Commonwealth Boulevard Tallahassee, Florida 32399

Via electronic submission to state.clearinghouse@dep.state.fl.us

RE: Wing Unmanned Aircraft Delivery Operations (Central Florida) – Coastal Zone Management Act

Dear Florida State Clearinghouse:

The Federal Aviation Administration (FAA) is currently evaluating a proposal from Wing Aviation, LLC, (Wing) to conduct unmanned aircraft (UA; also referred to as a drone) small package delivery operations in Central Florida using its Hummingbird 7000W-B and 8000-A UAs. The FAA has determined that the proposed action, which would encompass all FAA approvals necessary to enable operations, is an unlisted activity under Florida's coastal management plan. Consistent with 15 CFR 930.54(a)(2) and FAA Order 1050.1F, the FAA is providing written notice of Wing's submission of an application for FAA authorization for an unlisted activity. FAA respectfully requests your review and concurrence of this activity's consistency with the Florida Coastal Management Program.

Project Description

Wing is proposing to conduct UA commercial delivery services in Central Florida. Wing has a Part 135 Air Carrier Operating Certificate from the FAA, which allows it to carry the property of another for compensation or hire beyond visual line of sight (BVLOS) using its Hummingbird Unmanned Aircraft System (UAS). The certificate contains a stipulation that operations must be conducted in accordance with the provisions and limitations specified in the carrier's Operations Specifications (OpSpecs).¹ Wing is seeking to obtain an OpSpecs and other FAA approvals necessary to conduct UA commercial package delivery operations in Central Florida (**see Attachment A**).

The FAA grants multiple approvals for package delivery proposals, including waivers of 14 CFR Section 91.113(b) for BVLOS operations and Certificates of Waiver or Authorization. However, the issuance or amendment of an OpSpec specifically enabling package delivery flights in a defined operating area is the key approval for UA operations. The FAA has statutory and regulatory obligations related to Part 135 certificates and associated OpSpecs. It must issue an operating certificate if it determines, after investigation, that the applicant can operate safely and complies with relevant regulations. Operating

¹ An Operations Specifications is a document that defines the scope of aircraft operations that the FAA has authorized.

certificates specify terms for safety, authorized locations, and U.S. airways for air carrier operations. They also require compliance with provisions and limitations in the OpSpec. A Part 135 certificate holder cannot operate in a geographical area without specific authorization in its OpSpec, which includes "authorization and limitations for routes and areas of operations." Air carriers may request OpSpec amendments, which the FAA may approve if it finds the changes are consistent with safety and the public interest. Once this determination is made, the FAA must act on the amendment request.

Wing projects establishing up to 150 sites in Central Florida. Wing projects operating a maximum of 400 delivery flights per operating day per nest, with operating hours initially occurring between 7:00 am to 7:00 pm and then extending to 7:00 am to 10:00 pm, 7 days of the week, including holidays. In addition, operations would include low altitude (<8ft) in-nest hover checks, or Fitness Built in Tests (FitBITs) between 6:00 a.m. and 7:00 a.m. in preparation for the normal operational day which would begin no earlier than 7:00 a.m. Additional, higher hover flights (approximately 60 feet) may be performed up to 18 times per nest, per week, where the UA makes a separate hover flight to update the reference map of the nest; these flights are termed Geography Built In Test (GeoBITs) because of their similarity to the FitBIT stationary hover flight over the nest and would occur during regular operating hours (7:00 a.m. to 10:00 p.m.). Wing is not proposing to conduct operations from 10:00 pm to 6:00 am.

The UA would be transporting consumer goods in partnership with merchants in the community. There would be variability in the number of flights per day based on customer demand and weather conditions. Initially, Wing expects to fly less than 400 flights per day from each nest and then gradually increase to 400 deliveries per day as consumer demand rises. Even in the locations where the service areas of nests overlap, deliveries would not exceed 400 per day.

The description of the proposed action is divided into two components: installation of Wing Infrastructure, consisting of nests and autoloader locations; and Flight Operations, which details UA models, UA flight, and delivery.

Project Component: Wing Infrastructure

Wing is proposing to distribute nests throughout the operating area (see Attachment A). Wing's nests would be sited on paved landing areas established in pre-existing parking lots in commercially zoned areas, such as shopping centers, large individual retailers, and shopping malls. Each nest would house up to two dozen (24) aircraft (UA) on launch pads and would be surrounded by fencing in some cases. One or more merchants will partner with Wing at each nest for UA deliveries. Nests would be distributed throughout Central Florida following a measured rollout plan to be developed with Wing's partners and continuing best practices from Wing's established community outreach program, and in compliance with state and local statutory and regulatory requirements. The only infrastructure erected for this project would be autoloaders, "Y"-shaped passive stands designed for automated pick up of packages without landing (see Attachment B). Autoloaders would not require ground disturbance for installation and would be anchored through existing pavement, to existing poles, or ballasted for temporary use. The autoloaders would be controlled and operated by Wing and its partners. The autoloaders would be approximately 10 feet tall, 7 feet wide at the mouth, and 6 feet long, and would include a clear zone of approximately 2 parking spaces. Individual autoloader locations (either within a nest or offsite) would typically include up to three autoloaders within or in the vicinity of most nest sites, with a handful more distributed locations having up to 10 autoloaders, depending on market demand, for a total installation of 100-300 autoloaders distributed throughout the operating area.

Project Component: Flight Operations

Unmanned Aircraft

The primary UAs that would be used for the proposed operations are Wing's Hummingbird 7000W-B and 8000-A UAs. The Hummingbird 7000W-B features a multi-rotor design with sixteen (16) round diameter propellers and the 8000-A features a multi-rotor design with twelve (12) round diameter propellers (see Attachment B). The Hummingbird 7000W-B UA weighs under 15 pounds when combined with its maximum payload weight of 2.7 pounds. It has a wingspan of approximately 4.9 feet, a height of approximately 1 foot, and a length of approximately 4 feet. The 8000-A UA weighs under 25 pounds when combined with its maximum payload weight of 5 pounds. It has a wingspan of approximately 6 feet, a height of approximately 1 foot, and a length of approximately 6.2 feet. To avoid the potential for significant noise impacts, Wing would site its nests and autoloaders at least 120 feet away from a noisesensitive area when the nest is located within the controlled surface area of Class B, Class C, and Class D airspace and at least 65 feet away from a noise-sensitive area in all other areas within the study area, which is defined as Wing's proposed nest locations and service area. Remote pickups and pickup flight paths would not occur within 80 feet of noise-sensitive areas when located within the controlled surface area of Class B, Class C, and Class D airspace and at least 45 feet away from a noise-sensitive area in all other areas within the study area. All of Wing's aircraft use electric power from rechargeable lithium-ion batteries.

A typical flight profile can be broken into the following general flight phases: takeoff, en route outbound, delivery, en route inbound, and landing. This profile is described in more detail below.

Takeoff

Once the UA receives a mission and is cleared for takeoff from a launch pad, the UA takes off from the ground vertically to an altitude of 23 feet above ground level (AGL) and hovers for 30 seconds while the package is loaded. The UA then climbs to the en route altitude as described below.

En Route Outbound

The UA would fly a predefined flight path that is set prior to takeoff. Flight missions are automatically planned by Wing's flight planning software. A mission originates from a nest location, and Wing's software automatically assigns, deconflicts, and routes each flight to the delivery location and back to a nest. Each nest site would include a controlled area wherein UA flights are launched and recovered.

The UA would generally be operated at an altitude of 150 to 300 feet AGL and always below an altitude of 400 feet AGL while en route to and from delivery locations. The en route outbound phase is the part of flight in which the fully loaded UA transits from the nest or a remote pickup location to a delivery point on a predefined flight path. During this flight phase, the UA would typically operate at an altitude of 150–300 feet AGL and a typical airspeed of 59 miles per hour (mph). The UA has a single set cruise airspeed, which would not be exceeded.

Delivery

The delivery phase consists of descent from the en route altitude to a delivery point, such as a residential yard, driveway, parking lot, or common area. The UA descends vertically to 23 feet AGL and lowers a package to the ground by a retractable line for delivery while maintaining position over the delivery point. The UA hovers at 23 feet AGL for approximately 30 seconds while lowering its package. The minimum distance a human should be from the UA during delivery is a 6-foot radius from underneath the center of the UA. Once a package has been lowered to the ground, the UA would then

retract the line, ascend vertically to a cruise altitude, and depart the delivery area en route back to a nest.

En Route Inbound

The UA continues to fly at an altitude of 150 to 300 feet AGL and a speed of 59 mph towards the nest.

Landing

Upon reaching the nest, the UA slowly descends over its assigned landing pad and lands on the pad.

Remote Pickup Operations

Remote pickup operations from each nest would be supported at up to 12 partner establishments depending upon demand and nest capacity. Pickup operations would follow general flight phases and parameters identical to typical delivery operations and would include the addition of a pickup phase. The pickup phase is similar to the delivery phase. The UA descends from its close transit altitude (safe altitude above local terrain and obstacles) to 14.5 feet AGL and lowers the package hook. The UA then passes approximately 10 feet laterally over the autoloader. The autoloader's Y-shaped poles passively guide the package hook to a narrow slot that ensures secure attachment of the package. The package is then retracted to the UA before it proceeds to climb to the enroute altitude. Remote pickup operations from descent to finish are expected to take no longer than 1 minute and 30 seconds (90 seconds). Delivery, en route return, and landing operations would then occur as described above.

Project Effects

Wing Infrastructure

Nests would be located in commercially zoned areas within parking lots of shopping centers and large individual retailers. Infrastructure for this project would consist almost entirely of pre-existing hardstand and would involve no ground disturbance. The only aboveground structures would consist of autoloaders no more than 10 feet in height and 7 feet wide. Standoff distances of 65 or 120 feet between nest locations and noise-sensitive uses and 65 or 80 feet between autoloader locations and noise-sensitive uses would be required, thus avoiding or minimizing potential visual and audible effects.

Flight Operations

Wing UAs would fly at altitudes of between 150 and 300 feet at a speed of 59 miles per hour; for comparison, the usual cruising speed for most birds ranges from 20 to 30 miles per hour. UA flights would be visible as small airborne objects flying at about twice the speed of bird flight. Therefore, visual effects of en route flight operations would be rapid, intermittent, and barely noticeable. Takeoff, loading, and delivery operations would involve UAs hovering close to the ground surface for approximately 30 seconds before ascending to flight altitude. UA takeoff and loading operations would occur at least 65 or 120 feet away from any noise-sensitive locations. However, deliveries may occur at or adjacent to noise-sensitive uses and would involve the UA hovering at 23 feet AGL for approximately 30 seconds.

Predicted Sound Levels

FAA conducted a noise analysis using sound level measurement data for the UA Hummingbird 7000W-B and the 8000-A to determine potential audible effects from flight operations. **Table 1** provides noise data for both the 7000W-B and 8000-A.

Table 1. Sound Level Test Results, Model 7000W-B and 8000-A

UAS	Estimated maximum SEL (dB) (takeoff, delivery, and landing) ¹	Average maximum SEL (dBA) (en route with package)	Average maximum SEL (dBA) (en route without package	Nominal cruise speed (knots)	Altitude (AGL)
7000W-В	83.4 dB	56.5 dBA	52.8 dBA	50.5	165 ft
8000-A	83.6 dB	62.0 dBA	60.0 dBA	50.5	165 ft

1) Takeoff, delivery, and landing SELs measured 50 ft from nest location. AGL = above ground level; dB = decibels; dBA = A-weighted decibels; ft = feet; SEL = Sound Exposure Level

As an explanation of this table, dBA stands for A-weighted decibels, a unit of measurement which approximates the sensitivity of the human ear. This is a logarithmic scale, meaning that a 10-dBA increase is the equivalent of doubling loudness of a noise. Noise for takeoff, delivery, and landing for both Wing UA types is less than 84 dB for 30 seconds, approximating the noise level of a freight train at a 100-foot distance from an observer. Flight operations for the 7000W-B UA model at 165 feet AGL is 56.5 dBA SEL, approximating the noise level inside an average urban residence. The flight operations of the 8000-A model is 62.0 dBA SEL, approximating the noise level of a conversation heard from a 3-foot distance. Predicted sound levels decrease as distances from the UA increase. Overall, audible effects of flight operations would be intermittent. Most operational noise levels would be non-intrusive except for takeoff, loading, and deliveries.

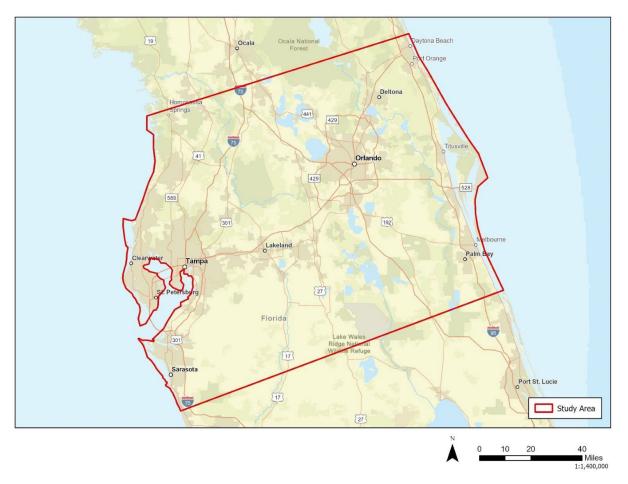
Coastal Resources

The proposed action is not expected to directly affect Florida's shorelines or change the use of shoreline zones. Wing's infrastructure would be sited in pre-existing commercial areas, such as parking lots, with no ground disturbance or new development impacting coastal resources. Flight operations would occur above ground level (150–300 feet) and inland, largely in urban areas, and would not involve the development or disturbance of any land. The proposed action would not result in discharges, habitat disturbances, or other activities that could impact coastal ecosystems, water quality, or marine life.

Conclusion

The FAA requests your agency's review of the unlisted activity described above for consistency with the Florida Coastal Management Program. Your response within the next 30 days will greatly assist us in our environmental review process.

If you have any questions or need additional information, please contact Dr. Shelia Neumann at (240) 210-0264 or via email at <u>9-AWA-AVS-AFS-ENVIRONMENTAL@faa.gov</u>.


Sincerely,

Derek Hufty Manager, General Aviation and Commercial Branch (AFS-750) Emerging Technologies Division Office of Safety Standards, Flight Standards Service

Enclosures:

Attachment A. Area of Potential Effects

Attachment B. Wing's Hummingbird 7000W-B and 8000-A Unmanned Aircraft

Attachment A. Area of Potential Effects

Attachment B. Wing's Hummingbird 7000W-B and 8000-A Unmanned Aircraft

Figure 1. Wing Hummingbird 7000W-B UA

Figure 2. Wing Hummingbird 8000-A UA

Figure 3. Wing Hummingbird and Autoloader