Setting R&D Priorities
Industry Development vs. Regulatory & Operational Responsibility

Moderator: Sabrina Saunders-Hodge
Manager, UAS Research Division, FAA UAS Integration Office
Breakout Session 2A: Setting R&D Priorities

- **Moderator: Sabrina Saunders-Hodge**, Manager, UAS Research Division, FAA UAS Integration Office
- **Paul Fontaine**, Director, Advanced Concepts and Technology Development, FAA NextGen Office
- **Marty Rogers**, Executive Director, ASSURE – FAA’s UAS Center of Excellence
- **Mark Blanks**, Director, Mid-Atlantic Aviation Partnership at Institute for Critical Technology and Applied Science, Virginia Tech and UAS Test Site
- **Edgar Waggoner**, Director, Integrated Systems Research Program, NASA
- **Dr. Hassan Shahidi**, Director, Aviation Safety, MITRE Corporation

#UAS2017
The Path to Full Integration

Within VLOS / isolated operating area

Large UAS / high energy output

Airspace Access

NAS System Integration

Aeronautical Information Infrastructure for UAS

Low Altitude Authorization & Notification Capability (LAANC)

Online Registration

Low-risk, Isolated

Small UAS / low energy output

Full UAS Integration

Full UAS Integration

Beyond VLOS / populated operating area

Small Cargo / Passenger Operations

Non-Segregated Operations

Expanded Operations

Rulemaking to Address Security Concerns

UAS Operations Over People

Part 107 Operations

Operations by Exemption

Regulatory Framework

Beyond VLOS / populated operating area

#UAS2017
FAA Rulemaking Process

Pre-Rulemaking Activities

~3-24 months
- Prioritization
- International Considerations
- Committees (ARC/ARAC)

~9-12 months

NPRM
Regulatory Impact Assessment (RIA)
FAA Coordination

~3 months

Executive Coordination
OST – 45 Days
OMB – 90 Days

NPRM Issued

~20 Months

Comment Period

11.5 months

Comment Disposition

16 Month Congressional Requirement on FAA

4.5 months

Final Rule
Regulatory Impact Assessment (RIA)

Optimal Rulemaking Timeline – 36 months

Drivers for Pre-Rulemaking

- EO 13563 - RRR
- Congressional mandates
- EO 13609 – International Cooperation
- NTSB Recommendations
- Petitions for Rulemaking
- Emerging Risk

*LOB/SME Evaluates Options and Scope

Requirements for Consideration for NPRM & Regulatory Evaluation

- TRADE Agreement Act
- Regulatory Flexibility Act
- Unfunded Mandate Reform Act
- OMB Circular A-4
- Paperwork Reduction Act
- National Environmental Policy Act

- Trade Agreements Act
- EO 13132 – Federalism
- EO 13211 – Energy Supply, Distribution or Use
- Small Business Regulatory Enforcement Fairness Act

Responsibility Matrix

* At Pre-Rulemaking stage, the LOB/SME evaluates options and scope of the Rule

** At NPRM stage, the Rulemaking Team drafts the Rule and RIA
What is **Applied** Research?

"Directed towards a specific practical aim or objective."
Functional & Cross-Cutting Domains for UAS Integration Research Planning

Key Functional Domains

- Airspace *
- Capabilities and Systems *
- Policy and Regulation *
- Procedures *
- Standards *
- Training *
- Air Traffic Management
- Aircraft Certification
- Environment
Mapping of Key Research Activities

**Part 107 Operations**
- **FAA Integrated Research** (AUS, AVS, ASH, ATO, ARP, APO, ANG/Tech Center)
- **Focus Area Pathfinders**
  - ConOps
  - Operational procedures and risk analysis
  - Standards development
  - Flight testing
- **UAS Center of Excellence**
  - Kinetic energy research
  - Ground and airborne collision evaluation
  - Impact risk analysis
- **NASA**
  - UAS Traffic Management (UTM), UAS in the NAS
- **UAS ExCom SARP** (FAA, DoD, NASA, DHS, DOJ, DOI, DOC, DOE)
  - Population & airspace density risk assessment, ‘Well Clear’ definition
- **UAS Test Sites**
  - Missions & research lessons learned

**Expanded Operations**
- **International**
  - Standards and procedures harmonization (ICAO, JARUS, SESAR, CAAs)
- **FFRDCs**
  - Data forecasting, airworthiness standards, risk analysis
  - Small cargo delivery analysis
  - Technical performance-based standards
- **ASTM International**
  - Standards development for ops over people and BVLOS, Operational risk analysis
- **National Academies**
  - Probabilistic risk study
- **RTCA**
  - DAA and C2 standards development

**Non-Segregated, Cargo/Passenger Operations**

#UAS2017
FAA UAS Research Partnerships

- International Standards Groups (ASTM, EASA, ICAO, JARUS)
- NASA (UTM and UAS in the NAS)
- Federally Funded Research and Development Centers (FFRDCs)
- Test Sites and Pathfinders
- UAS Center of Excellence (ASSURE)
- Domestic Standards Groups (RTCA)
- UAS EXCOM (Science and Research Panel)
- Industry
- FAA LOBs

#UAS2017
NextGen Overview

Paul Fontaine
Director, Portfolio Management and Technology Development

#UAS2017
Overview

• Collaboration

• NextGen Research Overview

• Scope of NextGen Research
NextGen Research Overview

• Developed the overarching UAS CONOPs
• Coordinate with FAA research sponsors to select and conduct research to enable the integration of UAS systems into the NAS
  – Currently focused on less than 55 lbs.
  – Primarily supporting development of guidelines and regulations
  – Continue efforts through the spectrum of capabilities
• Leads FAA efforts on Research Transition Teams (RTTs) with NASA
  – UAS Traffic Management (UTM) RTT
  – UAS in the NAS RTT
• Drone Advisory Committee
• Manages the ASSURE Center of Excellence
## Scope of NextGen Research

<table>
<thead>
<tr>
<th>Research Domain</th>
<th>Research Requirement Title/Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Detect and Avoid</strong></td>
<td>SAA System Certification Obstacles</td>
<td>2013-2016</td>
</tr>
<tr>
<td></td>
<td>• UAS Operational Assessment: Visual Compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Well Clear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAA Multi Sensor Surveillance Data Fusion Strategies</td>
<td>2013-2017</td>
</tr>
<tr>
<td></td>
<td>Surveillance Criticality</td>
<td>2015-2017</td>
</tr>
<tr>
<td></td>
<td>Integration of Collision Avoidance (ACAS-Xu)</td>
<td>2015-2016</td>
</tr>
<tr>
<td></td>
<td>Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS)</td>
<td>2015-2017</td>
</tr>
<tr>
<td></td>
<td>Small UAS Well Clear Definition</td>
<td>2016-2017</td>
</tr>
<tr>
<td></td>
<td>sUAS In and Around Busy Commercial Airspace</td>
<td>2016-2017</td>
</tr>
<tr>
<td><strong>Command and Control</strong></td>
<td>Ground to Ground Communication Architecture</td>
<td>2015-2017</td>
</tr>
<tr>
<td></td>
<td>Control Non Payload Communication Testing</td>
<td>2014-2016</td>
</tr>
<tr>
<td></td>
<td>UAS Command and Control Link Capability</td>
<td>2016-2018</td>
</tr>
<tr>
<td></td>
<td>Secure Command and Control Link with Interference Mitigation</td>
<td>2016-2018</td>
</tr>
<tr>
<td></td>
<td>UAS Training Device Qualification Criteria</td>
<td>2018-2020</td>
</tr>
</tbody>
</table>
## Scope of NextGen Research (cont.)

### FAA UAS Research Requirements by Domain (FY 2013-FY 2019)

<table>
<thead>
<tr>
<th>Research Domain</th>
<th>Research Requirement Title/Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Human Factors</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRACON UAS Contingency Operations</td>
<td>2014</td>
</tr>
<tr>
<td></td>
<td>En-Route UAS Contingency Operations</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>UAS Human Factors Control Station Design</td>
<td>2016-2019</td>
</tr>
<tr>
<td><strong>Aircraft Safety / Safety Risk</strong></td>
<td>Systems Safety Criteria</td>
<td>2014-2017</td>
</tr>
<tr>
<td></td>
<td>• Ground Collision Severity Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Airborne Collision Severity Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enabling Safety Oversight</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>UAS Maintenance, Modification, Repair, Inspection, Training and Certification Considerations</td>
<td>2015-2018</td>
</tr>
<tr>
<td></td>
<td>Fuel Cell Energy Supply for UAS</td>
<td>2016-2018</td>
</tr>
<tr>
<td></td>
<td>Lithium Batteries for UAV Systems and Aerospace Applications</td>
<td>2016-2018</td>
</tr>
</tbody>
</table>

#UAS2017
## FAA UAS Research Requirements by Domain (FY 2013-FY 2019)

<table>
<thead>
<tr>
<th>Research Domain</th>
<th>Research Requirement Title/Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS Test Sites</td>
<td>UAS Test Sites (Flight Data Analysis, MLS)</td>
<td>2015-2016</td>
</tr>
<tr>
<td>Operational Integration</td>
<td>sUAS Airport Detection</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>sUAS Part 107 Electronic Accident Reporting Development</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>Part 107B Electronic Waiver Processing Development</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>Part 107 Waiver Request Case Study</td>
<td>2016</td>
</tr>
<tr>
<td>Airworthiness</td>
<td>Certification Test Case to Validate UAS Industry Consensus Standards</td>
<td>2015-2016</td>
</tr>
</tbody>
</table>
The FAA’s Center of Excellence for UAS Research

ASSURE

Alliance for System Safety of UAS through Research Excellence

“Informing UAS Policy Through Research”

FAA UAS Symposium

Marty Rogers, Executive Director
What is ASSURE

- Long title: The Alliance for System Safety of UAS Through Research Excellence
- ASSURE is the Federal Aviation Administration’s Center of Excellence for Unmanned Aircraft Systems...using research evidence to influence policy
- In May 2017 will be two years old
- 23 Schools & 110+ Partners

#UAS2017
ASSURE University Team

#UAS2017
ASSURE Projects

- A1: Certification Test Case to Validate sUAS Industry Consensus Standards - KSU
- A3: UAS Airborne Collision Severity Evaluation - WSU
- A4: UAS Ground Collision Severity Evaluation - UAH
- A5: UAS Maintenance, Modification, Repair, Inspection, Training, and Certification - KSU
- A6: Surveillance Criticality Study - NC State
- A7: Human Factors Station Design Standards - Drexel University
- A8: UAS Noise Certification - MSU
- A9: Secure C2 & Spectrum Management - Ohio State
- A10: Human Factors UAS Control Station Certification and Procedures - ERAU
- A11 Low Altitude Safety: Part 107 Waiver Request Study - UAH
- UAS as a STEM Minority Outreach Learning Platform for K/12 - NMSU
- Total Dollar Amount in UAS Research: $12,194,466

#UAS2017
ASSURE Partnership

• Starting in 2017 the ASSURE partnership program changed to reflect ASSURE’s evolving needs to support and execute the UAS research projects we are tasked with by the FAA.

• ASSURE creates an opportunity for industry and university partners to “pool” resources together with other contributors as well as Federal funding, significantly compounding investment levels.

• Certified Partners are industry or university partners which are paying members of the ASSURE program, and as such are eligible to receive information related to the research being conducted.

#UAS2017
ARDC

• 501c3: A non-profit UAS applied research and development company – started to support the needs of government and industry sponsors.

• Assure Research and Development Corporation (ARDC)

• Master Service Agreement (MSA) being finalized, with subordinate funded task orders. Value $25M.
Questions?

ASSUREuas

ASSUREuas

ASSURE UAS

www.ASSUREuas.org

#UAS2017
What are the Test Sites?

Northern Plains UAS Test Site (NPuASTS)

Nevada Institute for Autonomous Systems (NIAS)

New Mexico State University Flight Test Center (NMSU FTC)

Alaska Center for UAS Integration (ACUASI)

Northeast UAS Airspace Integration Research Alliance (NUAIR)

Mid-Atlantic Aviation Partnership (MAAP)

Lone Star UAS Center of Excellence & Innovation (LSUASC)

#UAS2017
What do we do?

**INDUSTRY NEED**
- Commercial Use Case
- Safety Case
- Operational Approval

**TEST SITE SUPPORT**
- Operational Context Definition
- Testing & Demonstrations
- Supporting Data

#UAS2017
How do we support industry?

**Locations**
- Test new technologies
- Validate risk mitigations
- Demonstrate safety case

**Facilities**
- Equipment (i.e. radars)
- Ground infrastructure
- Logistical support

**Expertise**
- Risk management
- Test planning & management
- Specific topic areas

**Data Collection**
- System performance
- Demonstrate compliance
- Support safety case

#UAS2017
How do we fit in the research puzzle?

• Testing of research concepts to provide data and lessons learned
• Test Sites provide “real world” data from industry to the regulator
• Quantifiable data from objective sources to inform decision making
## What are we doing with our research?

### Answering Research Questions

<table>
<thead>
<tr>
<th>Specific</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>What kind of injury risk exists?</td>
<td>What is the system reliability?</td>
</tr>
<tr>
<td>Does UTM handle exceptions?</td>
<td>Are risk mitigations acceptable?</td>
</tr>
</tbody>
</table>

### Providing Data

<table>
<thead>
<tr>
<th>Existing Mechanisms</th>
<th>Targeted Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supporting Part 107 waivers</td>
<td>Providing research reports</td>
</tr>
<tr>
<td>Supporting Type Certification</td>
<td>Direct to standards groups</td>
</tr>
</tbody>
</table>

#UAS2017
What do we need from industry?

• Willingness to collaborate with other industry partners to address difficult challenges

• New solutions to old problems

• Unique solutions to new problems
UAS Research Requirements to Support a Full Integration Strategy

Dr. Edgar G. Waggoner
Director, Integrated Aviation Systems Program
NASA, Aeronautics Research Mission Directorate

#UAS2017
Introduction

**Purpose**: Develop a cohesive ARMD Full UAS integration Strategy across NASA Aeronautics Programs

**Scope**: Focus on what research is needed to enable full integration of UAS for civil / commercial operations within the NAS by ~2025.

– Top level strategy that assesses stakeholder needs, FAA UAS Integration Strategy, Concept of Operations, Implementation Plans, etc.
– Leverage information from Government-wide R&D Analysis (ExCom) and FAA R&D Roadmap

**Outcome**: A Vision, Strategic Plan and Communication Strategy for:

– Routine UAS access within the NAS
– Concept for transitioning UAS access advancements towards the integration of highly autonomous systems and on-demand mobility

#UAS2017
These UAS will operate at altitudes below critical NAS infrastructure and will need to routinely integrate with both cooperative and non-cooperative aircraft. (Example Use Case: Infrastructure Surveillance)

UAS will be expected to meet certification standards and operate safely with traditional air traffic and ATM services. (Example Use Case: Communication Relay / Cargo Transport)

These UAS will operate at altitudes below critical NAS infrastructure and will need to routinely integrate with both cooperative and non-cooperative aircraft. (Example Use Case: Infrastructure Surveillance)

Must interface with dense controlled air traffic environments as well as operate safely in uncontrolled airspace. (Example Use Case: Traffic Monitoring / Package Delivery)

Low risk BVLOS rural operations with or without aviation services. (Example Use Case: Agriculture)
UAS Airspace Access Enablers

UAS Technologies:
T01 - Airport Operations Technologies
T02 - Airworthiness Standards
T03 - Command, Control, Communications (C3)
T04 - Detect & Avoid (DAA)
T05 - Flight & Health Mgmt Systems
T06 - GCS Technologies
T07 - Hazard Avoidance
T08 - Highly Automated Architectures
T09 - Navigation
T10 - Power & Propulsion
T11 - Weather

ATM Services & Infrastructure:
I01 - Airport Infrastructure
I02 - ATM Infrastructure
I03 - Non-FAA Managed Airspace Infrastructure
I04 - RF Spectrum Availability
I05 - Test Ranges & M&S Facilities

Operational Regulations, Policies & Guidelines:
P01 - ATM Regulations / Policies / Procedures
P02 - Airworthiness Regulations / Policies / Guidelines
P03 - Operating Rules / Regulations / Procedures
P04 - Safety Risk Mgmt & Methods of Compliance

Public Acceptance & Trust:
A01 - Cybersecurity Criteria & Methods of Compliance
A02 - Legal & Privacy Rules / Guidelines
A03 - Noise Reductions
A04 - Physical Security Criteria & Methods of Compliance
A05 - Public Safety Confidence

#UAS2017
Summary and Next Steps

• NASA has conducted a comprehensive assessment of research needs/requirements to support full integration of UAS throughout the NAS.

• NASA is ready to begin vetting our parochial findings among the UAS Stakeholder Community
  – Validation of research needs
  – Feedback on:
    • Priorities and Risks
    • Responsibilities
    • Timing

#UAS2017
Research Needs for UAS Integration

Dr. Hassan Shahidi
Portfolio Director for Safety, Training and New Entrants
Center for Advanced Aviation System Development
The MITRE Corporation

#UAS2017
UAS Integration Research Landscape

Airworthiness and Flight Standards
- Collision Avoidance
- Airworthiness Approval
- Operational Approval

Airspace Management
- Low Altitude Traffic Deconfliction
- Fully Automated UAS Operations
- Airspace Design
- Security Requirements

Environment
- Noise Impacts

Access and Equity
- Funding UAS Services
- Incompatible Use of Airspace

Capacity and Efficiency
- ATC Workload and Capacity

#UAS2017
MITRE Work Enabling SUAS Ops

- **Ops Over People (VLOS)**
  - Injury Risk Standard
  - Risk-Based Airworthiness
  - Electronic ID and Tracking

- **Expanded Ops (BVLOS)**
  - Test and Evaluate C2 Requirements
  - DAA sUAS vs. Manned

- **Non-Segregated Ops**
  - Authorized Operations
  - Airspace Design

- **sUAS Package Delivery**
  - DAA sUAS vs. sUAS
  - Full Automated (Pilotless) UAS Ops

---

**Safety Data and Modeling**

**Counter UAS**

#UAS2017
The Way Forward: Key focus areas

• Data
  – Operational data
  – Vehicle performance and reliability
  – Traffic levels, locations and missions

• Modeling
  – Probabilistic risk modeling
  – DAA performance models

• Collaboration
  – Manufacturers
  – User community
  – Standards bodies

#UAS2017
Thank you
Breakout Session 2A: Setting R&D Priorities

• **Moderator: Sabrina Saunders-Hodge**, Manager, UAS Research Division, FAA UAS Integration Office
• **Paul Fontaine**, Director, Advanced Concepts and Technology Development, FAA NextGen Office
• **Marty Rogers**, Executive Director, ASSURE – FAA’s UAS Center of Excellence
• **Mark Blanks**, Director, Mid-Atlantic Aviation Partnership at Institute for Critical Technology and Applied Science, Virginia Tech and UAS Test Site
• **Edgar Waggoner**, Director, Integrated Systems Research Program, NASA
• **Dr. Hassan Shahidi**, Director, Aviation Safety, MITRE Corporation

#UAS2017
Sabrina Saunders-Hodge, Manager, Research Division, FAA UAS Integration Office

Sabrina Saunders-Hodge is the manager of the Unmanned Aircraft Systems (UAS) Research Division within the Federal Aviation Administration’s UAS Integration Office. Within this role, Ms. Saunders-Hodge is responsible for coordinating internal and external to the FAA to lead the development of the FAA’s UAS research plan to inform the rulemaking framework for safe and efficient integration of unmanned aircraft systems into the National Airspace System. Prior to joining the UAS Integration Office, Ms. Saunders-Hodge was the manager of the FAA’s NextGen New Entrants Division with responsibility for executing UAS research as well as standing up the FAA’s first UAS Center of Excellence.

Over the past twenty five years Ms. Saunders-Hodge has worked in the field of satellite communications, contributed to the development of ICAO’s global plan for transitioning to future communications, navigation, surveillance and air traffic management (CNS/ATM) systems for civil aviation, and co-managed the oversight of FAA/European cooperative research and development initiatives.

Ms. Saunders-Hodge holds a B.S. and M.S. in Computer Science from The University of Maryland and Johns Hopkins University respectively. Additionally, Ms. Saunders-Hodge is a certified Project Management Professional and a graduate of the Federal Executive Institute.

#UAS2017
Paul Fontaine, Director, Advanced Concepts and Technology Development, FAA NextGen Office

Paul V. Fontaine is the Federal Aviation Administration's (FAA) Director of the Research and Technology Development in the NextGen Organization. Mr. Fontaine is responsible for the formulation, management, and coordination of the agency’s research and advanced technology development program in human factors, communications, navigation, surveillance and air traffic management. Leading the FAA Enterprise Planning effort in collaboration with aviation stakeholders, he identifies strategies, develops integrated solutions, and coordinates investments to evolve and sustain a world class aviation system, and establishes NextGen integration goals, strategies, budgets and priorities. He provides management oversight for integration of NextGen initiatives, activities, and capabilities and ensures National Airspace System (NAS) improvement and sustainment efforts are executed in a comprehensive, integrated environment. His office also provides a conduit between NextGen and the Operations community ensuring NextGen implementation efforts are harmonized with operations and stakeholder priorities and risks are addressed collaboratively to facilitate delivery of NextGen operational capabilities and benefits.

Mr. Fontaine has more than 30 years of FAA and Department of Defense program management experience. He holds a Master of Business Administration in finance from Marymount University and a Bachelor of Science in managerial economics from Rhode Island College.

#UAS2017
Marty Rogers, Executive Director, ASSURE – FAA’s UAS Center of Excellence

Marty Rogers is the Executive Director of the Mississippi State University lead, FAA UAS Center of Excellence, known as the ASSURE program. The ASSURE program combines the expertise of twenty-three leading UAS university programs and the capabilities of over 110 industry partners to support the UAS R&D needs of the FAA.

Mr. Rogers is a US Air Force veteran, spending the majority of his career with the United States Air Forces in Europe, supporting contingency operations, and completing his Air Force career at HQ Air Mobility Command, Scott AFB, IL. His post-military experience includes a decade of service with a large research and development corporation where he managed an over $300 million-dollar research portfolio. Mr. Rogers also served as the Vice President of international operations, providing R&D expertise to clients in the Americas, Europe and Asia. Prior to leading the ASSURE program Marty was the director of the Alaska Center for Unmanned Aircraft Systems Integration and CEO of the Pan Pacific UAS Test Site.

#UAS2017
Mark Blanks, Director, Mid-Atlantic Aviation Partnership at Institute for Critical Technology and Applied Science, Virginia Tech and UAS Test Site

Mark Blanks is the Director of the Mid-Atlantic Aviation Partnership (MAAP) at Virginia Tech.

Mr. Blanks has held a variety of positions in the aviation industry including aircraft maintenance, flight test, and aircraft certification. He accepted the position of UAS Program Manager for Kansas State University in January 2013 where he oversaw the growth and development of the K-State UAS academic and research programs until August 2015 when he transitioned to Virginia Tech to become the Associate Director for MAAP.

Mr. Blanks assumed his current role as Director of MAAP in July 2016 where he is responsible for the oversight of all operations and research at the FAA-designated UAS Test Site. Mr. Blanks is the chairman for the ASTM F38-02 Subcommittee on UAS Flight Operations and serves on the AUVSI Board of Directors. He is a licensed airframe and power plant technician and an instrument rated private pilot.

#UAS2017
Edgar Waggoner, Director, Integrated Systems Research Program, NASA

Dr. Edgar Waggoner is responsible for the overall planning, management and evaluation of the directorate’s efforts to conduct experimental flight research, and to test the most promising concepts and technologies from across the ARMD portfolio at an integrated system level. He supports the ARMD associate administrator in a broad range of mission directorate activities, including strategic and program planning, budget development, program review and evaluation, and external coordination.

Previously, Dr. Waggoner was director of the Integrated Systems Research Program. He was also was on assignment from NASA to the former Joint Planning and Development Office in Washington, DC, where he served as director of the Interagency Architecture and Engineering Division responsible for technical leadership in the development of the Next Generation Air Transportation System (NextGen) Enterprise Architecture, Concept of Operations, and Integrated Work Plan.

Dr. Waggoner received a bachelor’s degree in aerospace engineering from Auburn University, a master’s degree in mechanical engineering from Southern Methodist University, and master’s and doctoral degrees in engineering management from George Washington University.

#UAS2017
Dr. Hassan Shahidi, Director, Aviation Safety, MITRE Corporation

Dr. Hassan Shahidi is the Director of Aviation Safety, Training Technologies and New Entrants at MITRE’s Center for Advanced Aviation System Development. He has over 30 years of experience in air traffic control modernization and development of modeling and simulations capabilities. He currently oversees programs in UAS, Commercial Space, safety and training technologies. Dr. Shahidi also directs MITRE’s modeling, analysis and data fusion of the Aviation Safety Information Analysis and Sharing (ASIAS) initiative. Prior to his current role, Dr. Shahidi directed MITRE’s PBN initiative for nearly a decade. Prior to MITRE, Dr. Shahidi led several ATC modernization and aviation human factors activities at Systems Control Technology and FAL Inc. He holds a private pilot license.

Dr. Shahidi is a recipient of many awards, including RTCA Outstanding Achievement Award. He holds a master’s degree in systems engineering from the University of Virginia and a doctorate in systems engineering management from George Washington University.

#UAS2017
THANK YOU TO
AUVSI’S SPONSORSHIP PARTNERS

#UAS2017