UAS Type Certification – Worth the Effort?
UAS Type Certification – Worth the Effort?

Kevin Hull, FAA
James Foltz, FAA
Andy Thurling, NUAIR

#UAS2018
Why is Certification Needed?

FAA can only act within its defined rules

Today there are only 3 Civilian paths

#UAS2018
Paths to Flight
Multiple way to fly UAS for non-recreational reasons

Part 107
- UAS < 55 lbs.
- Class G Airspace*
- Visual Line of Sight*
- At or below 400ft*
- Fly during day*
- Fly at or below 100mph*
- No operations over people*
* Can receive a waiver or airspace authorization to fly beyond requirement

Type Certificate
- Type Certificate required for Standard Airworthiness Certificate
- Standard Airworthiness Certificate needed for Carrying Persons or Property for Compensation or Hire

333 Exemption/FESSA 2210
- Stopgap until Part 107 was Published
- UAS over 55 lbs.
- Pilot reqs. on case-by-case basis
- Requires COA for airspace authorization
- FESSA 2210 expands to BVLOS for Critical Infrastructure

#UAS2018
Type Certification

The approval of a design for a product (aircraft, aircraft engine, or propeller). To obtain the approval, an applicant must show compliance to the applicable airworthiness standards, including noise and emissions.
UAS Type Certification

- UAS type certified as a system
 - Aircraft +
 - Control Station +
 - Any engines and propellers are certified as a part of the UAS
Safety Continuum – Managed Risk

Part 25 Transport Category Passenger Aircraft
Large Part 25 Business Jets
Part 23 Commuter Aircraft
Part 23 Business Jets
Part 23 Light Jets, Twins
Part 23 Single Engine
Light Sport Aircraft
Amateur Built Models
Toys

Level Of Certification Rigor & Oversight

Society's Demand for Safe Outcomes

Societally Accepted Risk

Desire for Low Cost

Potential for Innovation

Zero Risk
No Operations
No Innovation

Absolute Safety
UAS Safety Continuum & Classification

Fixed Wing and Rotorcraft Probability of Catastrophic Failure vs Kinetic Energy

Probability of Catastrophic Failure

Risk Class: RC
Fixed Wing: □
Rotorcraft: ○

Kinetic Energy (Ft-Lbs)

NOTE: Not drawn to scale. For illustration only.
UAS2018

New Type Design

Category

<table>
<thead>
<tr>
<th>Class</th>
<th>Airplane</th>
<th>Rotorcraft</th>
<th>Manned free balloon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Part 23</td>
<td>Part 27</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>Part 25</td>
<td>Part 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Part 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ Part 33, Part 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ Special Conditions</td>
</tr>
</tbody>
</table>

Special Class

Glider	AC 21.17-2A
Airship	AC 21.17-1A
Tilt-Rotor	25 + 29 + TR
Other nonconventional	UAS

Regulatory Certification Basis

- **Utilize Parts 23, 25, 27, 29, 31, 33, 35 as appropriate**
- **Unique Airworthiness Requirements**

Designate Applicable Regulations

- **21.17(a)**
- **21.17(b)**

Special Conditions

- As required

Part Numbers

- 21.17(a)
- 21.17(b)
- Part 23
- Part 25
- Part 27
- Part 29
- Part 31
- Part 33
- Part 35

AC 21.17-2A

AC 21.17-1A

UAS
Why § 21.17(b)?

§ 21.17(b) - For special classes of aircraft, including the engines and propellers installed thereon (e.g., gliders, airships, and other nonconventional aircraft), for which airworthiness standards have not been issued under this subchapter, the applicable requirements will be the portions of those other airworthiness requirements contained in Parts 23, 25, 27, 29, 31, 33, and 35 found by the [FAA] to be appropriate for the aircraft and applicable to a specific type design, or such airworthiness criteria as the [FAA] may find provide an equivalent level of safety to those parts. [Amdt. 21-92]

- Allows the FAA to tailor the certification basis for each product
- Can include
 - FAR’s (14 CFR Parts 23, 25, 27, 29, etc.)
 - Other airworthiness criteria
 - Special Conditions
 - Other Tailored Requirements
 - Standards
Type Certification Process

• Organized into 5 phases
 – Conceptual Design, Requirements Definition, Compliance Planning, Implementation, and Post Certification Activities

• Descriptive Data (Drawings) +Compliance Data (Analysis/Test) = TC

• Details described in Order 8110.4C, Type Certification
 – rgl.faa.gov

• Efficiency of accomplishing the TC is presented in the FAA and Industry Guide to Product Certification (CPG)

#UAS2018
Type Certification Process

Conceptual Design
- Process Orientation
- Pre-Project Guidance
- Familiarization Briefing
- UAS Conceptual Design
- CONOP
- Risk Classification
- Preliminary TCBM
- Operational Risk Assessment
- Certification Basis Established
- ATO/AFS Coordination

Requirements Definition
- Applicant’s Responsibility
- FAA Involvement-LOPI
- Certification Plan
- Conformity Inspection Plan
- Applicant’s Responsibility
- Oversight and Delegation
- Interim TCBM
- ATO/AFS Coordination

Compliance Planning
- Compliance Data Generation
- Compliance Substantiation
- Compliance Showing
- ATO/AFS Coordination
- Issue TC

Implementation
- Type Inspection Report
- Data Retention
- Required Documents at Delivery
- TC Holder Info
- Continued Airworthiness
- ICA Changes
- Post Certification Evaluation

Post Certification Activities
- Issue TC
- Data Retention
- Required Documents at Delivery
- TC Holder Info
- Continued Airworthiness
- ICA Changes
- Post Certification Evaluation
Conceptual Design

• Propose the Basic Configuration of the:
 – Aircraft
 – Engine & Propeller
 – Control Station
CONOPS

• Gives FAA clear understanding of proposed operations

• Includes:
 – Description of UAS
 – Details of Intended Use
 – Proposed Area of Operations
 – Intended Classes of Airspace

• Enables development of ORA
Operational Risk Assessment

- Section 21.17(b) allows type design approval with cert basis developed from any source of airworthiness requirements deemed acceptable by FAA
- § 21.17(b) process will leverage existing aviation standards and practices as appropriate for risk class of UAS by tailoring applicable certification requirements
- Applicant should mitigate all hazards associated with design and CONOPS to acceptable level of safety through airworthiness requirements and operational limitations
Operational Risk Assessment

• ORA process identifies hazards associated with each UAS function and mitigations for each hazard
• Mitigations for specific hazard can include airworthiness requirements, operational limitations, or combination
• Contains all hazards for UAS and CONOPS, and proposal for airworthiness requirements and operational limitations that will mitigate the hazards
• Airworthiness requirements and operational limitations will be output to G-1 Issue Paper (IP) to define cert basis for project
Operational Risk Assessment

- To verify completeness of ORA, a Rule-by-Rule Evaluation is performed
 - Review existing manned aircraft, engine, and propeller regulations and determine applicability of regulation and hazard
 - For Risk Classes 1 and 2, utilize ASTM F2910-14
Operational Integration

- Type Certification does not grant Operational Approval
- Existing Operational Rules are still Applicable
 - §§ 61, 91, 119, 135, etc.
- Exemptions or waivers may be required for operational approval
 - Requires coordination with FAA Flight Standards Service (AFS) and Air Traffic Organization (ATO)
Requirements Definition

- All requirement contained in the G-1
- Published in Federal Register
- Public comments
- Final requirements published in Federal Register
Compliance Planning

- ORA Expansions
- PSCP (Project Specific Certification Plan)
Implementation Phase

- This phase can be divided into 3 parts
 - Compliance Data Generation
 - Compliance Substantiation
 - Compliance Showing
Compliance Data Generation

• Purpose
 Develop data for showing compliance

• Activities in this sub-phase include
 – Running tests
 – Developing compliance data
Compliance Substantiation

• **Purpose**
 – Preparation and presentation of various data in a logical order with explanation of how the data shows compliance

• **Activates in this sub-phase include**
 – Writing compliance reports (sometimes called substantiation reports)
 – Writing flight test reports
Descriptive Data

• Drawings
 – Drawings for parts, assemblies, & installations
 – Material processing
 – Tolerances

• Building to C of A

• The Descriptive Data has been shown compliant with Certification Basis- G-1 (FAR 21.31)
TC

• TADA
Partners, not Adversaries

- Open and timely communication
- Commitment to meeting schedules
- Early identification of potential issues
- Strive to resolve issues quickly at the project level
- Respect each other’s role on the team
- Develop an amicable working relationship
Partnership for Safety (CPG)

• We’re on the same team
 – FAA view: The certification process is a team effort
 – Our goals are the same: To field a compliant, safe, and reliable product

• We each have our own roles
 – You are responsible for producing a compliant, safe, and reliable product
 – We are responsible, on behalf of the public, to verify that you have shown compliance

• We strive to work as partners, not adversaries
Summary & Contact

• Type certification manages risk through safety assurance
• Collaboration on certification process is the key to success
• Operational integration is still a large challenge
• The Los Angeles Aircraft Certification Office is the focal for UAS certification applicants
 – 3960 Paramount Blvd, Lakewood, CA 90712
 – Ph: (562) 627-5222

#UAS2018