Welcome to the

TBO Vision 2025 Storyboard

Developed by Verification & Validation Strategies & Practices Branch
at the William J. Hughes Technical Center


Trajectory Based Operations (TBO) is an Air Traffic Management (ATM) method for strategically planning, managing, and optimizing flights throughout the NAS by using time-based management, information exchange between air and ground systems, and the aircraft’s ability to fly precise paths in time and space. TBO will be scaled appropriately to satisfy operational conditions throughout the NAS and adapt for varying levels of demand and traffic complexity.

The FAA has worked to replace its foundational infrastructure, which accommodates state-of-the-art enabling technologies and advanced capabilities. This storyboard is based on the FAA's "Vision for TBO Operations" and depicts a typical flight with TBO capability in the NAS in 2025

The vision of TBO Capabilities centers on automation driven negotiated time-based flight trajectories between airspace users and Air Navigation Service Provider (ANSP) stakeholders. “Together, time-based management and Precision Based Navigation (PBN) comprise a four-dimensional (4D) trajectory (latitude, longitude, altitude, and time) that airspace users negotiate with the Air Navigation Service Providers to identify a solution that best accommodates both their needs.” “The time parameter provides a common planning reference across all phases of flight, including pre-departure.”

Introduction Video


Preflight is the phase of flight where strategic traffic flow planning and trajectory collaboration of each specific flight occurs, well in advance of the day’s scheduled pushback/engine start, to establish a strategic flight plan for the flight for an efficient, on-time arrival.

Airspace operators and the Airspace Navigation Service Provider exchange information to create efficient, gate-to-gate trajectories and de-conflicted schedules that conform to traffic flow-management constraints and maintain local spacing between aircraft with airborne separation assistance.

With Trajectory Based Operations, ground-based tools, aircraft software and avionic capabilities provide controllers, traffic managers, dispatchers, and pilots with the tools to make the NAS more predictable and efficient across tower, terminal, and en route domains. This allows operators to optimize their flight paths given their preferred tradeoffs among fuel use and travel time between origin and destination pairs.

Operational View
System View


Departure is the phase of flight in which an aircraft transitions from taxing on the ground to flying in the air and consists of Pushback, Taxi, Takeoff, and Climb.

The integration of surface and departure operations enables controllers to efficiently sequence aircraft to and from the gate, through the surface movement area, to the runway where the aircraft will depart. This integration mitigates congested taxiways and prevents long taxi queues to better achieve departure fixes on time and merge aircraft into their assigned overhead streams slots.

Frequently, many flights plan to depart around the same time from an airport. Surface Operations provide the operators with more efficient pushback and taxiing times that best meets the strategic plan or trajectory time objectives while on the surface movement area.

Coordinated departure operations help to efficiently sequence aircraft to the overhead departure fix within the targeted compliance threshold and merge aircraft into overhead stream slots on time.

Operational View
System View

En Route

En Route Cruise is the phase of flight where the majority of the flight is spent. The aircraft is in the air, cruising in level flight. Optimum cruise altitude depends upon the weight of the aircraft but it is typically more fuel efficient to fly as high as we can for as long as we can.

Automation systems monitor the aircraft’s trajectory in accordance with the universally agreed four-dimensional strategic plan and maintain the separation of aircraft based on time intervals using designated points in space called meter points.

Coordination and collaboration enables tactical flight rerouting to avoid weather impacted airspace sectors based on user preferred four-dimensional strategic plans while continuing to achieve specific crossing times over designated points in space until reaching the destination.

Operational View
System View


Arrival is the phase of flight when the aircraft transitions from En Route flight into Terminal flight and descends from cruise altitude to initial approach altitude. The aircraft will merge and sequence into multiple flows of traffic through top of descent down to the runway(s).

Automation systems on the ground and in the aircraft exchange information and assist in determining the best descent point by integrating aircraft performance characteristics with known air traffic, airspace, meteorological, obstacle clearance, and environmental constraints expected to be encountered during the arrival, through top of descent, down to the runway(s).

Time based automation capabilities assist controllers with spacing and speed control to better deliver aircraft to the runway throughout the descent within the terminal airspace while permitting operators to fly optimized profile descents, which permit aircraft to fly continuous-descent profiles, optimized for each individual aircraft.

Operational View
System View