Office of Aerospace Medicine Technical Reports
Civil Aerospace Medical Institute
PUBLICATIONS
AVIATION MEDICINE REPORTS
Report No: DOT/FAA/AM-98/18
Title and Subtitle: DNA Profiling as an Adjunct Quality Control/Quality Assurance in Forensic Toxicology
Report Date: July 1998
Authors: Chaturvedi, A.K., Vu, N.T., Ritter, R.M., and Canfield, D.V.
Abstract: To investigate aircraft accidents, multiple postmortem biological samples of victims are submitted to the Civil Aerospace Medical Institute for toxicological evaluation. However, depending upon the nature of a particular accident, body components are often scattered, disintegrated, commingled, contaminated, and/or putrefied. These factors impose difficulties on victim identification, tissue matching, and thereby authentic sample analysis and result interpretation. Nevertheless, these quality control/quality assurance (QC/QA) related limitations can be overpowered by DNA profiling. In this regard, three situations are hereby exemplified where DNA analysis was instrumental in resolving a tissue mismatching/commingling issue, pinpointing an accessioning/analytical error, and interpreting an unusual analytical result.
Biological samples from these cases were examined for six independently inherited genetic loci using polymerase chain reaction (PCR) suitable for analyzing degraded DNA generally encountered in putrefied/contaminated samples. In the first situation, three of five specimen bags from one accident were labeled with two different names. DNA analysis revealed that one of these bags actually had commingled specimens, originating from two different individuals. Therefore, the sample was excluded from the final toxicological evaluation. In the second situation, an unacceptable blind control result was reported in a cyanide batch analysis.
By comparing DNA profiles of the batch samples with those of the known positive and negative blind controls, it was concluded that the error had occurred during the analysis instead of accessioning. Accordingly, preventive measures were taken at the analytical level. The third situation was related to the presence of atropine at toxic concentrations in the blood (318 ng/ml) and lung (727 ng/g) with its absence in the liver, spleen, and brain-a pattern inconsistent with the general poisoning of drugs. DNA analysis of the blood and liver samples exhibited their common identity, ensuring that the submitted samples had indeed originated from one individual. The selective presence of atropine was attributed to its possible administration into the thoracic cavity by the emergency medical personnel at the accident site for resuscitation, but circulatory failure prevented its further distribution.
These examples clearly demonstrate the applicability of the PCR-based DNA profiling in a QC/QA program to enhance the effectiveness of forensic toxicology operation. However, such applicability will be feasible only in those setups where in-house DNA facilities are accessible.
Key Words: Quality Control/Quality Assurance, DNA Profiling, Polymerase Chain Reaction, Cyanide Analysis, Atropine Administration, Aircraft Accident Investigation
No. of Pages: 10
Last updated: Friday, June 1, 2012